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Abstract: In the present investigation an attempt is made to understand the I-S phase plane. Trajectories, using the solutions of the second order 
differential equation, describing the virus growth in the extended model of SIR covering immigration studies, are presented. The value of the ratio of 
product of immigrant rate and birth rate of virus to square of death rate of virus, greater than or equal to value four, plays a dominant role in deciding 
the nature of I-S trajectories. For same values of immigration rate, birth and death rates of virus the trajectories reach asymptotically the stable 
equilibrium point (ratio of death and birth rate of virus, ratio of immigration and death rate of virus) which is termed as a nodal sink. Effect of low 
and high values of death rate, birth rate and threshold value along with different population sizes is also illustrated therein. 
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I. INTRODUCTION 

The concept of immigrants plays an important role in the 
field of demographic studies. The inflow of population has a 
tremendous impact on the socio-economic-environmental 
values on the existing conditions in a given population. 
Similarly in the study of epidemics, immigrants play a vital 
role. This can be understood by transmission of virus leading 
to new class of diseases e.g., HIV leading to AIDS [1]. It is 
needless to emphasize in the field of computers also, in view 
of similarities between computers and biological viruses, the 
immigrants (the influx of computers) play an important role on 
the growth and spread of virus. To carry out such studies, SIR 
(susceptible- infected-removed) model [2] is convenient when 
extended to the inclusion of immigrants at a constant rate in 
the prevailing system of computers.  Such studies have been 
made in [3], [4]. In these studies the attention was paid mostly 
for the general understanding of spread and growth of virus in 
computers.  

The particular study of infected susceptible phase plane 
analysis throws lot of light on the relative removal rate, basic 
reproduction rate, birth and cure rates of computer virus 
[5].The theoretical implications of the analysis was explained 
in Appendix-I [6]. A simple and elegant method of solving the 
second order differential equation for the virus growth was 
given by extended model of SIR [7], where in one of the 
solutions leading to complex roots for the virus growth was 
dealt. Out of  the other two solutions, where the roots are (i), 
real and distinct and (ii), real and equal, the situation (i) real 
and distinct roots is presented in this publication while the 
situation (ii) real and equal roots is going to appear in a forth 
coming publication. The subject matter is arranged as follows. 
In section II the methodology is described. In section III the 
results and discussions are presented where as in section IV, 
the conclusions are high lighted. Finally, references are given 
in section V. 

II. METHODOLOGY 

The basic SIR model involves three classes of systems 
namely susceptibles(S), infectives (I) and removed(R). Some 
susceptibles (immigrants) at a constant rate (k) into the system 
are introduced. Thus, the effect of immigrants on the spread 
and growth of virus was discussed in detail by [7]. The 
prominent equations governing the virus growth are given by:- 

SIk
dt
ds β−= ; ISI

dt
dI γβ −= ; I

dt
dR γ=  (1) 

With the condition,  
ktNktISRIS +=++=++ 00  .  (2) 

Where k stands for immigrant rate, β for birth rate, γ for 
death rate, S0, I0 are initial values of S and I. N stands for 
population size. It may be noted that all the three derivatives 
in “(1)” cannot vanish simultaneously. We confine our 
discussion to the first two derivatives. Let SE and IE 
correspond to equilibrium solution. By setting the first two 
derivatives in “(1)” = 0 one can obtain the steady 
state/equilibrium solutions SE and IE. In general the values of 
S and I can be expressed in terms of SE and IE by introducing 
small departures ε and υ respectively. The values of ε and υ 
are so small so that their squares, higher powers, and product 
terms can be neglected. On substituting in “(1)” and 
simplifying, one can obtain relations amongst ε, υ,

dt
dε , and 

dt
dυ . In these relations with suitable substitution and 

simplification one can eliminate ε. This exercise will result in 
a second order differential equation in υ as                                                                    

                            0)()( ''' =++ υβυγβυ kk                     (3) 
This can be solved by standard method. In doing so one 

comes across a discriminator 
                               ))(*41 2 βγβω kk −=           (4) 

Details of the above procedure are given by [7].  
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The valu e of ω may b e +ve, zero or –ve according to 
4,,)/( 2 <=>γβk  respectively. Accordingly the roots are (i) 

real and distinct, (ii) real and equal, (iii) complex and unequal. 

A. Roots are real and distinct: 
In general the solution is given by                 

                             υ = tmtm ecec 21

21 +                                       (5) 
Where  

ωγβ +−= )/(*)2/1(1 km   
& γβ /*)2/1(2 km −=  - ω                             (6)                                                                 

1c  , 2c  are arbitrary constants which can be derived from 
initial conditions. Values of υ and υ’ from “(5)” along with 
expression for

dt
dI  in “(1)”, expression, )1( υ+= EII , where 

γ/kI E = , and the equilibrium value of I at t = 0 are used to 

determine the arbitrary constants 1c  and 2c . Hence υ and 
thereby I are found as a function of time. Similarly the 
expressions, ε= (1/γ)*υ, )1( ε+= ESS  where βγ /=ES , the 
equilibrium value of S , are used to determine the values of ε 
and there by S as a function of time. One can also plot I  vs 
S  for different combinations of K , β  and γ preserving the 
condition that 4/ 2 >γβk . 

III. RESULTS AND DISCUSSIONS 

In the present investigation the main interest is focused on 
the SI _  phase plane analysis. Thus out of the three coupled 
differential equations used, the first two are sufficient for 
discussion. Unlike SIR model, the 

dt
dS  equation is not a 

continuously decreasing function. It has no lower bound limit. 
On the contrary it has i) a term, SIβ− , representing the 
number of susceptibles getting converted into infectives and 
ii) a term, K , representing an inflow of immigrants at a 
constant rate. So depending on the initial values of S , I , β  
and K   , there will be a competition between the said two 
terms. As a result 

dt
dS  will be increasing / decreasing. In the 

second equation, 
dt
dI  will be +ve, 0, -ve as βγ /,, <=>S . The 

value of γ/β is termed as threshold value or effective removal 
rate ( ρ ). Thus increase/decrease of I  with time depends on 
whether ρ>S  or ρ<S . It may be noted that at 

equilibrium state the two differential equations, 
dt
dS and 

dt
dI  

will be zero. Hence at equilibrium, the values for S  & I  will 
be equal to βγ /=ES  and γ/kI E =  respectively.  

B. Roots are real and distinct: 
According to the above prescriptions of the model different 

values of parameters, N , 0I , K , γ , β  of the virus are 
chosen so that conditions needed for Sec: II-A are satisfied. 
Further two sets of values for (i) highγ , β   and low ρ  and 

(ii) lowγ  , β   and high ρ   are considered. Obtain S and I, as 
a function of time.  With appropriate choice of input 
parameters the effect of different values of γ (0.2 to 0 .05) and 
β (0.04 to 0.0025) or in other words different values of ρ (5 to 
20) and various population sizes (N=51 to 20,001) is studied, 
with respect to the virus growth and time taken to reach SE & 
IE, through numerical simulations. Out of the figures drawn 
and studied exhaustively, for I vs S; S vs t and I vs t,  two 
typical sets of data (A and B) as mentioned are considered. 
The relevant data is shown in Table 1 and the results are 
described below. 

Table 1: Input parameters data 
Set Population Size (N) γ β k I0 
 
A 

51,81,121,151,301,501, 
551,1001,2001. 

 
0.2 

 
0.04 

 
5 

 
1 

 
B 

51,101,501,1001,2001, 
3001,5001,7001,10001, 
15001,20001. 

 
0.05 

 
0.0025 

 
5 

 
1 

 
While studying the, I vs S trajectories some distinct 

features are noted irrespective of γ and β, accordingly, they are 
classified into three different phases. 

Phase I: In this phase the values of S increase from S0 up 
to a maximum value. The trajectory takes a reversal i.e. S 
decreases and finally reaches the value SE asymptotically. The 
value of S is > SE. Thus I will be increasing from I0 to IE 
asymptotically. 

Phase II: In this case S will be decreasing from the 
beginning i.e. S0 and asymptotically attains the value SE .Here 
again the value of S is > SE i.e. ρ. Thus I will be increasing 
from I0 to IE asymptotically. 

Phase III: In this phase also S will be decreasing from S0, 
passes through SE and enters –ve region for a while and then 
with a reversal enters +ve region and finally attains SE and 
continues to remain there for all the times. It may be noted that 
the value of S, till it passes the ordinate at SE, will be > SE and 
later on the value will be < SE till it sinks to the value SE. For 
this region S will be < ρ. Thus I will increase to a maximum 
value and then will decrease exponentially and asymptotically 
attains the equilibrium value IE. This feature is in accordance 
with the second differential equation of (1). 

For clarity in resolution, the I vs S trajectories are shown 
in “Figs.1.1.1, 1.1.2 and 1.1.3” for N=51, 81,121; 
151,301,501; 551, 1001, 2001 respectively in set A. These 
three diagrams represent the three phases of I vs S trajectories 
as explained already. Similarly I vs t is shown in “Fig 1.2” for 
selected values of N =81, 301, 551, 1001. The variation of S 
vs t for N=81,301 is shown in “Fig. 1.3.1” and for N=551, 
1001 is shown in “Fig. 1.3.2”. The features exhibited in all the 
graphs are in accordance with the prescription of the model.       

From the numerical values obtained for I and S as a 
function of time, it is noted that the time taken to attain IE and 
SE values is close to 50 unit time steps. Further the value of IE 
is reached earlier compared to the value SE. In order to have a 
feeling about the effect of low γ and β values, ρ is increased  
b y a factor o f 4  i.e. ρ is chang ed  from 5  to 2 0 . The values 
given in Table 1, for set A and set B may be compared. 
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Figure 1.1.1:  Infectives vs Susceptibles ( ω > zero)                                       Figure 1.1.2:  Infectives vs Susceptibles ( ω > zero) 
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Figure 1.1.3:  Infectives vs Susceptibles ( ω > zero)                                 Figure 1.2:  Infectives vs Time ( ω > zero) 
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Figure 1.3.1:  Susceptibles vs Time ( ω > zero)                                   Figure 1.3.2: Susceptibles vs Time ( ω > zero) 
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Figure 2.1.1: Infectives vs Susceptibles ( ω > zero)                                       Figure 2.1.2: Infectives vs Susceptibles ( ω > zero) 
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Figure 2.1.3: Infectives vs Susceptibles ( ω > zero)                                     Figure 2.2: Infectives vs Time  ( ω > zero) 
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Figure 2.3.1: Susceptibles vs Time ( ω > zero)                                            Figure 2.3.2: Susceptibles vs Time ( ω > zero) 
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Accordingly all the drawings for I vs S for 

N=51,101,501,1001,2001;3001,5001,7001;,10,001,15,001,20,
001, I vs t for N=501,5001,10,001,15,001 and S vs t for 
N=501,5001;10,001,15,001 for set B are shown in “Figs.2.1.1, 
2.1.2, 2.1.3; 2.2 and 2.3.1, 2.3.2” respectively. All the features 
as exhibited in “Fig.1” series are noted in “Figs. 2” series also. 
The corresponding population sizes at the transition of phases 
are enhanced e.g. for set A, the value of N is less than 121 for 
phase-I, lies between 151 to 501 for phase-II and greater than  
551 for phase-III. Where as for the set B, the corresponding 
values are less than 2001 for Phase-I: for Phase-II limits are 
3001 to 7001 and for phase-III the value is greater than 7001. 
Similarly the time taken to attain the equilibrium values for I 
and S is also enhanced to nearly 200 unit time steps. Again it 
is observed, that I attains the equilibrium value prior to that of 
S.  Thus on comparing the results from set A to set B i.e. ρ 
from lower to higher value, one comes across higher values 
for population sizes and also time taken to reach equilibrium 
values for I and S. It can be verified that when ρ is increased 
by a factor of 4, the saturation times also increased by a 
similar factor. Thus it may be noted that higher the value of ρ 
slower is the growth of virus.   

IV. CONCLUSIONS 

In this investigation the term 2/ γβk   plays an important 
role in describing the nature of infection growth. Unlike SIR 
model there is no lower bound to S but it attains a stable 
equilibrium value, SE = ρ, which is the th reshold  valu e The 
Increasing / decreasing trend of S  depends on the relative 
strengths of the terms, SIβ− , k. The I value will not tend to 

zero but attains a stable equilibrium value for γ/kI E = .  

Variation of I depends on whether ρ>S or ρ≤S . For 

same values of k, γ  andβ  , all trajectories in SI _  phase 

plane reach the stable equilibrium point at ( EE IS , ) which is 
termed as nodal sink. It is observed that as the threshold value 
is increased, the time taken to reach equilibrium point (SE,IE) 
also increases indicating there by the slow rate for growth of 
virus. 
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