
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 193

ISSN No. 0976-5697

Improved Shortest Remaining Burst Round Robin (ISRBRR) Using Optimal Time
quantum

P.Surendra Varma
Dept. Name of Computer Science & Engineering

NRI Institute of Technology
Vijayawada, India

surendravarma008@gmail.com

Abstract: Round Robin (RR) performs optimally in timeshared systems because each process is given an equal amount of static time quantum.
But the effectiveness of RR algorithm solely depends upon the choice of time quantum. I have made a comprehensive study and analysis of RR
algorithm and SRBRR algorithm. I have proposed an improved version of SRBRR (Shortest Remaining Burst Round Robin) by assigning the
processor to processes with shortest remaining burst in round robin manner using the optimal time quantum. Time quantum is computed with the
help of median and highest burst time.

Keywords: Operating System, Scheduling Algorithm, Round Robin, Context switch, optimal tq

I. INTRODUCTION

A. Any CPU scheduling algorithm relies on the
following criteria. They are:

a. CPU utilization:
We want to keep the CPU as busy as possible that means

CPU is not free during the execution of processes.
Conceptually the CPU utilization can range from 0 to 100
percent.

b. Response time:
Response time is the time from the submission of a

request until the first response is produced.

c. Throughput:
One measure work is the number of processes that are

completed per time unit that means the number of tasks per
second which the scheduler manages to complete the tasks.

d. Turnaround Time:
The time interval from the time of submission of a

process to the time of completion is the turnaround time.
Total turnaround time is calculation is the sum of the
periods spent waiting to get into memory, waiting in the
ready queue, executing on the CPU, and doing I/O.

e. Waiting Time:
The waiting time is not the measurement of time when a

process executes or does I/O completion; it affects only the
amount of time of submission of a process spends waiting in
the ready queue. We keep average waiting time should be
less.

II. PRELIMINARIES

A process is an instance of a computer program that is
being executed. The processes waiting to be assigned to a
processor are put in a queue called ready queue. The time
for which a process holds the CPU is known as burst time.
Arrival Time is the time at which a process arrives at the

ready queue. The interval from the time of submission of a
process to the time of completion is the turnaround time..
Waiting time is the amount of time a process has been
waiting in the ready queue. The number of times CPU
switches from one process to another is known as context
switch. The optimal scheduling algorithm will have
minimum waiting time, minimum turnaround time and
minimum number of context switches.

A. Basic Scheduling Algorithms:

a. First Come First Serve (FCFS):
In the First-Come-First-Serve (FCFS) algorithm, the

CPU is assigned immediately to that process which arrives
first at the ready queue. Processes are dispatched according
to their arrival time on the ready queue. Being a non
preemptive discipline, once a process has a CPU, it runs to
completion.

b. Shortest Job First (SJF):
In this strategy the scheduler arranges processes with the

Burst times in the ready queue, so that the process with low
burst time is scheduled first.
If two processes having same burst time and arrival time,
then FCFS procedure is followed.

c. Shortest Remaining Time First (SRTF):
This is same as the SJF with pre emption, which small

modification. For scheduling the jobs system need to
consider the remaining burst time of the job which is
presently executed by the CPU also along with the burst
time of the jobs present in the ready queue.

d. Priority Scheduling Algorithm:
It provides the priority to each process and selects the

highest priority process from the ready queue.

e. Round robin Scheduling Algorithm:
Round Robin (RR) is one of the oldest, simplest, and

fairest and most widely used scheduling algorithms,
designed especially for time-sharing systems. Here every

P.Surendra Varma, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 193-198

© 2010, IJARCS All Rights Reserved 194

process has equal priority and is given a time quantum after
which the process is preempted.

III. RELATED WORK

Efforts have been made to modify SRBRR [3] in order to
give better turnaround time, average waiting time and
minimize context switches.

IV. PROPOSED ALGORITHM

A. The proposed algorithm works as follows:
a. All the processes present in ready queue are sorted

in ascending order.
b. While (ready queue!= NULL)

TQ = Ceil ((Highest B.T + median)/ 2)
c. Assign TQ to process

Pi ->TQ
d. If (i<n) then go to step 3
e. If a new process is arrived,

Update the counter n and
go to step1
End of while

f. Average waiting time, average turnaround time and
Number of context switches are calculated.

g. End

V. EXPERIMENTS & RESULTS

A. Assumptions:
All experiments are assumed to be performed in

uniprocessor environment and all the processes are
independent from each other. Attributes like burst time and
priority are known prior to submission of process. All
processes are CPU bound. No process is I/O bound.
Processes with same arrival time are scheduled.

B. Illustration and Results:
Case-I:

Let us assume five processes, with increasing burst time
(P1 = 13, P2 = 35, P 3 = 46, P4 = 63, p5= 97) as shown in
TABLE.

Table: 1

Process Burst Time

P1 13

P2 35

P3 46

P4 63

P5 97

Now, as per the algorithm Time Quantum is calculated
as follows
TQ = Ceil((Highest B.T + median)/ 2)
TQ = Ceil ((97 + 46) / 2) = 72

P1 P2 P3 P4 P5 P5

0 13 48 94 157 229 254

Number of Context Switches = 5
Average Waiting Time = (0+13+48+94+157) / 5 = 62.4
Average Turnaround Time = (13+48+94+157+254) / 5

 = 113.2
Table 1: Comparison between RR, SRBRR and Proposed
algorithm
 (case – I)

Table: 2

Algorithm Time
Quantum

Avg.TAT Avg.WT CS

RR 25 148.2 97.4 11

SRBRR 46 122.4 71.6 7

ISRBRR 72 113.2 62.4 5

Figure: 1

Figure: 2

P.Surendra Varma, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 193-198

© 2010, IJARCS All Rights Reserved 195

Figure: 3

Case II :
Let us assume five processes arriving at time = 0, with

decreasing burst time (P1 = 86, P2 =53, P 3 = 32, P4= 21,
p5= 9) as shown in TABLE

Table: 3

Process Burst Time

P1 86

P2 53

P3 32

P4 21

P5 9

Now , TQ can be calculated as follows :
TQ = Ceil((Highest B.T + median)/ 2)
TQ = Ceil ((86+32)/2) = 59

P5 P4 P3 P2 P1 P1
0 9 30 62 121 180 207

Number of Context Switches = 5
Average Waiting Time = (0+9+30+62+121) / 5 = 44.4
Average Turnaround Time = (9+30+62+121+207) / 5 = 85.8
Table II: Comparison between RR, SRBRR and Proposed
algorithm
(case – II)

Table: 4

Algorithm Time
Quantum

Avg.TAT Avg.WT CS

RR 25 150.8 110.5 10

SRBRR 32 89.8 49.6 7

ISRBRR 59 85.8 44.4 5

Figure: 4

Figure: 5

Figure: 6

Case-III:
Let us Assume five processes arriving at time = 0, with

random burst time (P1 = 54, P2 = 99, P 3 = 5, P 4 = 27, p5=
32) as shown in TABLE

P.Surendra Varma, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 193-198

© 2010, IJARCS All Rights Reserved 196

Table: 5

Process Burst Time

P1 54

P2 99

P3 5

P4 27

P5 32

Now, TQ can be calculated as follows:
TQ = Ceil((Highest B.T + median)/ 2)
TQ = Ceil((99+32)/2) = 66

P3 P4 P5 P1 P2 P2
0 5 32 64 118 184 217

Number of Context Switches = 5
Average Waiting Time = (0+5+32+64+118) / 5 = 43.8
Average Turnaround Time = (5+32+64+118+217) / 5

 = 87.2
Table III: Comparison between RR, SRBRR and Proposed
algorithm
(case – III)

Table: 6

Algorithm Time
Quantum

Avg.TAT Avg.WT CS

RR 25 152.2 108.8 11

SRBRR 32 93.6 50.2 7

ISRBRR 66 87.8 43.8 5

Figure: 7

Figure: 8

Figure: 9

C. Implementation:
The algorithm is implemented using C language and its

code is as follows:
Source Code
#include<stdio.h>
#include<conio.h>
#include<math.h>
int st[10];
int get_tq(int b[],int s)
{
int i,j,tmp,hbt,median;
float k,l,m;
for(i=0;i<s;i++)
{
for(j=i+1;j<s;j++)
{
 if (b[i]>b[j])
 {
 tmp=b[i];
 b[i]=b[j];
 b[j]=tmp;
 }
}

P.Surendra Varma, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 193-198

© 2010, IJARCS All Rights Reserved 197

}
hbt=b[i-1];
median=b[i/2];
for(i=0;i<s;i++)
st[i]=b[i];
l=(float)hbt;
m=(float)median;
k=ceil((l+m)/2);
return(ceil(k));
}
void main()
{
int bt[10],wt[10],tat[10],n,tq;
int i,count=0,swt=0,stat=0,temp,sq=0;
float awt=0.0,atat=0.0;
clrscr();
printf("Enter number of processes:");
scanf("%d",&n);
printf("Enter burst time for sequences:");
for(i=0;i<n;i++)
{
scanf("%d",&bt[i]);
st[i]=bt[i];
}
tq=get_tq(st,n);
printf("\ntime quantum is computed by
ceil((highestbt+Median)/2) = %d\n",tq);
while(1)
{
for(i=0,count=0;i<n;i++)
{
temp=tq;
if(st[i]==0)
{
count++;
continue;
}
if(st[i]>tq)
st[i]=st[i]-tq;
else
if(st[i]>=0)
{
temp=st[i];
st[i]=0;
}
sq=sq+temp;
tat[i]=sq;
}
if(n==count)
break;
}
for(i=0;i<n;i++)
{
wt[i]=tat[i]-bt[i];
swt=swt+wt[i];
stat=stat+tat[i];
}
awt=(float)swt/n;
atat=(float)stat/n;
//printf("Process_no\t Burst time\t Wait time\t Turn around
time\t");
//for(i=0;i<n;i++)
//printf("%d\t %d\t %d\t %d\t",i+1,bt[i],wt[i],tat[i]);

printf("\nAvg wait time is %f\n Avg turn around time is
%f\t",awt,atat);
getch();
}

Enter number of processes:5
OUTPUT

Enter burst time for sequences:13
35
46
63
97
time quantum is computed by ceil((highestbt+Median)/2) =
72
Avg waiting time is 62.400002
Avg turn around time is 113.199997

D. Simulation and Screen shots:
Turbo C++ is used in order to simulate the source code.

Here are some screen shots of simulation process.

Figure: 10

Figure: 11

P.Surendra Varma, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 193-198

© 2010, IJARCS All Rights Reserved 198

Figure: 12

VI. CONCLUSION AND FUTURE WORK

From the above comparisons I can conclude that the
proposed algorithm is performing better than the static RR
algorithm [1],[2],[5] and SRBRR algorithm [3] in terms of
average waiting time, average turnaround time and number

of context switches. In future work, processes at different
arrival times can be considered for the proposed algorithm.

VII. REFERENCES

[1]. “Silberschatz, A., P.B. Galvin and G. Gagne, 2004”
Operating Systems Concepts. 7th Edn., John Wiley and
Sons, USA., ISBN: 13: 978-0471694663, pp: 944.

[2]. “Tanebaun, A.S., 2008” Modern Operating Systems. 3rd
Edn., Prentice Hall, ISBN: 13: 9780136006633, pp:1104.

[3]. “Prof. Rakesh Mohanty, Prof. H. S. Behera, Khusbu
Patwari, Manas Ranjan Das, Monisha Dash, Sudhashree”
Design and Performance Evaluation of a New Proposed
Shortest Remaining Burst Round Robin(SRBRR)
Scheduling Algorithm, Am. J. Applied Sci., 6 (10): 1831-
1837, 2009.

[4]. “Yaashuwanth .C & R. Ramesh” Inteligent time slice for
round robin in real time operating system, IJRRAS 2 (2),
February 2010.

[5]. William Stallings, “Operating Systems: Internals and
Design Principles” 6th edition, Prentice Hall, ISBN-
13:978-0136006329

	INTRODUCTION
	REFERENCES

