
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 333

ISSN No. 0976-5697

A Comparative Study of Simulation tools for implementing and improving energy
efficiency of a Wireless Sensor Node

R.K.Nadesh*
 Assistant Professor Senior, SITE,

VIT University Vellore, India
rknadesh@vit.ac.in

Varsha Singh
U.G.Scholar, SITE

VIT University, Vellore, India
 varsha162@gmail.com

Apoorva Kishore Malewar
U.G.Scholar, SITE

VIT University, Vellore, India
mk.apoorva@gmail.com

Abstract

Keywords: Avrora, NS2, J-Sim, Omnet++, OPNET Modeler, TOSSIM, Wireless Sensor Networks.

: Wireless Sensor Networks is a novel field in the realm of research. These networks contain small battery driven nodes that are used to
survey a physical area without constant human supervision. These nodes gather information regarding the physical environment, process it and
send it back to the parent base station. Various simulation tools can be used to test algorithms and compare results rather than testing them as a
real time experiment which is costlier and more time consuming. This paper contains a study of the various tools available which can be used to
simulate WSN such as NS2, Omnet++ etc.

I. INTRODUCTION

Recently there have been many advances in the areas of
distributed and wireless networks. These require the use of
low energy consuming devices that can work efficiently and
also posses processing abilities. Wireless Sensor Networks
(WSN) is one field that provides this functionality.

Wireless Sensor Networks consists of a number of
autonomous devices that are used to keep a watch on the
environmental conditions, such as temperature, humidity,
motion or pollutants, pressure, sound

As the uses of WSN increase, they are being modified
and tested for a lot of different functionalities. Running real

time experiments on actual physical setting is very difficult
as a lot of tests are run to reach perfection and some of them
might not give the desired output. This can be very costly in
the matter of finance, time and effort [3]. Many factors
affect the output of a test run and isolating a single fault can
be very tedious. Also the sensor node devices are expensive
to set up and require a certain level of expertise. Thus
simulation is very important in the area of WSNs [4].

Simulators are hence used to develop and test new
routing algorithms, protocols, and applications, before
implementing them in real time. They allow the developers
to locate and isolate the errors in a short amount of time.
They can also work towards improving a certain aspect of
the product until the preferred results are achieved. This
maximizes efficiency and promises better usability [5].

 and to collectively
pass data through the network to the base station. These
devices required to use optimal amount of power as they
have a small battery life [1]. They also need a robust routing
algorithm to navigate their data as they have minimal human
supervision. WSN have a dynamic topology of network with
static or mobile nodes that continuously interact with each
other, allowing heterogeneity of nodes. It is also scalable yet
providing ease of use. These nodes are designed to handle
harsh environment conditions.

WSN was developed for military surveillance purposes,
such as in the battlefield or to study the enemy camps. Later
they were also used to study traffic patterns, weather
monitoring and reporting. They are also used in the field of
medicine, such as in hospital automation or medical
assistance in emergency or in remote areas [1]. They are
used to detect natural disasters, track animal life in the wild,
monitor air pollution, data logging, machine health
monitoring, and agriculture, waste water monitoring, and
also tracking of materials. In structural health monitoring,
you can use wireless sensors to effectively monitor
highways, bridges, and tunnels. You also can deploy these
systems to continually monitor office buildings, hospitals,
airports, factories, power plants, or production facilities [2].

II. SIMULATORS

A. Network Simulator 2- NS2:

a. Overview:
NS2 is the most popular network simulator used by

researchers. It is an open source discrete event simulator that
can be used to simulate both wired and wireless networks. It
supports a large number of protocols used for routing,
providing simulations for both static and dynamic networks.
NS (Network Simulator) is originally based on REAL
network simulator. NS2 is the second version of NS. The
first version of NS, developed in 1989 has evolved a lot over
the years. In 1995, NS project was supported by DARPA
through the Virtual Inter Network Testbed (VINT) project.
Information Sciences Institute in California is currently
developing the tool and is being supported through DARPA
and NSF.

R.K.Nadesh et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,333-337

© 2010, IJARCS All Rights Reserved 334

b. Features:
NS2 is an object-oriented network simulator developed

in C++. Is supports simulation using C++, which is used to
build protocols and OTcl. OTcl which basically is Tcl (Tool
Command Language) with object-oriented extensions was
developed by David Wetherall at Massachusetts Institute of
Technology. It is used for manipulation of existing C++
objects and for scenario development and configuration
purposes. The combination of these two languages proves to
be very effective, as OTcl has the feature that C++ lacks.
C++ is a very efficient language to define and develop
protocols for routing, but it is difficult to visualize it and be
represented graphically. It is difficult to gather connect
modules and change parameter values in C++ visually. OTcl
makes up for these lacking features. Thus C++ is used to
implement the routing protocol and OTcl is used to control
the simulation scenario and schedule the events. NS2
separates control path implementations from the data path
implementation and hence is more efficient [6].

Figure 1: Xterm of NS2

c. Merits:
a) NS2 contains a variety of protocols in all the layers,

especially the WSN and ad-hoc protocol.
b) It is open source and hence online example codes

can be used as a part of component development.
c) It is object-oriented hence it has features like

encapsulation, abstraction, modularity, inheritance,
and ease of use.

d. Demerits:
a) It uses Tcl and hence users have to be acquainted

with the scripting and modeling methods used. Tcl
is a little difficult to write and understand.

b) NS2 has a poor GUI (Graphical User Interface)
unlike the modern network simulators, and hence
developing model is time consuming.

c) Due to the open source code base, the model may
contain bugs [6].

B. OMNet++:

a. Overview:
OMNeT++ (Objective Modular Network Testbed in

C++) is a discrete event simulation environment, which
supports component-based, modular programming. It has an
Eclipse-based IDE with a graphical run-time environment.
What makes OMNet++ popular is its excellent GUI
(Graphical User Interface) which provides robust debugging
and integration capabilities. OMNeT++ is licensed under the
Academic Public License. This allows GNU Public License-

like freedom but only in noncommercial settings. It was
developed mainly by Andras Varga from Technical
University of Budapest. Its main application is the
simulation of communication networks; but as it has a very
flexible architecture, it can also be used in other areas like
the simulation of queuing networks, hardware architectures
or complex IT systems.

b. Features:
OMNeT++ was developed in C++ and supports object-

oriented programming. It provides a component-based
modular programming architecture with a good graphical
and visual aid. Thus a new project can be built one small
module at a time, which later can be integrated to give the
whole functionality. It also provides a Simulation kernel
library which can be reused for different simulations. The
GUI consists of Graphical network editor for NED files
(GNED) and a NED compiler. There are tools for graphical
analysis of the simulation result called Plove and Scalar,
which are used for vectors and scalars respectively. For the
execution of the simulation two interfaces are provided:
Tkenv for graphical visualization and Cmdenv for command
line execution. A tool for model documentation
(opp_neddoc), utilities such as makefile creation tool, also
exists along with sample simulations and proper
documentation.

To support for simulation of wireless networks,
OMNeT++ has been provided with external extensions.
Some of the most popular extensions are INET Framework,
Mobility Framework and INET MANET for mobile ad-hoc
networks. An extension called Mixim, is a modeling
framework created for mobile and fixed wireless networks,
and now includes the Mobility Framework. Another feature
is that the simulation executables are actually independent
programs that can be run on other machines without the
simulator. OMNeT++ works on Linux, Unix-like systems
and Windows XP/2K [7].

Figure 2: Workspace of Omnet++

c. Merits:
a. It offers a powerful GUI that helps in the easy and

simplified tracing and debugging of the programs.
b. The GUI makes the designing of the network easier

and quicker with its drag and drop and other visual
aids.

c. The configuration file can be modified easily to
simulate the network with different parameters.

d. With the contribution of the supporting team,
OMNeT++ also has a mobility framework that
helps in designing of wireless networks.

R.K.Nadesh et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,333-337

© 2010, IJARCS All Rights Reserved 335

e. The execution of the simulation is simplified for
the user. They can choose to run it graphically or
through command line.

f. The result analysis of the simulated output can be
visualized graphically and is separate for scalars
and vectors [7].

d. Demerits:
a. The number of available protocols is not large.
b. Compatibility problems may arise in modules

developed by different teams.
c. Some of the open source modules may contain

bugs [8].

C. Avrora:

a. Overview:
Avrora, built in Java, is a simulator specifically designed

for WSNs. It is a set of simulation and analysis tool written
by the University of California, Los Angeles Compilers
Group. It was developed mainly by Ben L. Titzer and his
team. It is written to simulate AVR-based micro-controller
MICA2 sensor nodes. This simulator has open sources and
online documents which can be used as help. Avrora
contains a flexible framework for simulating and analyzing
assembly programs, providing a clean Java API and
infrastructure for experimentation, profiling, and analysis.

b. Features:
The simulator allows one to specify a-monitors option,

which allows monitors to collect information while it
executes the program at the same time. The trace monitor
will print out each instruction along the path of execution. It
then generates a report once the execution is complete. The
GDB debugger hooks provide source-level debugging and
integrated development and testing. The profiling utilities
are used to study the simulation's behavior during execution.
The instrumentation capabilities allow the observation of
program behavior without disturbing the simulation, and
without modifying the simulator source code. The control
flow graph tool can create a graphical representation of your
program's instructions and the energy analysis tool is used to
analyze energy consumption and to determine the battery
life of your device. There is a stack checker tool that is used
to bind the maximum stack size used by the program [9].

c. Merits:
a. Avrora is an instruction-level simulator where the

code is run instruction by instruction, which
provides faster speed and better scalability.

b. It is built in Java language hence imbibes the
salient features of the language such as flexibility.

c. It can support thousands of nodes simulation, and
can save much more execution time with similar
accuracy.

d. Demerits:
a. It does not have a GUI, which may make designing

the network more difficult.
b. It does not provide network communication tools,

and thus can not simulate network management
algorithms [9].

D. J-Sim:

a. Overview:
J-Sim is a simulation environment written in Java. It

provides an open-source, component based network
simulation environment. It gives a Simula-like simulation
environment with a lot of additional functionalities. It was
developed by a team at the Distributed Real Time
Computing Laboratory of the Ohio State University and by
Illinois University. It is being used in a rapidly emerging
area of simulation research that is simulation and animation
environment supporting Web-Based Simulation.

b. Features:
The simulation is executed in a step-by-step manner.

During a step, just one process is given a chance to run. The
basic building blocks of every J-Sim simulation are
processes and queues. Processes are active, while queues
and other elements of the simulation are passive. The
simulation models may be built using either the event
package (Event-Scheduling Paradigm) or the process
package (Process-Interaction Paradigm). The scripting
language is used to create simulation scenarios, which are
used to configure and control the simulation at run-time and
also to monitor and collect simulation data. A script
interface allows integration with different script languages
like Tcl, which is currently fully integrated into the
environment. A graphical editor exists for Tcl configuration
files called gEditor and a special plot component is provided
to plot simulation statistics. The execution components are
implemented by Java threads which uses the Java Virtual
Machine (JVM) scheduling thread execution. Therefore, a
simulation runs in the same manner a real system does. This
framework is built upon the extensible inter-networking
framework (INET) and the autonomous component
architecture (ACA) of J-Sim. The ACA enables new
components to be included into J-Sim in a plug-and-play
fashion. Also available are sensor and sink nodes along with
an object-oriented definition. Also it has wireless
communication channels, with physical media. It also
provides mobility model and power model (both energy-
producing and energy-consuming components) [10].

c. Merits:
a. J-Sim provides a GUI library, which helps in

debugging and tracing programs.
b. It contains large number of protocols.
c. It has facilities for easy simulation as it provides

good re-usability and interchangeability of program
modules.

d. It supports routing and localization simulations in
WSNs data diffusion.

d. Demerits:
a. The execution of the simulation takes much more

time than other simulators like NS2.
b. J-Sim has a lot new protocols or node components

added to it as it was not originally designed for use
with WSNs, and hence is a little difficult to use
[10].

R.K.Nadesh et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,333-337

© 2010, IJARCS All Rights Reserved 336

E. OPNET Modeler:

a. Overview:
Opnet, standing for Optimized Network Engineering

Tools, is used to analyze computer networks and
applications based on their performance and properties. It
was developed by Alain Cohen in 1987 as his graduate
project at MIT. He later co-founded the company Opnet
Technologies Inc. Along with his brother Marco Cohen and
classmate Steven Baraniuk. The company's first product was
OPNET Modeler, a software tool for network modeling and
simulation. It is a well-established commercial discrete-
event simulator developed in C++. The simulator offers an
environment for designing protocols and technologies and
also for the testing and demonstrating designs in realistic
scenarios.

b. Features:
OPNET Modeler uses hierarchical modeling. It defines a

network as a collection of sub-models representing sub-
networks or nodes. The topology that one needs can be
manually created, imported or selected from the pool of
predefined topologies.

The simulator has both built-in and external tools for
statistics analysis. Some of the graphical tools of the
simulator are described as follows. First is the Probe Editor
with which one can find out the runtime statistics of any
particular point in the network by simply placing a probe at
it. Global statistics, node statistics, attribute statistics and
animation statistics are some statistics types collected by
diff erent probes. Opnet provides Simulation Tool that one
can use to give input/output optins, runtime options and
other attributes. We can also define a sequence of simulation
and set option for parallel simulations. Analysis Tool
graphically displays simulation results, creates scalar graphs
and can save analysis configurations for future use. It has an
additional function called High-level Architecture that can
support distributed simulation. OPNET Modeler runs on
Windows XP/2K, Linux and Solaris platforms [11].

c. Merits:
a. OPNET Modeler provides a good manual and an

introductory tutorial.
b. The Modeler has an advanced graphical interface

which is used for model creation, simulation
execution and data analysis.

c. It can concurrently execute several simulation
scenarios.

d. It provides realistic mobility models.

d. Demerits:
a. It is not open source hence additional external tools

are not supported.
b. If a specific component has to be developed, the

simulator maybe quite complex [11].

F. Tossim:

a. Overview:
TOSSIM is a simulator specifically designed for WSN

running on TinyOS, an open source operating system. It was
developed by UC Berkeley’s TinyOS project team in 2003 .
It is a bit-level discrete event network simulator built in
Python and C++. It works on Linux Operating Systems or

on Cygwin on Windows. It was designed specifically for
TinyOS applications to be run on MICA Motes and can
simulate entire TinyOS applications. TOSSIM captures the
behavior and interactions of networks not on the packet
level but at network bit granularity [12].

b. Features:
TOSSIM can replace a packet-level communication

component for packet-level simulation, or replace a low-
level radio chip component for a more precise simulation of
the code execution. It works by replacing components with
simulation implementations. The accuracy and complexity
of the model necessary for the simulations can be chosen by
the developers. The simulation provides several mechanisms
for interacting with the network. The packets can be
statically or dynamically injected into the network and the
packet traffic can be monitored. It simulates the TinyOS
network stack at the bit level, allowing experimentation with
low-level protocols in addition to top-level application
systems. The transmission is simulated at the bit level [13].

c. Merits:
a) It provides open sources and online documents.
b) Each node can be evaluated under perfect

transmission conditions.
c) Besides network, TOSSIM can simulate radio

models and code executions
d) One can capture the hidden terminal problems.

d. Demerits:
a) It was designed to simulate behaviors and

applications of TinyOS, and not to simulate other
new protocols.

b) It can not correctly simulate issues of the energy
consumption in WSN; one needs to use another
version PowerTOSSIM.

c) Motes-like nodes are the only thing that it can
simulate [13].

III. CONCLUSION

Simulation is an essential tool to study Wireless Sensor
Networks due to the difficulties of setting up real
experiments. This survey provides guidelines to help
selecting a suitable simulation model for a WSN based on
various aspects. Each tool has both advantages and
disadvantages. One can decide on a particular tool based on
his requirements.

NS2 is the most popular and widely used simulator
amongst all. One can find numerous tutorials and examples
online. It is powerful and efficient but doesn't have a good
GUI. Omnet++, on the other hand provides an excellent
GUI. Hence designing a network is easy and fast. Also it is
open source and additional frameworks like Mobility
Framework. But it fails to provide enough number of
protocols in its library. Avrora, built in Java, includes all the
salient features of the language. It is also is very flexible and
scalable. But it doesn't have a good GUI. J-Sim provides a
Simula-like environment along with Java as the
development language. It provides an excellent GUI, but the
execution of the simulation takes more time compared to the
other simulators. OPNET Moduler has a good graphical
interface and can execute several simulations in a concurrent
manner. It is not open sourced. TOSSIM, built specifically

R.K.Nadesh et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,333-337

© 2010, IJARCS All Rights Reserved 337

for WSN, runs on TinyOS. simulate radio models and code
executions.

Thus one has quite a large number of simulators to
choose from. A deep study of these is mandatory for a better
understanding and characterization the simulators.

IV. ACKNOWLEDGMENT

We would like to thank our graduate project guide Prof.
R.K. Nadesh, who has guided throughout the duration of our
project. We were privileged to experience a sustained
enthusiastic and involved interest from his side. This fueled
our enthusiasm even further and encouraged us to boldly
step into what was a totally dark and unexplored expanse
before us.

V. REFERENCES

[1]. Muhammad Saleem, Gianni A. Di Caro, Muddassar
Farooq. Swarm Intelligence Based Routing Protocol for
Wireless Sensor Networks: Survey and Future Directions,
Information Sciences, 2011, pp 4597–4624.

[2]. E. Egea-López, J. Vales-Alonso, A. S. Martínez-Sala, P.
Pavón-Mariño, J. García-Haro. Simulation Tools for
Wireless Sensor Networks, Summer Simulation
Multiconference– SPECTS, 2005, pp 2-9.

[3]. Guodong Teng Kougen Zheng, Wei Dong. A Survey of
Available Tools for Developing Wireless Sensor Networks.
Systems and Networks Communications, 2008. ICSNC '08.
3rd International Conference,

[4]. Fei Yu and Raj Jain. A Survey of Wireless Sensor Network
Simulation Tools. http://www.cse.wustl.edu/~jain/cse567-
11/ftp/sensor/index.html

Oct. 2008.

[5].

[6]. The Network Simulator, NS–2 [Online].
Available:http://www.isi.edu/nsnam/ns/

Harsh Sundani, Haoyue Li, Vijay K. Devabhaktuni,
Mansoor Alam, & Prabir Bhattacharya. Wireless Sensor
Network Simulators A Survey and Comparisons.
International Journal of Computer Networks (IJCN),
Volume (2).

[7]. OMNeT++ Community Site [Online]. Available:
http://www.omnetpp.org/

[8]. OMNeT++ Vs ns-2: A comparison. Available:
http://ctieware.eng.monash.edu.au/twiki/bin/view/Simulati
on/OMNeTppComparison

[9]. Avrora Community Site [Online]. Available: http://
compilers.cs.ucla.edu/avrora/index.html

[10]. J-Sim Official website [Online]. Available:
https://sites.google.com/site/jsimofficial/downloads

[11]. OPNET Technologies, Inc [Online]. Available:
http://www.opnet.com/

[12]. TOSSIM tutorial and information [Online]. Available:
http://www.tinyos.net/nest/doc/tutorial/tossim-lesson.html

[13]. TOSSIM [Online]. Available:
http://www.cs.berkeley.edu/~pal/research/tossim.html

	INTRODUCTION
	SIMULATORS
	CONCLUSION
	Acknowledgment
	REFERENCES

