
Volume 3, No. 4, July- August 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 243

ISSN No. 0976-5697

QuicX: A light weight protocol for effective communication in Linux Clusters

Pushpendra Gupta*
Department Of Information Technology
Pune Institute of Computer Technology

Pune, India
pgupta.pict@gmail.com

Ankit Agarwal
Department Of Information Technology
Pune Institute of Computer Technology

Pune, India
ankitagarwal.pict@gmail.com

Vivekanand Adam

Department Of Information Technology
Pune Institute of Computer Technology

Pune, India
Vivekadam21@gmail.com

Abstract: A protocol for efficient communication on clusters of Personal Computers (PCs) using the Linux operating system is proposed. In high
performance computing (HPC) cluster systems, the physical transmission time is small compared to the time required to process the TCP/IP protocol
stack. In this way protocols such as TCP/IP causes an overhead that represent an important amount of communication cost. The headers added at
each layer are insignificant in closed network. Our Light weight protocol can be used for efficient communication in clusters using the Linux
operating system. It uses an approach to optimize the communication performance in a cluster of computers different from that of providing a user-
level interface that removes the operating system (OS) mediation in the communication path. Thus it reduces memory latencies and increases the
bandwidth figures. It provides an optimized OS support to reliable and efficient network software that avoids the TCP/IP protocol stack and
unnecessary buffer copies.

Keywords: TCP/IP Protocol, Clusters, Linux OS, Communication Protocol, Buffer Copies.

I. INTRODUCTION

Although network bandwidths are increasing and network
latencies are decreasing, it is not easy for applications to take
advantage of these performance improvements due to the
overheads imposed by the many layers of software required for
communication. The main approaches adopted to reduce this
software overhead have been the improvement of the TCP/IP
layers, and the substitution of the TCP/IP layers by alternative
layers [2][4][12].

Present system uses TCP/IP protocol for data exchange
which includes a lot of processing overhead [1]. Firstly, a
number of copies are created during exchange and secondly a
header is added at each layer as data passes through various
layers of TCP network stack. A single transfer involves 4
buffer copies [Figure 2] that is Read Buffer, Application
Buffer, Socket Buffer and NIC buffer and a header (54 – 134
bytes)[Figure 1] including TCP header(20 - 60 bytes), IP
Header(20 – 60 bytes) and Ethernet header(14 bytes) added to
each packet. In a cluster system, these headers are not required
at all. Since the nodes are connected in a closed network there
is no need of IP addresses for identifying the nodes. Instead
MAC address present in Ethernet header is sufficient enough to
identify the destination node. Thus the IP field is unnecessary.
Similarly a number of fields are not required which can be
eliminated and thus processing time can be saved.

The Buffer copies involve copying of data between kernel
context and user context [10]. These copies are generated in

TCP/IP communication which increases latency. These
copies are again a great overhead.

Figure 1. Header Addition

Figure 2. Buffer Copies.

Pushpendra Gupta et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,243-246

© 2010, IJARCS All Rights Reserved 244

II. DETAILED DESIGN

Our system will consist of a protocol designed to work in
place of TCP/IP layers. We will be using the concept of raw
sockets [8] for designing our light weight protocol. In computer
networking, raw socket is a socket that allows direct sending
and receiving of network packet by applications[5], bypassing
all encapsulation in the networking software of the operating
system. Rather than going through the normal layers of
encapsulation/decapsulation that the TCP/IP stack of the kernel
does, we will just create the entire packet, add any headers
required for proper transmission and will directly pass the
packet to the Ethernet layer for transmission[3]. Thus the entire
kernel network stack will be bypassed.

The Design supports the following features:

A. Reduced Buffer Copies:
The concept of memory mapping [6] can be used to

eliminate almost 3 buffer copies. Memory mapping is a
concept that allows an application to map a file into memory,
meaning that there is a one-to-one correspondence between a
memory address and a word in file. The Programmer can then
access the file directly through memory, identically to any
chunk of memory resident data – it is even possible to allow
writes to the memory region to transparently map back to the
file in disk. Linux implements memory mapping by using
mmap() system call [3][6] for mapping objects into memory.
Memory mapping from user level code is done with a call like

setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void
*) &req, sizeof(req))

The most significant argument in the previous call is the req
parameter, this parameter must to have the following structure:

struct tpacket_req
{
unsigned int tp_block_size; /*Minimal size of
 contiguous block */
unsigned int tp_block_nr; /* Number of blocks */
unsigned int tp_frame_size; /* Size of frame */
unsigned int tp_frame_nr; /* Total number of
 frames */
};
This structure is defined in /usr/include/linux/if_packet.h

and establishes a circular buffer (ring) of unswappable memory
mapped in the capture process. Being mapped in the capture
process allows reading the captured frames and related meta-
information like timestamps without requiring a system call.

Captured frames are grouped in blocks. Each block is a
physically contiguous region of memory and holds
tp_block_size/tp_frame_size frames. The total number of
blocks is tp_block_nr. Note that tp_frame_nr is a redundant
parameter because

frames_per_block = tp_block_size/tp_frame_size
A frame can be of any size with the only condition it can

fit in a block. A block can only hold an integer number of
frames, or in other words, a frame cannot be spawned across
two blocks, so there are some details you have to take into
account when choosing the frame size.

The mmaped memory is in the form of a circular ring. The
memory is divided into blocks of fixed size (here 4096 bytes).

Each block is further divided into 2 frames of 2048 bytes.
Each frame stores data along with sufficient information
about the packet including packet timestamp and flags to
indicate whether the frame is ready for sending or free. The
Structure is as shown:

Figure 3. Mmaped Memory Structure

Data from file is directly stored into this circular buffer at
appropriate location within the free frame that is at an offset
of 32 bytes from starting address of each frame. At the
beginning of each frame there is a status field which
determines whether the frame is ready to be send or not. Then
headers are added to them and the starting address of buffer is
passed to NIC for sending. Thus Socket buffer and NIC buffer
copies are not generated and memory is saved.

At the receiver end, we use a size configurable circular
buffer mapped in user space. This way reading packets just
needs to wait for them, most of the time there is no need to
issue a single system call. By using a shared buffer between
the kernel and the user also has the benefit of minimizing
packet copies.

B. Reduced Header Size:
The packet part of the frame contains the entire packet

structure including the packet header. Appropriated header can
be attached to each packet that is sufficient to send data to
other end. For Ex: IP address field can be removed as they are
not required in closed network where nodes can be identified
using MAC address itself. The header should contain the
destination MAC address to identify the destined node. Thus a
large part of header processing can be eliminated which can
save a lot of CPU cycles

C. Transmission:
When sending starts, NIC starts sending frames in the

buffer to the destined node. The sending and filling of frames
can be threaded to execute simultaneously. When the buffer
gets full, the fill thread is suspended and is resumed when
frames get empty. A single send command is used to send a
large number of packets present in the buffer. Thus System

Pushpendra Gupta et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,243-246

© 2010, IJARCS All Rights Reserved 245

calls required are less. When the receiver receives a packet it
puts in the buffer and updates the status with a flag. Then the
user can read the packet, once the packet is read the user must
zero the status field, so the kernel can use again that frame
buffer. The user can use poll to check if new packets are in the
ring.

III. IMPLEMENTATION

A. Server Side:
Following steps [9] are taken :

a) Socket() : Creation of the transmission socket.
b) Setsockopt() : Allocation of the circular buffer.
c) Bind() : Bind socket with a

network interface.
d) mmap() : Mapping of the allocated buffer to the

user process.
e) Send() : Send all packets that are set as ready in

the ring.
f) Close() : Destruction of the transmission socket.

B. Receiver Side:
Following steps [9] are taken:

a) Setup
a) Socket() : Creation of the capture socket.
b) Setsockopt() : Allocation of the circular buffer.
c) Mmap() : Mapping of the allocated buffer to the

user process.
b) Capture

a) Poll () : To wait for incoming packets.
c) Shutdown

a) Close() : Destruction of the capture socket and
deallocation of all associated resources.

Figure 4 shows the overall design of the system

Figure 4. Overall Design

IV. PERFORMANCE

To test, we measured each overhead of the file transmission
using QuicX and NFS (TCP was used as default) under various
file size and compared with each other. Both the server and
client used an Intel Pentium Dual-core CPU, 2GB DDR2 RAM
PC with Ubuntu 10.04 Linux(kernel version is Linux
2.6.31.2). The NIC is Realtek 8169 for Gigabit LAN.

Figure 5 shows the throughput of data blocks with size of
1K, 2K, 4K, 8K ... 1M in the test partition disks of server with
random reading and writing. Figure 6 shows the server-side
CPU load. As comparison, the TCP is included in the two
figures. As can be seen from Figure 5, when the data block is
relatively small in a single reading and writing, QuicX is worse
than TCP. With the increase in onetime reading and write data
blocks size, QuicX performance is improving.

Figure 5. Comparison of throughput under TCP and QuicX

Figure 6 shows the load conditions of server CPU with the
trend of the same throughput in Figure 5. With the single-block
reading and writing data increasing, the throughput is
increasing consequently. In terms of CPU utilization, QuicX is
much efficient than TCP.

Figure 6. Comparison of server-side CPU load

Pushpendra Gupta et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,243-246

© 2010, IJARCS All Rights Reserved 246

V. CONCLUSION

To resolve the TCP / IP processing overhead [1] leading to
the low performance, the paper design and implement a QuicX
Protocol. QuicX drawing on the idea of zero-copy [3][7][11]
increases the throughput of the system and reduces the system
workload by reducing protocol layers and data copy times. The
test result shows that QuicX has better performance than
TCP/IP under LAN storage environment. As a light-weight
protocol, QuicX can improve the throughout and reduce the
system load. QuicX is based on an efficient operating system
support for communications in order to provide a cluster of
PCs with the capability of efficient parallel processing. It saves
valuable system memory, increases bandwidth and decreases
latency and ultimately increases system performance.

VI. REFERENCES

[1] D.D. Clark, H. Salwen, V. Jacaobson, J. Romkey, “An
analysis of TCP processing overhead”, Communications
Magazine, IEEE, vol. 20, Issue. 5, pp. 94-101, May 2002.

[2] Antonio F. Díaz, Jesús Ferreira, Julio Ortega, Antonio Cañas,
Alberto Prieto , “CLIC: Fast communication on linux
clusters”, Proceedings of the IEEE International Conference
on Cluster Computing, pp. 365, 2000.

[3] Liu Tianhua, Zhu Hongfeng, Chang Guiran, Zhou
Chuansheng , “The design and implementation of
zero-copy for linux”, Eighth International Conference
on Intelligent Systems Design and Applications, vol. 1, pp.
121-126, Nov 2008.

[4] Giuseppe Ciaccio, “Optimal communication performance on
fast ethernet with GAMMA”, Proceedings Workshop PC-

NOW, IPPS/SPDP’98, Orlando, FL, Springer, pp. 534-548,
April 1998..

[5] M. Welsh, A. Basu,"Low-latency communication over fast
ethernet". Proc. Euro-Par'96, Springer, pp. 187-194, Aug
1996.

[6] P.W. Frey, G. Alonso, “Minimizing the hidden cost of
RDMA”, ICDCS, 29th IEEE International Conference on
Distributed Computing Systems, pp. 553-560, June 2009,
ISSN:1063-6927, doi: 10.1109/ICDCS.2009.32.

[7] Jerry Chu, “Zero-Copy TCP in Solaris”, Proceedings of the
USENIX Annual Technical Conference, pp. 253-264, 1996.

[8] Andreas Schaufler, “Linux Network Performance : RAW
ethernet vs. UDP”, [Online]. Available:
http://aschauf.landshut.org/fh/linux/udp_vs_raw/index.html

[9] Sockets: http://www.linuxhowtos.org/C_C++/socket.htm

[10] P. Geoffray, “A critique of RDMA.” [Online]. Available:
http://www.hpcwire.com/features/17886984.html

[11] Mei-Ling Chiang and Yun-Chen Li, "LyraNET: A zero-copy
TCP/IP protocol stack for embedded systems", Journal of
Real-Time Systems, Springer Netherlands, Volume 34,
Number 1, pp. 5-18, September, 2006

[12] A. F. Díaz, J. Ortega, A. Cañas, F. J. Fernández, M. Anguita,
A. Prieto, “The lightweight protocol CLIC on gigabit
ethernet”, IPDPS '03 Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, IEEE
Computer Society Washington, DC, USA, pp. 200.1, April
2003.

.

	INTRODUCTION
	DETAILED DESIGN
	Reduced Buffer Copies:

	IMPLEMENTATION
	Server Side:
	Receiver Side:

	PERFORMANCE
	CONCLUSION
	REFERENCES

