
Volume 3, No. 4, July- August 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 73

ISSN No. 0976-5697

Cognitive Weighted Response for a Class: A New Metric for Measuring Cognitive
Complexity of OO Systems

A. Aloysius*
Assistant Professor, Department of Computer Science

St.Joseph’s College (Autonomous)
Tiruchirappalli, Tamil Nadu, India

aloysius1972@gmail.com

L. Arockiam
Associate Professor, Department of Computer Science

St.Joseph’s College (Autonomous)
Tiruchirappalli, Tamil Nadu, India

larockiam@yahoo.co.in

Abstract: Various new techniques, methods and metrics are being developed by researchers for calculating the complexity of the class in Object
Oriented (OO) software. Chidamber and Kemerer (CK) have proposed a metric suite for measuring the class complexity of OO design. CK metrics
are well known and widely accepted suites of OO metrics. Among those set of metrics, Response For a Class (RFC) is one of the metrics, which is
nothing but the number of methods that can be potentially executed in response to a message received by an object of a class. In RFC, each function
call statement value is considered to be 1. The cognitive feature is not included in RFC metric which is felt as a major negative aspect of this metric.
So here, we are proposing a new metric namely Cognitive Weighted Response For a Class (CWRFC). In CWRFC, the cognitive weights have to be
assigned for the function call statement based on the effort needed to understand their type of function calls due to message passed by an object of
that class. The proposed metric has been proved to be a better measure of cognitive complexity of class with function call statement through the case
studies and experiments.

Keywords: Cognitive Weight, Software Complexity, Cognitive Weighted Response For a Class, Response For a Class, Message Passing.

I. INTRODUCTION

In modern era, the biggest challenge that the software industries
are facing, is the upcoming of new technologies. This inevitable
change has swept across the corporate world and has changed the
demands of the corporate world. This phenomenon has made the
software engineers to gear up themselves to meet and manage the
change in large software system. And in addition to it the difficulties
of software cognitive complexities too should be dealt with [1] [2]
[3]. Cognitive informatics is a trans-disciplinary enquiry of cognitive
and information sciences that investigate the internal information
processing mechanisms and processes of the brain and natural
intelligence, and their engineering applications via an
interdisciplinary approach [4]. Software complexity deals with the
psychological complexity of the programs [5]. These measures serve
both as an analyzer and a predictor in quantitative software
engineering [6]. The Identification of complex modules is very
important as it requires exact testing so as to develop a better quality
software system. Additionally, this identification may help during
maintenance. Source code metrics can be used to locate such
modules. OO technologies have also been increasingly used in
organizations these days to identify the complex modules. It is
theorized that the structural properties such as coupling, cohesion,
functional complexity and inheritance have an impact on the
cognitive complexity of the system [7] [8]. And it even places a
“mental burden” on developers, inspectors, testers and maintainers to
understand the system [9].

Software metrics play a vital role in the software industry to
assure the quality of the software. Though the reusability function of
OO Paradigm has enriched the capability of several software
industries, it has considerably increased the complexity [10]. So,
there is an increasing need for introducing new complexity measures.
A new metric namely CWRFC is proposed for an OO systems which

is an extension of the RFC proposed by CK [11].
CWRFC includes the cognitive complexity due to
message passing by an object to the Function Call
Statement (FCS) and is a better indicator of complexity
of OO systems.

Calling the function is an indispensable part of an
OO programming language. Functions are called by its
name and the messages may be passed through lists of
arguments. Based on the message passing, the FCS is
divided into two categories such as Default Function
Call Statement (DFCS) and Argumentum Function Call
Statement (AFCS). Commonly messages are passed in
two ways namely: Pass By Value (PBV) and Pass By
Reference (PBR). It is proven that an AFCS may be
represented as the combination of PBV and PBR. In
PBV, values are passed from the actual arguments of a
calling function to the formal arguments of a called
function. In PBR, addresses are passed from the actual
arguments of a calling function to formal arguments of
a called function. It is known that, in PBR the changes
made in the called function will be reflected in the
calling function, whereas in PBV the changes will not
be reflected.

With respect to many cognitive processes, the
Cognitive complexity of a computer program can be
studied. Program comprehension is one of the
important cognitive processes involved in
programming. In this paper, a new metric CWRFC is
defined and validated against the comprehension
process

A. Aloysius et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,73-77

© 2010, IJARCS All Rights Reserved 74

II. LITERATURE REVIEW

There have been several metrics that were proposed for OO
systems by researchers. One of the best known metric suites
proposed for OO metrics is CK metric suites. The followings are the
six metrics proposed by CK: Weighted Method per Class (WMC),
Depth of Inheritance Tree (DIT), Response For a Class (RFC),
Number Of Children (NOC), Lack of Cohesion of Methods (LOCM)
and Coupling Between Objects (CBO) [11] [12]. Parvinder Singh
Sandhu and Dr. Hardeep Singh [5] have proposed a paper that gives
the evaluation of CK’s metric suites and suggests that certain
refinements and extensions to these metrics would bring about
accurate and precise results for OO based systems. Raed
Shatnawi [13] has proposed a paper that identifies the threshold
values for CBO, RFC and WMC at two levels of risks using a
quantitative methodology based on the logistic regression curve.
These threshold values can be used to identify the most error-prone
classes.

Classes are the building blocks of any OO program. Class is an
encapsulation of attributes and functions (functions are also known as
methods). Functions are the self contained block of statements that
perform some kinds of tasks. It reduces the complexity and
debugging of the large programs by dividing them into smaller
functions. It is clear that the function is one of the major factors
which will affect the complexity of the class. The use of different
types of function call statements will increase the complexity of the
programs. There are no specific measures that exist to calculate the
complexity arising due to cognitive load in understanding the
different FCS. Hence, a new metric CWRFC has been proposed for
OO system with the internal architecture of an object.

The proposed metric CWRFC is explained in section 3,
Calibration of FCS is discussed in section 4, the experimentation of a
new metric and the case study is described in section 5, a
comparative study of CWRFC with RFC in section 6 and section 7
presents the conclusion and future work.

III. PROPOSED METRIC: COGNITIVE WEIGHTED
RESPONSE FOR A CLASS

CWRFC is used to calculate the complexity of the class using the
Response Set Complexity. If there are m numbers of response sets in
a class then, the CWRFC of that class can be calculated by using the
Equation (1).

where,
RSC is the response set complexity, which can be calculated by

adding the set of all methods (M) in a class and set of methods (R)
called by any of those methods.

Based on the message passing, the Methods are divided into two

categories such as Method With Argument (MWA) and Method
without Argument (MOA). MOA is also known as Default Function
(DF). Commonly in MWA, the arguments are passed in two ways
namely: Pass By Value (PBV) and Pass By Reference (PBR). So
RSC can be calculated by using the Equation (3).

Where

DF is the total number of Default Function Call
Statements.

PBV is the total number of Pass By Value Function
Call

 Statements.
PBR is the total number of Pass by Reference

Function Call
 Statements.

CWf is the Cognitive Weights of the Function
Call Statements WFd

 WF

 is the Weighting Factor
of the DFC statements.
v

 WF
 is the Weighting Factor of the PBV statements,

r
Wang et.al, [14] have proposed cognitive weights of

the control structure in a method as 1, 2, 3, and 4 to the
sequence, branch, iteration and function call statement
respectively. J.Charles et.al [15] have also validated the
weights proposed by Wang. Therefore, the cognitive
weight of the Function Call Statement holds the value
as 2 by Wang [14].

 is the Weighting Factor of the PBR statements.

The weighting factor of different type of the FC
statement is based on the classification of cognitive
phenomenon as described by Wang [16], is as follow

 Weights

Sub-Conscious Cognitive Function Call
Statement (DFC) 1

Meta Cognitive Function Call Statement
(PBV) 2

Higher Cognitive Function Call
Statement (PBR)

3

IV. CALIBRATION

In this chapter, we validate Default Function Call,
Pass By Value and Pass By Reference as Sub, Meta and
Higher Cognitive Function Call Statement respectively.
A comprehension test has been conducted for a group
of students to find out the time taken to understand the
complexity of OO program with respect to the function
call. The group of students who had sufficient exposure
in analyzing the OO programs, and who had undergone
courses in C++ language, were selected for
comprehension test, and in addition the selected 30
students had 65% and above marks in their Semester
Examination.

The time taken by students to comprehend the
programs was recorded after the completion of each
program, as shown in Fig.1. All these program
comprehension timings were registered and the mean
time to comprehend was calculated. As three different
programs have been administered in each case, totally
nine different mean timings were recorded. Average
time was calculated for each program from the
individual time taken by students, which shows in
Fig 2.

A. Aloysius et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,73-77

© 2010, IJARCS All Rights Reserved 75

Figure 1. Individual time taken by the student to solve programs.

Figure 2. Average comprehension time of each program
Table 1. Average Time of Each Program and Category

Programs
Average

comprehension
Time

Category
Average

comprehension
category time

1 227.4483

PBR 179.1494 2 170.1379

3 139.8621

4 133.4483

PBV 142.2299 5 137.7241

6 155.5172

7 129.1724

DFC 104.9655 8 79.86207

9 105.8621

In Table1, the average comprehension time of programs is listed.

As these programs are based on OO programming concepts, the
mean times are also calculated for each category of the programs and
are tabulated. From the above table, it’s clear that, the mean time of
PBR is higher than PBV which in turn is higher than DFC. This
implies that the cognitive load to understand the PBR is greater than
PBV and DFC. Sub concisions cognitive phenomena are used to
understand the DFC. Meta cognitive phenomena are needed to
understand the PBV. Higher cognitive phenomena is needed to
understand the PBR.. The same is reflected in the comprehension
time required to understand the program as shown in table 1. Hence,
it is concluded that PBR, PBV and DFC belong to Higher, Meta and
Sub concisions Cognitive Function Call respectively. The graphical
representation of Fig.3 gives a better understanding of the complexity
of PBR, PBV and DFC.

Figure 3. Graphical representation of the categories

V. EXPERIMENTATION AND A CASE STUDY

The proposed complexity metric given by equation
1 is evaluated with the following example program
namely PROGRAM 1. PROGRAM 1(with both types
of FCS):

#include <iostream.h>
using namespace std;
class student
{
protected:
 int roll_number;
public:
 void get_number(int a)
 {
 roll_number = a;
 }
 void put_number(void)
 {
 cout << "Roll No: " << roll_number << endl;
 }
};
class test : public student
{
protected:
 float part1,part2;
public:
 void get_mark(float &x, float &y)
 {
 part1=x;
 part2=y;
 }
 void put_mark(void)
 {
 put_number();
 cout << "Marks obtained: " << endl;
 cout << "Part1: " << part1 << endl;
 cout << "Part2 " << part2 << endl;
 }
};
class sports
{
protected:
 float score;
public:
 void get_score(float s)
 {
 score = s;
 }
 void put_score(void)
 {

A. Aloysius et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,73-77

© 2010, IJARCS All Rights Reserved 76

 cout << "Score wt: " << score << endl;
 }
};
class result : public test, public sports
{
 float total;
 public:
 void calculate(void)
 {
 total = part1 + part2 + score;
 void grade(total);
 }
 void grade(float &tot)
 {
 total1=tot;
 if(total1>=40)
 cout<< "Pass " <<endl;
 else
 cout<< "Fail " <<endl;
 }
 void display(void);
};
void result :: display(void)
{
 put_mark();
 put_score();
}
int main()
{
 result student1;
 student1.get_number(110); //RS1
 student1.get_mark(27.5,30.0); //RS2
 student1.get_score(6.0); //RS3
 student1.calculate(); //RS4
 student1.display(); //RS5
return 0;
}.

Figure 4. An example of an Object Oriented system with FCS Measurement

In the above program, the number of response set is 5. They are

denoted as RS1, RS2, RS3, RS4 and RS5. The complexity
measurement of these response sets value are as follows.,

RSC=M+∀_i R_i
R=DF*(2+1)+PBV*(2+2)+PBR*(2+3)

R=DF*(3)+PBV*(4)+PBR*(5)
Calculation for RSC1
M = 1
R = 0*(3)+0*(4)+0*(5) = 0
RSC1= 1+0 = 1
Calculation for RSC2
M = 1
R = 0*(3)+0*(4)+0*(5) = 0
RSC2= 1+0 = 1
Calculation for RSC3
M = 1
R = 0*(3)+0*(4)+0*(5) = 0
RSC3= 1+0 = 1
Calculation for RSC4
M = 1
R = 0*(3)+0*(4)+1*(5) = 5
RSC4= 1+5 = 6
Calculation for RSC5
M = 1
R = 3*(3)+0*(4)+0*(5) = 9
RSC1= 1+9 = 10
Value of CWRFC

Here
m=5

= 1+1+1+6+10
= 19

VI. COMPARISON WITH OTHER MEASURES

A comparative study has been made with most
widely accepted CK metric suite [11] and has found
that RFC metrics proposed by CK et. al did not provide
the total complexity of the class by considering the
cognitive complexity due to the message passed by an
object to the function call of that class. This
differentiates our metric from the CK metrics. Mishra
et.al suggested that one can calculate the complexity of
the class by using cognitive weights of the basic control
structure such as sequence, branch, iteration and call
structures. The current CWRFC metric is one step
ahead of CK’s RFC, because it includes the complexity
that arises due to the different types of function call
statement and internal architecture of an object which
passes the message to the functions. Another advantage
of our metric is that, it takes cognitive weights into
consideration. In the following Table 3, a comparison
has been demonstrated with RFC and CWRFC.

We calculated the weight of the class by calculating
the response set complexity, in terms of Default
Function Call Complexity (DFCC) and Argumentum
Function Call Complexity (AFCC). This is a better
indicator than the CK’s RFC. The weight of each
function call statement is calculated by using cognitive
weights and weighting factor of type of the message
passed to the function call statement by an object which
is suggested by Chidamber et al and Wang. We found

A. Aloysius et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,73-77

© 2010, IJARCS All Rights Reserved 77

that the resulting value of CWRFC is higher than the RFC. This is
because, in RFC, the weight of each calling statement is assumed to
be one. However, including cognitive weights for calculation of the
RSC is more realistic because it provides for the complexity of the
internal architecture of an object. The results are shown in the Table
2 itself.

Table 2. Complexity Values for Different Programs for the Chosen Metrics

 Metrics
Programs RFC CWRFC

1 9 33
2 10 29
3 5 17

The RFC and CWRFC values were compared and found that

CWRFC measure was larger. According to Chindamber et.al, RFC is
an enhanced indicator of complexity of the class. From the table 2, it
is observed that CWRFC value is larger than RFC value which
concludes that CWRFC is a better indicator of complexity of the
classes with function call statement because of the consideration of
response set complexity.

VII. CONCLUSION AND FUTURE WORK

A CWRFC metric for measuring the class level complexity has
been formulated. The complexity of the class includes the internal
complexity of the class and the response set complexity. CWRFC
includes the cognitive complexity due to internal architecture of an
object, which passes a message to the functions. CWRFC has proven
that, complexity of the class getting affected, which is based on the
cognitive weights of the different FCS. The assigned cognitive
weight of the FCS is validated using the comprehension test and
found that the cognitive load to understand the PBR is greater than
PBV and DFC. The metric is evaluated through a case study and a
comparative study, and proved to be a better indicator of the class
level complexity. The proposed metric focuses only on the first level
class data. Further, it may be evaluated with the special types of FCS
like passing object by reference, object as value, an array of structure
to functions, recursive function call and so on., A tool is to be
developed for calculating the CWRFC value and to compare it with
other metrics. Newer metrics may also be proposed and validated for
assessing the cognitive complexity of other OO features.

VIII. REFERENCES

[1] Chiew, V.Wang, Y., “Design of a Cognitive Complexities
Measurement and Analysis Tool”, Canadian Conference on
Electrical and Computer Engineering (CCECE), 2006, pp.1667–
1670.

[2] Jitender Kumar Chhabra,” Cognitive complexity: A New Measure”,
Proceedings of the world congress 0n engineering, vol 2 , 2011.

[3] Sanjay Misra,” An approach for the empirical Validation of Software
Complexity Measures” Journal of Acta Polytechnica Hungarica ,
2011, Vol 8, no 2, ISSN: 17858860.

[4] Wang, Y, “The Theoretical Framework of Cognitive
Informatics”, International Journal of Cognitive
Informatics and Natural Intelligence , 2007, pp. 1–27.

[5] Parvinder Singh Sandhu and Dr. Hardeep Singh, “A
Critical Suggestive Evaluation of CK Metric”, Pacific
Asia Conference on Information Systems (PACIS),
2005, pp.183-191.

[6] Basili. VR, Briand. L. C, Melo. WL, “A validation of
Object Oriented design metrics as quality indicators”,
Technical report, University of Maryland, Department
of Computer Science,1995, pp.1-24.

[7] El-Emam, K, “Object-oriented metrics: A review of
theory and practice”, Advances in Software
Engineering, 2002, pp.23–50.

[8] Sanjay Misra, Ibrahim Akman, Murat Koyuncu, “ An
inheritance complexity metric for object-oriented
code: A cognitive approach”, Indian Academy of
Science, 2011, Vol 36, part 3, pp. 317-337.

[9] Vivanco, R., “Use of a Genetic Algorithm to Identify
Source Code Metrics Which Improves Cognitive
Complexity Predictive Models”, IEEE international
Conference on Program Comprehension, 2007,
pp.297–300,.

[10] Ranjeeth. S, Ramu Naidoo “An Investigation Into The
Relationship Between The Level Of Cognitive
Maturity And The Types Of Errors Made By Students
In A Computer Programming” College Teaching
Methods & Style Journal-Second Quarter , 2007,
pp.31-40

[11] Chidamber. S. R and Kemerer. C. F, “A Metric Suite
for Object-Oriented Design”, IEEE Trans. on
Software Engineering, 1994, pp.476-493.

[12] Mc Quillan. J. A and Power. J. F, “On the application
of software metrics to UML model,” Lecture Notes in
Computer Science, 2007, Vol. 4364, pp.217-226.

[13] Raed Shatnawi “An Investigation of CK Metrics
Thresholds” ISSRE Supplementary Conference
Proceedings, 2006, pp.12-13.

[14] Wang. Y and Shao. J, “A new measure of software
complexity based on cognitive Weights.” IEEE
Canadian Journal of Electrical and Computer
Engineering, 2003, pp.69-74.

[15] Charles Selvaraj. J, Aloysius. A, and Arockiam. L ,
“A Comparision of Proposed Cognitive weights for
control structures and Object Oriented programming
languages”, Proceedings of International Conference
on Advanced Computing ICAC09, 2009, pp.380-385.

[16] Wang. Y, “On Cognitive Informatics.” IEEE
International Conference on Cognitive Informatics,
2002, pp.69-74.

	INTRODUCTION
	LITERATURE REVIEW
	PROPOSED METRIC: COGNITIVE WEIGHTED RESPONSE FOR A CLASS
	CALIBRATION
	EXPERIMENTATION AND A CASE STUDY
	COMPARISON WITH OTHER MEASURES
	CONCLUSION AND FUTURE WORK
	REFERENCES

