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Abstract— In this paper we report recent work on analysis of protocols in remote electronics voting protocols. A potentially much more secure 
system could be implemented, based on formal protocols that specify the messages sent to electronics voting machines.Protocols which were 
thought to be correct for several years have, by means of formal verification techniques, been discovered to have major flaws [1, 2]. Our aim is 
to use verification techniques to analyze the protocol. We model it in the applied pi calculus [3], which has the advantages of being based on 
well-understood concepts. 

 

I. INTRODUCTION 

Electronics voting promises the possibility of a 
convenient, efficient, and secure facility for regarding and 
tallying votes in a election. It can be used for a variety of 
types of elections, from small committees or on-line 
communities through to full-scale national elections. 
Electronic voting protocols are formal protocols that specify 
the messages sent between the voters and administrators. 
Such protocols have been studied for several decades. They 
offer the possibility of abstract analysis of the voting system 
against formally-stated properties. Some properties 
commonly sought for voting protocols are the following: 
a. Fairness: no early results can be obtained which could 

influence the remaining voters. 
b. Eligibility: only legitimate voters can vote, and only 

once. 
c. Privacy: the fact that a particular voted in a particular 

way is not revealed to anyone. 
d. Individual verifiability: a voter can verify that her vote 

was really counted. 
e. Universal verifiability: the published outcome really is 

the sum of all the votes. 
f. Receipt-freeness: a voter cannot prove that she voted 

in a certain way 
In this paper, we study a protocol commonly known as 

the FOO 92 scheme [4], which works with blind signatures. 
By informal analysis (e.g., [5]), it has been concluded that 
FOO 92 satisfies the first four properties in the list above. 

II. PROTOCOL FOO 92 

The protocol involves voters, an administrator, verifying 
that only eligible voters can cast votes, and a collector, 
collecting and publishing the votes. In comparison with 
authentication protocols, the protocol also uses some 
unusual cryptographic primitives, such as secure bit-
commitment and blind signatures. Moreover, it relies on 
anonymous channels.In a first phase, the voter gets a 
signature on a commitment to his vote from the 
administrator. To ensure privacy, blind signatures [1] are 
used, i.e. the administrator does not learn the commitment of 
the vote.Voter V selects a vote v and computes the  

 

 
commitment x = ξ(v,r) using the commitmentscheme ξand a 
random key r; 
– V computes the message e = χ(x,b) using a blinding 
function χand a randomblinding factor b; 
– V digitally signs e and sends his signature σV(e) to the 
administrator A togetherwith his identity; 
– A verifies that V has the right to vote, has not voted yet 
and that the signature isvalid; if all these tests hold, A 
digitally signs e and sends his signature σA(e) to V ; 
– V now unblindsσA(e) and obtains y = σA(x), i.e. a signed 
commitment to V ’s vote.The second phase of the protocol is 
the actual voting phase. 
– V sends y, A’s signature on the commitment to V ’s vote, 
to the collector C usingan anonymous channel; 
– C checks correctness of the signature y and, if the test 
succeeds, enters (ᶩ, x, y)onto a list as an l-th item. 

The last phase of the voting protocol starts, once the 
collector decides that he receivedall votes, e. g. after a fixed 
deadline. In this phase the voters reveal the randomkey r 
which allows C to open the votes and publish them. 
– C publishes the list (_i, xi, yi) of commitments he 
obtained; 
– V verifies that his commitment is in the list and sends _, r 
to C via an anonymouschannel; 
– C opens the _-th ballot using the random r and publishes 
the vote v. 

III. FORMAL METHODOLOGY USE 

The applied pi calculus [6] is a language for describing 
and analysing security protocols. The applied pi calculus is a 
language for describing concurrent processes and their 
interactions. It provides intuitive process syntax for detailing 
the actions of the participants in a protocol, emphasizing 
their communication. The syntax is coupled with a formal 
semantics to allow reasoning about protocols. The language 
is based on the pi calculus with the addition of rich term 
algebra to enable modelling of the cryptographic operations 
used by security protocols. A wide variety of cryptographic 
primitives can be abstractly modelled by means of an 
equational theory. The calculus allows one to express 
several types of security goal, and to analyses whether the 
protocol meets its goal or not.  



Swati A. Khodke et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,837-841 

© 2010, IJARCS All Rights Reserved                                                                                                                                               838 

To describe processes in the applied pi calculus, one 
starts with a set of names (which are used to name 
communication channels or other constants), a set of 
variables,and a signature Σwhich consists of the function 
symbols which will be used to defineterms.In the applied pi 
calculus, one has (plain) processes and extended processes. 
Plainprocesses are built up in a similar way to processes in 
the pi calculus, except that messagescan contain terms 
(rather than just names). Extended processes can also be 
activesubstitutions: {M/x} is the substitution that replaces the 
variable x with the term M.Active substitutions generalise 
“let”. The process νx.({M/x} | P) corresponds exactlyto “let x 
= M in P”. 

Active substitutions are useful because they allow us to 
map an extended process Ato its frame φ(A) by replacing 
every plain processes in A with 0. A frame is an 
extendedprocess built up from 0 and active substitutions by 
parallel composition and restriction.The frame φ(A) can be 
viewed as an approximation of A that accounts for the 
staticknowledge A exposes to its environment, but not A’s 
dynamic behavior.The operational semantics of processes in 
the applied pi calculus is defined by structuralrules defining 
two relations: structural equivalence, noted ≡, and internal 
reduction,noted→. A context C[·] is a process with a hole; 
an evaluation context is a context whose hole is not under a 
replication, a conditional, an input, or an output. Structural 
equivalence is is the smallest equivalence relation on 
extended processes that is closed under α-conversion on 
names and variables, by application of evaluation contexts, 
and satisfying some further basic structural rules such as A | 
0 ≡A, associativity and commutativity of |, binding-
operator-like behaviour of ν, and when Σ├M = N the 
equivalences: 
νx.{M/x} ≡0 {M/x} | A ≡ {M/x} | A{M/x} {M/x} ≡ {N/x} 
Internal reduction →is the smallest relation on extended 
processes closed under structural equivalence such that 
¯a_x_.P| a(x).Q →P | Q and whenever Σ├M = N, 
ifM = M then P else Q →P if M = N then P else Q →Q. 
Definition 1.Observational equivalence (≈) is the largest 
symmetric relation R betweenclosed extended processes with 
the same domain such thatA R B implies: 
1. ifA ⇓a then B ⇓a. 
2. ifA →∗A_ then B →∗B_ and A_ R B_ for some B_. 
3. C[A] R C[B] for closing evaluation contexts C. 

In cases in which the two processes differ only by the 
terms they contain, if they are also observationally 
equivalent then ProVerif may be able to prove it directly. 
However,ProVerif’s ability to prove observational 
equivalence is incomplete, and therefore sometimes one has 
to resort to manual methods, whose justifications are 
contained in [7]. The method we use in this paper relies on 
two further notions: static equivalence(≈s), and labeled 
bisimilarity (≈l).  

IV. MODELING PROTOCOL IN THE APPLIED 
PI CALCULUS 

A. Model: 
We use the applied pi calculus to model the FOO 92 

protocol. Moreover, the verification is not restricted to a 
bounded number of sessions and we do not need to 
explicitly define the 

adversary. We only give the equational theory describing the 
intruder theory. Generally, the intruder has access to any 
message sent on a public, i.e. unrestricted, channel. These 
public channels model the network. Note that all channels 
are anonymous in the applied pi calculus. Unless the identity 
or something like the IP address is specified explicitly in the 
conveyed message, the origin of a message is unknown. 
This abstraction of a real network is very appealing, as it 
avoids having us to model explicitly an anonymous service.  

B. Signature and equational theory: 
The signature and equational theory are represented in 

Process 1. The functions and equations that handle public 
keys and hostnames shouldbe clear. Digital signatures are 
modeled as being signatures with message recovery, i.e. the 
signature itself contains the signed message which can be 
extracted using the checksignfunction. To model blind 
signatures we add a pair of functions blind and unblind. 
These functions are again similar to perfect symmetric key 
encryption and bit commitment. However, we add a second 
equation which permits us to extract a signature out of a 
blinded signature, when the blinding factor is known.  We 
also consider the functionsfstand sndto extract the first, 
respectively second element of a pair. Note that because of 
the 
propertyunblind(sign(blind(m,r),sk),r)=sign(unblind(blind(m
,r),r),sk)= sign(m,sk),  
Process 1.signature and equational theory(* Signature *) 
funcommit /2 (* bit commitment *) 
funopen /2 (* open bit commitment *) 
funsign /2 (* digital signature *) 
funchecksign /2 (* open digital signature *) 
funpk /1 (* get public key from private key *) 
funhost /1 (* get host from public key *) 
fungetpk /1 (* get public key from host *) 
funb l i n d /2 (* blinding *) 
fununblind /2 (* undo blinding *) 
(* Equational theory *) 
equation open ( commit (m, r ) , r ) = m 
equationgetpk ( host ( pubkey ) )= pubkey 
equationchecksign ( sign (m, sk ) , pk ( sk ) ) = m 
equationunblind ( b l i n d (m, r ) , r ) = m 
equation unblind ( sign ( b l i n d (m, r ) , sk ) , r ) = sign (m, 
sk ) 

C. The environment process: 
The main process is specified in Process 2. Here we 

model the environment and specify how the other processes 
are combined. First, fresh secret keys for the voters and the 
administrator are generated using the restriction operator. 
For simplicity, all legitimate voters share the same secret 
key in our model (and therefore the same public key). The 
public keys and hostnames corresponding to the secret keys 
are then sent on a public channels, i.e. they are made 
available to the intruder. The list of legitimate voters is 
modeled by sending the public key of the voters to the 
administrator on a private communication channel. We also 
register the intruder as being a legitimate voter by sending 
his public key pk(ski) where ski is a free variable: this 
enables the intruder to introduce votes of his choice and 
models that some voters may be corrupted. Then we 
combine an unbounded number of each of the processes 
(voter, administrator and collector). An unbounded number 
of administrators and collectors models that these processes 
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are servers, creating a separate instance of the server process 
(e.g. by “forking”) for each client. 
Process 2.environment process 
process 
νska . νskv . (* private keys *) 
νprivCh . (* channel for registering legimitate voters *) 
l e t pka=pk ( ska ) in 
l e t hosta = host ( pka ) in 
l e t pkv=pk ( skv ) in 
l e t hostv=host ( pkv ) in 
(* publish host names and public keys *) 
out( ch , pka ) . out( ch , hosta ) . 
out( ch , pkv ) . out( ch , hostv ) . 
(* register legimitate voters *) 
( ( out ( privCh , pkv ) . out ( privCh , pk ( s k i ) ) ) | 
( !processV ) | ( !processA ) | ( ! processC ) ) 

D. The voter process: 
The voter process given in Process 3 models the role of a 

voter. At the beginning two fresh random numbers are 
generated for blinding, respectively bit commitment of 
thevote. Note that the vote is not modeled as a fresh nonce. 
This is because generally the domain of values of the votes 
is known. For instance this domain could be {yes, no}, a 
finite number of candidates, etc. Hence, vulnerability to 
guessing attacks is an importanttopic. We will discuss this 
issue in more detail in section 5. The remainder of the 
specification follows directly the informal description given 
in section 2. The command in(ch,(l,=s)) means the process 
inputs not any pair but a pair whose second argument is s. 
Note that we use phase separation commands, introduced by 
the ProVerif tool as global synchronization commands. The 
process first executes all instructions of a given phase before 
moving to the next phase. The separation of the protocol in 
phases is useful when analyzing fairness and the 
synchronization is even crucial for privacy to hold. 
Process 3.voter process 
letprocessV = 
νbl i n d e r . νr . 
letblindedcommitedvote=blind (commit(v ,r) ,blinder)in 
out ( ch , ( hostv , sign ( blindedcommitedvote , skv ) ) )  
in( ch ,m2) . 
letblindedcommitedvote0=checksign (m2, pka ) in 
i f blindedcommitedvote0=blindedcommitedvotethen 
l e t signedcommitedvote=unblind (m2, b l i n d e r ) in 
phase 1 . 
out( ch , signedcommitedvote ) . 
in( ch , ( l ,= signedcommitedvote ) ) . 
phase 2 . 
out( ch , ( l , r ) ) 

E. The administrator process: 
The administrator is modeled by the process represented 

in Process 4. In order to verify that a voter is a legitimate 
voter, the administrator first receives a public key on a 
private channel. Legitimate voters have been registered on 
this private channel in the environment process described 
above. The received public key has to match the voter who 
is trying to get a signed ballot from the administrator. If the 
public key indeed matches, then the administrator signs the 
received message which he supposes to be a blinded ballot. 
Process 4.administrator process 
l e t processA = 
in( privCh , pubkv ).(*register legimitate voters *) 

in( ch ,m1) . 
l e t (hv , sig )=m1 in 
l e t pubkeyv=getpk ( hv ) in 
i f pubkeyv = pubkvthen 
out ( ch , sign ( checksign ( sig , pubkeyv ) , ska ) ) 

F. The collector process: 
In Process 5 we model the collector. When the collector 

receives a committed vote, he associates a fresh label ’l’ 
with this vote. Publishing the list of votes and labels is 
modeled by sending those values on a public channel. Then 
the voter can send back the random number which served as 
a key in the commitment scheme together with the label. 
The collector receives the key matching the label and opens 
the vote which he then publishes. Note that in this model the 
collector immediately publishes the vote without waiting 
that all voters have committed to their vote. In order to 
verify in section 5 that no early votes can be revealed we 
simply omit the last steps in the voter and collector process 
corresponding to the opening and publishing of the results. 
Process 5.collector process 
l e t processC = 
phase 1 . 
in( ch ,m3) . 
νl . out( ch , ( l ,m3) ) . 
phase 2 . 
in( ch , (= l , rand ) ) . 
l e t voteV=open ( checksign (m3, pka ) , rand ) in 
out( ch , voteV ) 

V. ANALYSIS 

We have analysed three major properties of electronic 
voting protocols: fairness, eligibility, privacy, receipt 
freeness, and coercion resistance. The first two of these can 
be directly verified using ProVerif. The tool allows us to 
verify standard secrecy properties as well as resistance 
against guessing attacks, defined in terms of equivalences. 
But for privacy, receipt-freeness and coercion-resistance, we 
need to rely on the hand-proof techniques introduced in [8]. 
In the case of the last of our properties, we had to extend the 
applied pi calculus with a new notion which we call adaptive 
equivalence.  

A. Fairness: 
Fairness is the property that ensures that no early results 

can be obtained and influence the vote. people revealing 
their vote when asked. We model fairness as a secrecy 
property: it should be impossible for an attacker to learn a 
vote before the opening phase, i.e. before the beginning of 
phase 2. 

a. Standard secrecy: Checking standard secrecy, i.e. 
secrecy based on reach ability, is the most basic 
property ProVerif can check. We request ProVerif to 
check that the private free variable v representing the 
vote cannot be deduced by the attacker. ProVerif 
directly succeeds to prove this result. 

b. Strong secrecy: We also verified strong secrecy in 
the sense of [9]. Intuitively, strong secrecy is verified 
if the intruder cannot distinguish between two 
processes where the secret changes. For the precise 
definition, we refer the reader to [9]. The main 
difference with guessing attacks is that strong secrecy 
relies on observational equivalence rather than static 



Swati A. Khodke et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,837-841 

© 2010, IJARCS All Rights Reserved                                                                                                                                               840 

equivalence. ProVerif directly succeeds to prove 
strong secrecy. 

c. Corrupt administrator: We have also verified 
standard secrecy, resistance against guessing attacks 
and strong secrecy in the presence of a corrupt 
administrator. A corrupt administrator is modeled by 
outputting the administrator’s secret key on a public 
channel. Hence, the intruder can perform any actions 
the administrator could have done. Again, the result 
is positive: the administrator cannot learn the votes of 
a honest voter, before the committed votes are 
opened. Note that we do not need to model a corrupt 
collector, as the collector never uses his secret key, 
i.e. the collector could anyway be replaced by the 
attacker. 

B. Eligibility: 
Eligibility is the property verifying that only legitimate 

voters can vote, and only once. The way we verify the first 
part of this property is by giving the attacker a 
challengevote. We modify the processes in two ways: (i) the 
attacker is not registered as a legitimate voter; (ii) the 
collector tests whether the received vote is the challenge 
vote and outputs the restricted name attack if the test 
succeeds. The modified collector process is given in Process 
6. Verifying eligibility is now reduced to secrecy of the 
name attack. ProVerif succeeds in proving that attack cannot 
be deduced by the attacker. 

C. Privacy: 
As ProVerif takes as input processes in the applied pi 

calculus, we can rely on hand proof techniques to show 
privacy. The processes modeling the two voters are shown 
in Process 8. The main process is adapted accordingly to 
publish public keys and host names. 
Proposition 1.The FOO 92 protocol respects privacy, i.e. 
P[vote1/v1, vote2/v2] ≈ 
P[vote2/v1, vote1/v2], where P is given in Process 9. 
The proof can be sketched as follows. First note that the 
only difference between 
P[vote1/v1, vote2/v2] and P[vote2/v1, vote1/v2] lies in the 
two voter processes. We therefore first show that 
(processV1|processV 2)[vote1/v1, vote2/v2] ≈ 
(processV1|processV 2)[vote2/v1, vote1/v2]. 
Process 8.two voters for checking the privacy property 
(* Voter1 *) 
l e t processV1 = 
νblinder1 . νr1 . 
l e t blindedcommitedvote1=b l i n d ( commit ( v1 , r1 ) , 
blinder1 ) in 
out ( ch , ( hostv1 , sign ( blindedcommitedvote1 , skv1 ) ) ) . 
in( ch ,m21) . 
l e t blindedcommitedvote01=checksign (m21, pka ) in 
i f blindedcommitedvote01=blindedcommitedvote1 then 
l e t signedcommitedvote1=unblind (m21, blinder1 ) in 
phase 1 . 
out( ch , signedcommitedvote1 ) . 
in( ch , ( l1 ,= signedcommitedvote1 ) ) . 
phase 2 . 
out( ch , ( l1 , r1 ) ) 
(* Voter2 *) 
l e t processV2 = 
νblinder2 . νr2 . 

l e t blindedcommitedvote2=b l i n d ( commit ( v2 , r2 ) , 
blinder2 ) in 
out ( ch , ( hostv2 , sign ( blindedcommitedvote2 , skv2 ) ) ) . 
in( ch ,m22) . 
l e t blindedcommitedvote02=checksign (m22, pka ) in 
i f blindedcommitedvote02=blindedcommitedvote2 then 
l e t signedcommitedvote2=unblind (m22, blinder2 ) in 
phase 1 . 
out( ch , signedcommitedvote2 ) . 
in( ch , ( l2 ,= signedcommitedvote2 ) ) . 
phase 2 . 
out( ch , ( l2 , r2 ) ) 
Process 9.main process with two voters 
process 
νska . νskv1 . νskv2 . (* private keys *) 
νprivCh . (* channel for registratinglegimitate voters *) 
l e t pka=pk ( ska ) in 
l e t hosta = host ( pka ) in 
l e t pkv1=pk ( skv1 ) in 
l e t hostv1=host ( pkv1 ) in 
l e t pkv2=pk ( skv2 ) in 
l e t hostv2=host ( pkv2 ) in 
(* publish host names and public keys *) 
out( ch , pka ) . out( ch , hosta ) . 
out( ch , pkv1 ) . out( ch , hostv1 ) . 
out( ch , pkv2 ) . out( ch , hostv2 ) . 
l e t v1=choice [ vote1 , vote2 ] in 
l e t v2=choice [ vote2 , vote1 ] in 
( ( out ( privCh , pkv1 ) . out ( privCh , pkv2 ) . out ( privCh 
, pk ( s k i ) ) ) | 
( processV1 ) | ( processV2 ) | ( ! processA ) | ( ! processC ) 
) 

After the synchronization at phase 1, the remaining of 
the voter processes are structurally equivalent: the remaining 
of the first voter’s process of P1 is equivalent to the 
remaining of the second voter’s process of P2 and vice-
versa. Due to this structural equivalence, P2 can always 
simulate P1 (and vice-versa). Moreover static equivalence 
will be ensured: with respect to frames φ1 and φ2 no other 
difference will be introduced and the blinding factors are 
never divulged. 

VI. CONCLUSION 

The paper describes our recent efforts to formally 
specify and verify electronic voting protocols in the applied 
pi calculus. Properties such as fairness and eligibility benefit 
from automated proofs. For more sophisticated anonymity 
properties, even specifying the properties is challenging, in 
particular receipt-freeness and coercion-resistance. In these 
cases we rely on hand proofs and reuse existent proof 
techniques from the applied pi calculus. 
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