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Abstract: Non-linearity is observed in the transfer characteristics of gunn diode. Neural Network can elegantly solve a typical regression of 
characteristic of gunn diode.  The dataset is obtained by performing experiment on a typical continuous wave gunn diode MA49156-30. The numbers 
of readings are regarded as samples. The dataset is obtained, which is used for regression. After rigorous computer simulations authors develop an 
optimal MLP NN model, which elegantly performs such a nonlinear regression. Results show that the proposed optimal MLP NN model has a MSE 
as low as 4.24 x 10-5
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, correlation coefficient as high as 0.9852 when it is validated on the cross validation dataset. 
 

I. INTRODUCTION  

Literature survey [1, 2, 3, 4] shows that Neural Networks 
(NN) have been effectively used for nonlinear multivariable 
regression. However, there is still enough scope to choose an 
appropriate NN model so that the performance measures are 
optimized to approach zero and unity for MSE (mean square 
error) and correlation coefficient (r), respectively. In 
regression, both the input data and desired response are 
experimental variables (normally real numbers) created by a 
single unknown underlying mechanism. The goal in regression 
is to find the parameters of the best linear approximation to the 
input and the desired response pairs. In multivariable nonlinear 
regression, conventional techniques such as least square 
approach generally do not work reasonably [5]. Therefore NN 
approach is worth considering for solving nonlinear 
multivariable regression problem [6]. In a gunn diode V-I 
(voltage-current) characteristic non-linearity is observed in the 
characteristic. The data is obtained by performing experiment 
on a typical continuous wave gunn diode MA49156-30. The 
number of readings is treated as samples.  

Optimal MLP NN (Multilayer Perceptron Neural Network) 
is developed for regression of gunn diode characteristic.  Other 
NN configuration such as RBF (Radial Basis Function) and 
Jordan Elman Neural Network have also been considered for 
this regression.  

Statistical models are also developed using conventional 
technique. 

This paper deals with the multivariable regression using NN 
approach. Here a dataset is obtained, which is used for 
regression. As shown in Table 1, there are 96 training patterns 
out of which (70%) samples are used to train the NN model 
and (30%) different independent samples are used to assess the 
performance of an estimated network model as shown in Table 
I.  

 
 
 

Table 1- Gunn diode dataset used for NN based Model 
No.of total samples No. of training 

Samples(70%) 
No. of cross 
validation Samples 
(30%) 

96 67 29 

 
Independent validation method in statistics is used to 

evaluate the NN in which the available data are divided into a 
training set and a test set. The training data is used to update 
the weights, in the network. The test data are then used to 
assess how well the network has generalized. The learning and 
generalization ability of the estimated NN model is assessed on 
the basis of performance measures such as MSE, NMSE 
(normalized mean square error) and correlation coefficient, r. 
Fig.1 exhibits the transfer characteristics of typical electronic 
device, gunn diode. 

 
Figure.1 Transfer Characteristic of a Typical Gunn Diode MA49156-30 

II. COMPUTER SIMULATION 

A.  MLP NN: 
MLP based NN model is used in this study because it has 

solid theoretical foundation. The main reason for this is its 
ability to model simple as well as very complex functional 
relationship. This has been proven through a large number of 
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practical applications [7]. It is shown that all continuous 
function can be approximated to any desired accuracy in terms 
of the uniform norm with a network of one hidden layer of 
sigmoidal or hyperbolic tangent, hidden units as well as output 
unit [8]. MLPs are feedforward Neural Networks trained with 
the standard backpropagation algorithm. They are supervised 
networks so they require a desired response to be trained. The 
configuration of MLP NN is determined by number of hidden 
layers, number of the neurons in each of hidden layer as well 
as the type of activation function used for the neurons. 
Backpropagation algorithm with momentum is an 
improvement to the straight gradient-descent search in the 
sense that a memory term (the past increment to the weight) is 
used to speed up and stabilize convergence.  

Following Table II shows various parameters of the MLP 
NN model which are varied for obtaining optimal parameters.  

Supervised learning epochs= 1000, Error threshold = 0.01, 
Transfer function in hidden layer= tanh, No. of PEs in input 
layer = 01, No. of PEs in output layer =1, No. of connection 
weights for 1-2-1 architecture (P) =7, Total no. of exemplars 
in training dataset (N) = 67, N/P = 9.5 

Table 2 – Variable parameters of MLP NN Model 

S.N. Parameter Typical Range Optimal 
parameter 

1 Hidden 
Layer 

1 to 4 1 

2 PE 1 to 20 2 
3 Learning 

Rule 
Momentum (Mom), Conjugate 
gradient (CG), Levenberg 
Marquardt (LM), Quick 
propagation (QP), Step, Delta 
bar delta 

Levenberg 
Marquardt 
(LM) 

4 Transfer 
Function in 
output layer 

Linear, Lineartanh, Tanh Linear 

 
Here number of hidden layer is varied from 1 to 4 and 

performance measures of the MLP NN model are found better 
for single hidden layer as shown in Table III. With increase in 
number of hidden layers the performance of the network has 
not improved significantly.  

Table 3– Number of Hidden layer and r (correlation coefficient) 
S.N. No. of Hidden layer r 
1 1 0.9852 
2 2 0.9800 

3 3 0.9642 
4 4 0.9628 

 
PEs are varied from 1 to 20 for the hidden layer. Optimal 

values of MSE (Mean Square Error) and r-correlation 
coefficient are obtained for 2 PEs in the single hidden layer.  

Figure 2 gives regression capability of MLP NN on cross 
validation dataset, which portrays desired output and actual 
output of the MLP NN on cross validation data set. It is seen 
that actual output follows the desired output very closely. 

 
Figure. 2 Regression capability of MLP NN on cross validation Dataset 

For the given dataset MLP NN model is trained for five 
times. The performance measures such as MSE, NMSE 
(Normalised Mean Square Error) and r on training dataset and 
testing dataset are obtained.  The correlation coefficient on test 
dataset is found as high as 0.9852, MSE = 4.24 x 10-5

B. RBF NN (Radial Basis Function): 

and 
NMSE =0.0434 

A design of NN can be viewed as a curve-fitting 
(approximation) problem in a high-dimensional space. 
According to this viewpoint, learning is equivalent to finding a 
surface in a multidimensional space that provides a best fit to 
the training data, with the criterion for “best fit” being 
measured in some statistical sense. In the context of a NN, the 
hidden units provide a set of “functions” that constitute an 
arbitrary “basis” for the input patterns (vectors) when they are 
expanded into the hidden space; these functions are called 
RBF. RBF were first introduced in the solution of the real 
multivariate interpolation problem [9, 10]. 

A mathematical justification for the rationale of a 
nonlinear transformation followed by a linear transformation 
may be traced back to an early paper by Cover [11]. Another 
important point is the fact that the dimension of the hidden 
space is directly related to the capacity of the network to 
approximate a smooth input-output mapping [12,13]; the 
higher the dimension of the hidden space, the more accurate 
the approximation will be. The variable parameters of RBF 
NN are listed in Table IV.  

Table 4 – Variable parameters of RBF NN Model 
S.N. Parameter Typical Range Optimal 

Parameter 
1 Cluster centers 05-67 05 
2 Unsupervised 

learning rule 
Conscience-full, 
standard full 

Conscience-full 

3 Supervised learning 
rule 

 Momentum, Conjugate 
gradient, Levenberg 
Marquardt, Quick 
Propagation, Step, delta 
bar delta 

Levenberg 
Marquardt 

4 Metric Euclidean, Dot Product, 
Box car 

Euclidean 

5 Transfer function in 
output layer 

Linear, Lineartanh, 
Tanh 

lineartanh 
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Number of cluster centers is varied from 5 to 67 and 
optimal performance is obtained at cluster centers as 05.  

In unsupervised learning Conscience-full and standard full 
algorithms are used. For conscience full competitive learning 
MSE is obtained as low as 0.00061and r as high as 0.9567. 

In Supervised learning, similar to the MLP NN computer 
simulation the learning rules are varied and r is optimum for 
levenberg marquardt learning rule. Competitive learning 
metric is varied as Euclidean, Dot Product and Box car and 
Euclidean metric performs optimally. 

Transfer function in output layer is varied as Linear, 
Lineartanh and Tanh. It is found that best results are obtained 
for levenberg marquardt learning rule with 05 cluster centers 
and lineartanh transfer function in output layer.  

For the given dataset RBF NN model is trained for five 
times. The performance measures like MSE, NMSE and r on 
training dataset and testing dataset are obtained. The 
correlation coefficient on test dataset is found as 0.9567, MSE 
= 0.00061and NMSE = 0.6349.  

Figure 3 gives regression capability of RBF NN that shows 
desired output and actual output of the RBF NN on cross 
validation data set. It is seen that actual output follows the 
desired output. 

 
Figure. 3 Regression capability of RBF NN on cross validation Dataset 

C. Jordan Elman Neural Network: 
Recurrent networks are neural networks with one or more 

feedback loops. The Recurrent networks are used as input-
output mapping networks and also as associative memories 
[14]. By definition, the input space of a mapping network is 
mapped onto an output space, a recurrent network responds 
temporarily to an externally applied input signal. Recurrent 
networks can be considered as dynamically driven recurrent 
networks. Because of global feedback memory requirement 
reduces significantly [15]. 

Jordan and Elman networks extend the multilayer 
perceptron with context units, which are processing elements 
(PEs) that remember past activity. Context units provide the 
network with the ability to extract temporal information from 
the data. Following Table V shows various parameters of the 
Jordan Elman NN model, which are varied for obtaining 
optimal parameters. Same architecture is used for Jordan 
Elman NN as that of MLP.  

 

Table 5-Variable parameters of Jordan Elman NN Model 
S.N. Parameter Typical Range Optimal 

parameter 
1 Learning 

Rule 
 Momentum (Mom), Conjugate 
gradient (CG), Levenberg Marquardt 
(LM), Quick propagation (QP), Step, 
Delta bar delta 

Levenberg 
Marquardt  

2 Transfer 
function      
in output 
layer  

Linear, Lineartanh, Tanh Linear 

3 Context Unit 
Transfer 
Function 

Integrator Axon, Tanh Integrator 
Axon, Sigmoid Integrator Axon, 
Context axon, Tanh Context axon, 
Sigmoid Context axon 

Integrator 
Axon 

4 Context Unit 
time constant 

0.1 to 0.9 0.8 

 
Here also different supervising learning rules are 

attempted.  It is found that the best results are obtained for 
Levenberg Marquardt learning rule in hidden as well as output 
layers. Transfer functions are varied in the output layer and 
optimal parameters are found for linear transfer function. 

In Jordan Elman NN, context unit transfer functions are 
varied for the optimal performance and it is found for sigmoid 
integrator axon. Also time constants are varied from 0.1 to 0.9 
and optimal performance is obtained for time constant 0.8. For 
the given dataset Jordan Elman NN model is trained for five 
times. The performance parameters are MSE =0.00011, 
NMSE = 0.1226 and r =0.9839. 

Fig 4 depicts regression capability of Jordan Elman NN on 
cross validation dataset. It is seen that actual output barely 
follows the desired output. 

 
Figure. 4 Regression capability of Jordan Elman NN on Testing Dataset  

The optimal performance of architectures of every NN is 
shown in Table VI. Levenberg Marquardt learning rule is used 
in hidden as well as output layers. The optimal performance is 
obtained for MLP NN with MSE as low as 4.24 x 10-5

 

and r as 
high as 0.9852. It is also observed that for MLP NN the time 
required for training the network per epoch per exemplar is 
14.9 microseconds. Though the percentage error is sensibly less 
in Jordan Elman NN the performance of MLP NN is superior 
as compared to other networks.   
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Table 6 - Comparison of all the NN Architectures on Test dataset 

NN 

Transfer 
Function 
(Output 
layer) 

Learnin
g Rule MSE r 

% 
Erro
r 

Time/epo
ch/ 
Exempla
r in 
microsec
onds 

MLP 
(1-2-
1) 

Linear 
 LM 4.24 x 

10 0.9852 -5 1.76 14.9 

RBF Lineartanh LM 0.00061 0.9567 4.88 14.9 

Jordan 
Elman 
(1-2-
1) 

Linear LM 0.00011 0.9839 2.01 14.9 

 
Table VII displays the regression performance of various 

neural networks. The performance parameters are optimum 
for MLP NN. 

Table 7- Regression performance of NN models 

S.N. NN 

Performance Measures on Cross Validation 
Dataset 

MSE NMSE r 

1 MLP 4.24 x 10 0.0434 -5 0.9852 

2 RBF 0.00061 0.6349 0.9567 

3 Jordan Elman 0.00011 0.1226 0.9839 

D.     Conventional approach: 
Statistical models are developed using conventional 

technique. Linear, nonlinear, nonparametric and PLSR (partial 
leas square regression) models are built for given dataset. 
Table VIII shows the MSE for statistical models using various 
functions for Gunn diode.  MSE is minimum for linear model 
equal to 4.53 x 10-03 on training and 0.045528 for CV dataset. 
In case of nonlinear regressor, minimum MSE is obtained for 
Function Y1 (Degree 3) on cross validation samples. 
Nonparametric regressor with median method has MSE on 
train approaching 6.70 x 10–04 and on CV it is 3.66x 10-03

Table 8 - MSE for statistical models of Gunn diode 

. In 
PLSR model MSE on CV is 0.0105845 and on train is 
0.00453. It is found that the least MSE is obtained for 
nonlinear model. 

S.N. 
Model for Gunn diode dataset MSE 

Train CV 
1 Linear Regression 4.53E-03 0.045528 

2 Nonlinear 
regression 

Function  Degree   

Y

1 

1 

4.53E-03 0.105184 

2 1.82E-04 0.012962 

3 1.34E-04 1.13E-03 

4 1.31E-04 7.65E-03 

5 9.08E-05 1.329614 

6 8.95E-05 3.135899 

7 6.47E-05 46.4979 

8 3.90E-05 1235.07 

9 3.48E-05 0.085667 

10 2.01E-05 55263.66 

Y -- 2 unknown error occurred 

Y -- 3 72.943 6.82E-03 

Y -- 4 7.22E-03 0.158928 

Y -- 5 3.01E-04 0.01712 

Y -- 6 3.78E-04 0.018823 

Y -- 7 5.67E+03 0.097242 

Y -- 8 3.27E-04 0.01033 

Y -- 9 can not fit function 

Y -- 10 2.45E-04 0.016632 

Y -- 11 1.12E-04 0.026318 

Y -- 12 can not fit function 

Y -- 13 can not fit function 

Y -- 14 1.82E-04 0.010774 

Y -- 15 2.05E-03 0.027015 

Y -- 16 3.36E-04 0.018848 

Y -- 17 unknown error occurred 

3 PLSR -- -- 0.00453 0.0105845 

4 
 
 
 

Nonparametric 
Regression 

Methods  Polynomial 
Degree   

Lowess 

1 2.00E-04 4.77E-03 
2 1.40E-04 4.77E-03 
3 4.08E-05 0.065523 
4 4.13E-05 0.065523 

Robust 
Lowess 

1 4.42E-04 1.69E-02 
2 2.08E-04 1.69E-02 
3 5.83E-05 0.047755 
4 5.87E-05 0.047726 

Mean -- 7.62E-04 3.77E-03 
Median -- 6.70E-04 3.66E-03 

Polynomial 

1 0.006677 0.090638 
2 0.010688 3.704496 
3 6.12256 9533.8 
4 7.1326 9533.8 

 
It is very obvious from Table IX that neural network 

regressor having the least MSE for train as well as CV dataset 
amongst all the regression techniques discussed above. 

Table 9 - Comparison of regression techniques on Gunn Diode dataset 

S.N. Regression 
Technique 

MSE on Function / Network  

Train CV 

1 Neural Network 0.000107 4.24 x 10 MLP NN -5 

2 Linear 
regression 0.004527 0.045528 -- 

3 Nonlinear 
Regression 0.000134 0.001133 

Y1 (Deg3) = 
pr1+pr2*X1+pr3*X1^2
+pr4*X1^3 

4 Nonparametric 0.00067 0.00366 Median 

5 PLSR 0.00453 0.010585 -- 
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III. CONCLUSION 

Results show that a MLP NN comprising of one hidden 
layer having architecture (1-2-1) is able to solve such a 
nonlinear regression problem with sensible accuracy. When 
the performance of MLP, RBF, Jordan Elman and Modular 
NN based regression are carefully examined for data set, MLP 
NN has clearly outperformed its RBF NN and Jordan Elman 
counterpart with respect to the performance measures such as 
MSE, NMSE, and r. Correlation coefficient is obtained as 
0.9852 and MSE and NMSE are found to be as low as 4.24 x 
10-5 
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