
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 715

ISSN No. 0976-5697

Theory and Practices in Xml Query Optimization
1Asmita P. Asre

PG Student, Department of Computer Sc. & Engg.
Prof. Ram Meghe Institute of Tech. & Research, Badnera.

asmitaasre@gmail.com

2

Principal, Prof. Ram Meghe College
Prof. M.S.Ali

Of Engineering & Management, Badnera.
softalis@hotmail.com

Abstract: As computers and technology continue to become more commonplace and essential to everyday life, more data is captured, stored, and
analyzed by a variety of institutions. As this amount of data grows, so does the need for efficient methodologies and tools used to store, retrieve,
and transform the data. A common method used to store this schemaless, semi-structured data is through the Extensible Markup Language,
XML. In this way, an XML document is viewed as a database. With this sizable amount of data stored in a common format, one problem is how
to efficiently query XML documents. While relational database management systems contain built-in query optimizers, no such framework
exists for XML databases. A multitude of document shapes, query shapes, index structures, and query techniques exist for XML databases, but
the implications of these choices and their effects on query processing have not been investigated in a common framework. This paper focuses
on the theory and practices applied to solve the problem of query optimization in XML databases.

Keywords: Query Optimization, XML Databases, Cost Model, Query Optimization issues.

I. INTRODUCTION

As computers and technology become more
commonplace and essential to everyday life, more and more
data is captured, stored, and analyzed by a variety of
institutions. As this amount of available data grows, so does
the need for efficient methodologies and tools used to store,
retrieve, and perform operations on the data. The relational
model was first proposed by Codd in 1970 [1] as a way of
describing data using only its natural structure. Specifically,
the natural structure of the data refers to the relations
between data elements. It is based on the notions of set
theory and first order predicate logic and has, at its core, the
idea of a mathematical relation as the basic building block.

Data in the relational model must conform to a global
schema. A relational schema is typically developed by a
database administrator before data is loaded into the system.
As the relational model gained popularity, it inspired many
end-user database management systems (DBMS) to be
created using it as a theoretical backbone. Since relational
algebra (the mathematical notation used to manipulate
relational data) can be complex, a higher-level query
language was developed to ease user interaction with the
DBMS. The Structured Query Language (SQL) was
standardized by the American National Standards Institute
(ANSI) and the International Standards Organization (ISO)
in 1986.

This version of SQL was revised and expanded in 1992
and is commonly referred to as SQL-92. While SQL allows
complex queries to be written and executed, it does not
optimize queries to improve performance and query return
times. In order to improve query return time, commercial
DBMS packages currently include query optimization
techniques built-in to the software. These types of
optimizations fall into two categories: logical and physical
(Figure 1). When a SQL query is presented to the database,
the first step is logical optimization. The high-level SQL
query is converted to a corresponding relational algebra tree.
Transformations are then performed on the tree in order to
optimize the query, i.e., reduce the data retrieved and
operated on. The goal of logical optimization is to rewrite

the user query into an equivalent form that is more efficient
to execute.

 SQL Query

Figure 1. Traditional Query Optimization

The result of logical optimization is an equivalent query
tree, and this tree is then passed on for physical
optimization. Physical optimization takes into account file
organization and auxiliary access and mechanisms. How the
data is stored on disk and the indexes or other access
methods available to the database are crucial in retrieving
the requested data quickly. The DBMS is aware of the
physical storage and auxiliary access methods available to
the system. Since there is always a cost to access the data on
disk, choosing an efficient access plan among all possible
choices is referred to as cost-based optimization. The
relational model and associated optimization techniques are
mature technologies. When data is highly-structured and
uses a well-defined schema, relational databases are an
excellent choice for storing and accessing data. However,
with the growth of the Internet in the past decade, new ways
of structuring and describing data have become available.
One such data model, XML, is discussed below. These new
types of data present challenges for traditional query
processing and optimization techniques.

A. XML and OEM:
Most data on the web is said to be semistructured or

loosely-structured data as well as schemaless or self-
describing. In other words, unlike data in the relational
model, there exists little or no metadata [ABS00] separate
from the data itself. The Extensible Markup Language
(XML) is a new standard for data exchange on the Internet
and between different processing platforms. An open-
standard specification for XML is kept by the W3C [xml].

Logical Optimization

Physical Optimization
Query Tree

Access Plan

Asmita P. Asre et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,715-717

© 2010, IJARCS All Rights Reserved 716

While XML is syntactically similar to HTML, it does
more than simply specify the appearance of text on a page.
Data represented in XML is self-describing, i.e., it contains
embedded descriptive information, and generally does not
require an outside schema.

A brief example of an XML document is shown in
Figure 1.1. Information is represented both in the text and
the tags around the text. The two main methods to represent
data are as elements or attributes. An example of an element
if shown in line 3 of Figure 1.1. The element identifier is
name and the corresponding element value is
Chili’s. Information can also be represented as
<FoodDrink>
<restaurant id=‘‘R001’’>
<name>Chili’s</name>
 <phone>671-1102</phone>
 <owner>G. Haldiram</owner> </restaurant>
 <restaurant id=‘‘R002’’>
<name>Maggi’s</name>
 <owner>G. Peppard</owner>
<manager>Crow</manager>
 </restaurant>
 <bar id=‘‘B001’’>
<name>Crow</name>
<style>Indian</style>
</bar>
</FoodDrink>

Figure1.1: XML Example

An attribute of an element (as shown in line 2). The
element restaurant has an attribute of R001. The nesting of
XML elements gives it a tree (or graph) structure, and this
yields information about hierarchical relationships (such as
parent-child or ancestor-descendant) in the data. While
XML is robust and highly-adaptable (attributes, elements,
and element tags can be dynamically specified and defined
by the user), it can be somewhat daunting to read and
understand. The Object Exchange Model (OEM) was
proposed in 1995 [PGMW95], and it serves as a
diagrammatical representation for XML documents. Data
represented in OEM is self-describing and therefore does not
require additional schema definitions. An object in OEM is
defined as the quadruple (label, oid, type, value). The
variable label gives a character label to the object, oid
provides the object’s unique identifier, and type can be
either an atomic value or complex. If type is an atomic
value, then the object is an atomic object and value is an
atomic value of the corresponding type. Otherwise, if type is
complex, then the object is a complex object and value is a
list of object identifiers (oids) [2]. The OEM retains the
simplicity of relational models but allows some of the
flexibility given by object-oriented models [2] for specifying
nested objects. OEM is one example of a graphical
convention used to display an XML document. It is
important because the document has an inherent structure,
data labels, and data that are readily visible to the reader.

B. XPath and XQuery:
The simplest type of query in XML is an XPath

expression [3]. XPath expressions resemble the UNIX
directory structure with some extensions. The slash (/) and
double-slash (//) retain their UNIX interpretations (parent-
child and ancestor-descendent relationship, respectively),
and the text in brackets ([]) acts as a filter on the data to be
returned. An example of a simple XPath expression is given
by /FoodDrink/Restaurant [owner=’G.Haldiram’] and
corresponds to the XML document shown in Figure 1.1.

This expression results in a positive match to two
restaurant nodes, one with id equal to R001 and the other
with id equal to R002. The single slash represents a strict
parent-child relationship. The expression //[style=’Indian’]
matches only one node, the bar node with id 6 equal to
B001. The double-slash represents an ancestor-descendant
relationship. In this case, we are only interested in nodes
that, at some point in their list of descendants, have a style
of Indian.

X Query is a query language for XML designed to be
broadly applicable across many types of XML sources.
Designed to meet the requirements identified by the World
Wide Web Consortium (W3C), XQuery operates on the
logical structure of an XML document, and it has both
human-readable syntax and XML-based syntax. A grammar
for XQuery is defined by the W3C [3]. While XQuery can
successfully extract information from XML documents,
there are no built-in optimization techniques that relate to
the relational optimization techniques. The current version
of XQuery (1.0) is an extension of XPath 2.0.

C. Native and non-native techniques:
There currently exist two broad methodologies, native

and non-native techniques, used to query XML documents.
Native techniques implement XML queries on XML
documents. The original document, while perhaps slightly
transformed, maintains the inherent properties of an XML
document.

This means that the document is tree shaped, has both
depth and breadth, and is constructed by linking individual
nodes (elements) together. In contrast, non-native techniques
transform the original XML document into another format
that is not XML. An example of a non-native technique is to
take an XML document, flatten it, and store the contents in a
relational database. Some of these techniques allow standard
XPath expressions to be executed over the transformed data,
but the underlying document is no longer an XML file.

II. XML PERSPECTIVE

In the last few years, XML became the de-facto standard
for exchanging structured and semi-structured data in
business as well as in research. The database research
community took this development into account by proposing
among others—native XML database management systems
(XDBMSs) for efficient and transactional processing of
XML documents. As in the relational world, the quality of
query optimizers plays an important role for the acceptance
of database systems by a wide range of users, especially in
business scenarios where longer-than-necessary running
queries can cause high costs. One of the main tasks in query
evaluation is plan generation, where physical operators are
arranged in such a way, that the given optimization goal (e.
g., maximum throughput) is satisfied while the semantics of
the query is still preserved. In recent years, several join
operators for the evaluation of structural relationships like
child or descendant have been proposed. All of them belong
to one of the major classes of XML join operators:
Structural Joins [4] and Holistic Twig Joins [5]. Being
binary join operators, SJ operators decompose tree-
structured query patterns, which are also called twig query
patterns, into binary relationships and evaluate each of them
separately, before they merge intermediate results to get the
final query result. On the other hand, HTJ operators are able

Asmita P. Asre et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,715-717

© 2010, IJARCS All Rights Reserved 717

to evaluate twigs holistically. A precondition for the
efficient evaluation of SJ and HTJ operators is a node
labeling scheme [6] that assigns to each node in an XML
document a unique identifier that (1) allows to decide,
without accessing the document, for two given nodes
whether they are structurally related to each other and (2)
that does not require re-labeling even after modifications to
the document. Besides SJ and HTJ operators, several
approaches for indexing XML documents were proposed.

These approaches can be classified into a hierarchy of
access methods w. r. t. their availability in a native XDBMS.
Primary access paths provide input for navigational
primitives as well as for SJ and HTJ operators. The most
important representative of this class is a document index
that indexes a document using the unique node labels as
keys. Secondary access paths1 provide more efficient access
to specific element nodes using element indexes. They are
absolutely necessary for efficient evaluation of structural
predicates by SJ or HTJ operators. Tertiary access path) like
path indexes [7] employ structural summaries such as Data
[8] for providing efficient access to nodes satisfying
structural relationships like child or descendant. Content
indexes [9] support efficient access to text nodes or
attribute-value nodes. Finally, hybrid indexes (Wang, Park,
Fan, & Yu, 2003), which are also called content-and-
structure (CAS) indexes, are a promising approach for
indexing content and structure at a time. Compared to PAPs,
which are available per default in a native XDBMS, SAPs
and TAPs have to be manually created by the database
administrator. Furthermore, TAPs like path indexes or CAS
indexes can replace complete trees of SJ and HTJ operators
and become—if available—first-class citizens for query
evaluation. As maintenance and updates of TAPs can cause
substantial overhead, they will only be created by the
database administrator in rare cases, e.g., for frequently
queried sub trees. [9]

Table I. Comparison of Algorithms

Table I. Focuses and provides the different approaches
and the baseline provided earlier to solve the problem of
query optimization for XML databases.

III. CONCLUSION

Query optimization in the context of XML databases is
extremely challenging. The main reason for this is the high
complexity of the XML data model, as compared with other

data models, e.g., relational models. This high complexity
renders a much enlarged search space for XML query
optimization. Furthermore, XML applications are typically
Web-hooked and have many simultaneous, interactive users.
This dynamic nature requires highly efficient XML query
processing and optimization. The classical cost-based and
heuristic-based approaches yield unacceptably low
efficiency when applied to XML data—query optimization
itself becomes very time-consuming because of the huge
search space for optimization caused by the high complexity
of the XML data model. Lots of work related to XML query
processing has been done, but the majority is focused on
investigation for efficient supporting algorithms and
indexing schemes. Our approach of minimizing time to
execute a query, will certainly add to the available solutions
in the context of query optimization in XML databases.

IV. REFERENCES

[1]. E. F. Codd. A relational model of
data for large shared data banks. Communicatio
ns of the ACM, 13(6):377– 387, 1970.

[2]. Serge Abiteboul, Peter Buneman, and Dan Suciu. Data
on the Web. Morgan Kaufmann Publishers Inc., 2000.

[3]. R. G. G. Cattell, Douglas K. Barry,
Dirk Bartels, Mark Berler, Jeff Eastman, Sophie
Gamerman, David Jordan, Adam Springer, Henry
Strickland,and Drew Wade. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[4]. XQuery 1.0: An XML Query
Language. http://www.w3.org/TR/2005/CR-xquery-
20051103/, July 30 2009.

[5]. Zhang; Al-Khalifa. Open and Novel
Issues in XML Database Applications:

[6]. N. Bruno, N. Koudas, and D. Srivastava
B+ Tree Based Indexing Scheme for
FLOWR Queries on XML www.csjournals.com/IJC
SC/PDF1-

books.go
ogle.co.in/books?isbn=160566308 5

[7]. Harder. Haustein, Mathis, & Wagner. A Framework for
Cost- Based
Query Optimization in Native XML.

2/18..pdf

[8]. Tova Milo, Dan Suciu. Typechecking for
XML transformers Xml path language

www.irma int ernatio
nal.org/vie wtitle/41504

[9].

dl.acm.org/cit
ation.cfm?id=33516 8.33 5171

Roy Goldman, Dallan Quass, Jennifer Widom. Lore:
A database management
system for XML

[10]. Jason Mchugh and Jennifer Widom Query Optimization for
XML

citeseer.ist.psu.edu/viewdoc/summary?doi
= 10.1.1.41.3062

citeseerx. ist. psu. edu/ viewdoc/ summary?
do i=10.1.1.1.2777

	N. Bruno, N. Koudas, and D. Srivastava B+ Tree Based Indexing Scheme for FLOWR Queries on XML www.csjournals.com/IJC SC/PDF1-0T2/18..pdf
	Harder. Haustein, Mathis, & Wagner. A Framework for Cost- Based Query Optimization in Native XML. 0Twww.irma int ernational.org/vie wtitle/41504
	Tova Milo, Dan Suciu. Typechecking for XML transformers Xml path language 0Tdl.acm.org/citation.cfm?id=33516 8.33 5171

