
Volume 3, No. 3, May-June 2012 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                                                                                                                               715 

ISSN No. 0976-5697 

Theory and Practices in Xml Query Optimization 
1Asmita P. Asre 

PG Student, Department of Computer Sc. & Engg. 
Prof. Ram Meghe Institute of Tech. & Research, Badnera. 

asmitaasre@gmail.com 

2

Principal, Prof. Ram Meghe College 
Prof. M.S.Ali 

Of Engineering & Management, Badnera. 
softalis@hotmail.com

Abstract: As computers and technology continue to become more commonplace and essential to everyday life, more data is captured, stored, and 
analyzed by a variety of institutions. As this amount of data grows, so does the need for efficient methodologies and tools used to store, retrieve, 
and transform the data. A common method used to store this schemaless, semi-structured data is through the Extensible Markup Language, 
XML. In this way, an XML document is viewed as a database. With this sizable amount of data stored in a common format, one problem is how 
to efficiently query XML documents. While relational database management systems contain built-in query optimizers, no such framework 
exists for XML databases. A multitude of document shapes, query shapes, index structures, and query techniques exist for XML databases, but 
the implications of these choices and their effects on query processing have not been investigated in a common framework.  This paper focuses 
on the theory and practices applied to solve the problem of query optimization in XML databases. 
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I. INTRODUCTION 

As computers and technology become more 
commonplace and essential to everyday life, more and more 
data is captured, stored, and analyzed by a variety of 
institutions. As this amount of available data grows, so does 
the need for efficient methodologies and tools used to store, 
retrieve, and perform operations on the data. The relational 
model was first proposed by Codd in 1970 [1] as a way of 
describing data using only its natural structure. Specifically, 
the natural structure of the data refers to the relations 
between data elements. It is based on the notions of set 
theory and first order predicate logic and has, at its core, the 
idea of a mathematical relation as the basic building block.  

Data in the relational model must conform to a global 
schema. A relational schema is typically developed by a 
database administrator before data is loaded into the system. 
As the relational model gained popularity, it inspired many 
end-user database management systems (DBMS) to be 
created using it as a theoretical backbone. Since relational 
algebra (the mathematical notation used to manipulate 
relational data) can be complex, a higher-level query 
language was developed to ease user interaction with the 
DBMS. The Structured Query Language (SQL) was 
standardized by the American National Standards Institute 
(ANSI) and the International Standards Organization (ISO) 
in 1986. 

This version of SQL was revised and expanded in 1992 
and is commonly referred to as SQL-92. While SQL allows 
complex queries to be written and executed, it does not 
optimize queries to improve performance and query return 
times. In order to improve query return time, commercial 
DBMS packages currently include query optimization 
techniques built-in to the software. These types of 
optimizations fall into two categories: logical and physical 
(Figure 1). When a SQL query is presented to the database, 
the first step is logical optimization. The high-level SQL 
query is converted to a corresponding relational algebra tree. 
Transformations are then performed on the tree in order to 
optimize the query, i.e., reduce the data retrieved and 
operated on. The goal of logical optimization is to rewrite  

 
the user query into an equivalent form that is more efficient 
to execute. 
 
  SQL Query  
 
 
 
 
 

Figure 1. Traditional Query Optimization 

The result of logical optimization is an equivalent query 
tree, and this tree is then passed on for physical 
optimization. Physical optimization takes into account file 
organization and auxiliary access and mechanisms. How the 
data is stored on disk and the indexes or other access 
methods available to the database are crucial in retrieving 
the requested data quickly. The DBMS is aware of the 
physical storage and auxiliary access methods available to 
the system. Since there is always a cost to access the data on 
disk, choosing an efficient access plan among all possible 
choices is referred to as cost-based optimization. The 
relational model and associated optimization techniques are 
mature technologies. When data is highly-structured and 
uses a well-defined schema, relational databases are an 
excellent choice for storing and accessing data. However, 
with the growth of the Internet in the past decade, new ways 
of structuring and describing data have become available. 
One such data model, XML, is discussed below. These new 
types of data present challenges for traditional query 
processing and optimization techniques. 

A. XML and OEM: 
Most data on the web is said to be semistructured or 

loosely-structured data as well as schemaless or self-
describing. In other words, unlike data in the relational 
model, there exists little or no metadata [ABS00] separate 
from the data itself. The Extensible Markup Language 
(XML) is a new standard for data exchange on the Internet 
and between different processing platforms. An open-
standard specification for XML is kept by the W3C [xml]. 
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While XML is syntactically similar to HTML, it does 
more than simply specify the appearance of text on a page. 
Data represented in XML is self-describing, i.e., it contains 
embedded descriptive information, and generally does not 
require an outside schema.  

A brief example of an XML document is shown in 
Figure 1.1. Information is represented both in the text and 
the tags around the text. The two main methods to represent 
data are as elements or attributes. An example of an element 
if shown in line 3 of Figure 1.1. The element identifier is 
name and the corresponding element value is 
Chili’s. Information can also be represented as 
<FoodDrink> 
<restaurant id=‘‘R001’’> 
<name>Chili’s</name> 
 <phone>671-1102</phone> 
 <owner>G. Haldiram</owner> </restaurant> 
 <restaurant id=‘‘R002’’> 
<name>Maggi’s</name> 
 <owner>G. Peppard</owner> 
<manager>Crow</manager> 
 </restaurant> 
 <bar id=‘‘B001’’> 
<name>Crow</name> 
<style>Indian</style> 
</bar> 
</FoodDrink> 

Figure1.1: XML Example 

An attribute of an element (as shown in line 2). The 
element restaurant has an attribute of R001. The nesting of 
XML elements gives it a tree (or graph) structure, and this 
yields information about hierarchical relationships (such as 
parent-child or ancestor-descendant) in the data. While 
XML is robust and highly-adaptable (attributes, elements, 
and element tags can be dynamically specified and defined 
by the user), it can be somewhat daunting to read and 
understand. The Object Exchange Model (OEM) was 
proposed in 1995 [PGMW95], and it serves as a 
diagrammatical representation for XML documents. Data 
represented in OEM is self-describing and therefore does not 
require additional schema definitions. An object in OEM is 
defined as the quadruple (label, oid, type, value). The 
variable label gives a character label to the object, oid 
provides the object’s unique identifier, and type can be 
either an atomic value or complex. If type is an atomic 
value, then the object is an atomic object and value is an 
atomic value of the corresponding type. Otherwise, if type is 
complex, then the object is a complex object and value is a 
list of object identifiers (oids) [2]. The OEM retains the 
simplicity of relational models but allows some of the 
flexibility given by object-oriented models [2] for specifying 
nested objects. OEM is one example of a graphical 
convention used to display an XML document. It is 
important because the document has an inherent structure, 
data labels, and data that are readily visible to the reader. 

B. XPath and XQuery: 
The simplest type of query in XML is an XPath 

expression [3]. XPath expressions resemble the UNIX 
directory structure with some extensions. The slash (/) and 
double-slash (//) retain their UNIX interpretations (parent-
child and ancestor-descendent relationship, respectively), 
and the text in brackets ([ ]) acts as a filter on the data to be 
returned. An example of a simple XPath expression is given 
by /FoodDrink/Restaurant [owner=’G.Haldiram’] and 
corresponds to the XML document shown in Figure 1.1. 

This expression results in a positive match to two 
restaurant nodes, one with id equal to R001 and the other 
with id equal to R002. The single slash represents a strict 
parent-child relationship. The expression //[style=’Indian’] 
matches only one node, the bar node with id 6 equal to 
B001. The double-slash represents an ancestor-descendant 
relationship. In this case, we are only interested in nodes 
that, at some point in their list of descendants, have a style 
of Indian.  

X Query is a query language for XML designed to be 
broadly applicable across many types of XML sources. 
Designed to meet the requirements identified by the World 
Wide Web Consortium (W3C), XQuery operates on the 
logical structure of an XML document, and it has both 
human-readable syntax and XML-based syntax. A grammar 
for XQuery is defined by the W3C [3]. While XQuery can 
successfully extract information from XML documents, 
there are no built-in optimization techniques that relate to 
the relational optimization techniques. The current version 
of XQuery (1.0) is an extension of XPath 2.0.  

C. Native and non-native techniques: 
There currently exist two broad methodologies, native 

and non-native techniques, used to query XML documents. 
Native techniques implement XML queries on XML 
documents. The original document, while perhaps slightly 
transformed, maintains the inherent properties of an XML 
document.  

This means that the document is tree shaped, has both 
depth and breadth, and is constructed by linking individual 
nodes (elements) together. In contrast, non-native techniques 
transform the original XML document into another format 
that is not XML. An example of a non-native technique is to 
take an XML document, flatten it, and store the contents in a 
relational database. Some of these techniques allow standard 
XPath expressions to be executed over the transformed data, 
but the underlying document is no longer an XML file. 

II. XML PERSPECTIVE 

In the last few years, XML became the de-facto standard 
for exchanging structured and semi-structured data in 
business as well as in research. The database research 
community took this development into account by proposing 
among others—native XML database management systems 
(XDBMSs) for efficient and transactional processing of 
XML documents. As in the relational world, the quality of 
query optimizers plays an important role for the acceptance 
of database systems by a wide range of users, especially in 
business scenarios where longer-than-necessary running 
queries can cause high costs. One of the main tasks in query 
evaluation is plan generation, where physical operators are 
arranged in such a way, that the given optimization goal (e. 
g., maximum throughput) is satisfied while the semantics of 
the query is still preserved. In recent years, several join 
operators for the evaluation of structural relationships like 
child or descendant have been proposed. All of them belong 
to one of the major classes of XML join operators: 
Structural Joins [4] and Holistic Twig Joins [5]. Being 
binary join operators, SJ operators decompose tree-
structured query patterns, which are also called twig query 
patterns, into binary relationships and evaluate each of them 
separately, before they merge intermediate results to get the 
final query result. On the other hand, HTJ operators are able 
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to evaluate twigs holistically. A precondition for the 
efficient evaluation of SJ and HTJ operators is a node 
labeling scheme [6] that assigns to each node in an XML 
document a unique identifier that (1) allows to decide, 
without accessing the document, for two given nodes 
whether they are structurally related to each other and (2) 
that does not require re-labeling even after modifications to 
the document. Besides SJ and HTJ operators, several 
approaches for indexing XML documents were proposed.  

These approaches can be classified into a hierarchy of 
access methods w. r. t. their availability in a native XDBMS. 
Primary access paths provide input for navigational 
primitives as well as for SJ and HTJ operators. The most 
important representative of this class is a document index 
that indexes a document using the unique node labels as 
keys. Secondary access paths1 provide more efficient access 
to specific element nodes using element indexes. They are 
absolutely necessary for efficient evaluation of structural 
predicates by SJ or HTJ operators. Tertiary access path) like 
path indexes [7] employ structural summaries such as Data 
[8] for providing efficient access to nodes satisfying 
structural relationships like child or descendant. Content 
indexes [9] support efficient access to text nodes or 
attribute-value nodes. Finally, hybrid indexes (Wang, Park, 
Fan, & Yu, 2003), which are also called content-and-
structure (CAS) indexes, are a promising approach for 
indexing content and structure at a time. Compared to PAPs, 
which are available per default in a native XDBMS, SAPs 
and TAPs have to be manually created by the database 
administrator. Furthermore, TAPs like path indexes or CAS 
indexes can replace complete trees of SJ and HTJ operators 
and become—if available—first-class citizens for query 
evaluation. As maintenance and updates of TAPs can cause 
substantial overhead, they will only be created by the 
database administrator in rare cases, e.g., for frequently 
queried sub trees. [9] 

Table I. Comparison of Algorithms 

 
 

Table I.  Focuses and provides the different approaches 
and the baseline provided earlier to solve the problem of 
query optimization for XML databases. 

III. CONCLUSION  

Query optimization in the context of XML databases is 
extremely challenging. The main reason for this is the high 
complexity of the XML data model, as compared with other 

data models, e.g., relational models. This high complexity 
renders a much enlarged search space for XML query 
optimization. Furthermore, XML applications are typically 
Web-hooked and have many simultaneous, interactive users. 
This dynamic nature requires highly efficient XML query 
processing and optimization. The classical cost-based and 
heuristic-based approaches yield unacceptably low 
efficiency when applied to XML data—query optimization 
itself becomes very time-consuming because of the huge 
search space for optimization caused by the high complexity 
of the XML data model. Lots of work related to XML query 
processing has been done, but the majority is focused on 
investigation for efficient supporting algorithms and 
indexing schemes. Our approach of minimizing time to 
execute a query, will certainly add to the available solutions 
in the context of query optimization in XML databases. 
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