
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 710

ISSN No. 0976-5697

A Comparison of Scheduling Mechanisms in commercial Real-Time Operating Systems

Mir Ashfaque Ali
Department of Information Technology

Govt. Polytechnic
Amravati, India.

realtime.ali@gmail.com

Dr. S. A. Ladhake
Principal

Sipna’s College of Engg. & Technology
Amravati, India.

sladhake@yahoo.co.in

Abstract: A number of commercial real-time operating system are available. A real-time operating system (RTOS) supports real-time applications
and embedded systems. Real-time applications have the requirement to meet task deadlines in addition to the logical correctness of the results. This
paper focuses on pre-requisites for an RTOS to be POSIX compliant and discuss task scheduling in RTOSs. We survey the prominent commercial
RTOSs and present a comparison of their scheduling properties. We conclude by discussing the results of the comparison and suggest future research
directions in task scheduling in real-time operating systems.

Keywords: Task scheduling, real-time operating systems, commercial RTOS, POSIX.

I. INTRODUCTION

A real-time system is one whose correctness involves both
the logical correctness of the outputs and their timeliness [11].
A real-time system must satisfy bounded response-time
constraints; otherwise risk severe consequences, including
failure. Real-time systems are classified as hard, firm or soft
systems. In hard real-time systems, failure to meet response-
time constraints leads to system failure. Firm real-time systems
are those systems with hard deadlines, but where a certain low
probability of missing a deadline can be tolerated. Systems in
which performance is degraded but not destroyed by failure to
meet response-time constraints are called soft real-time
systems. A real-time system is called an embedded system
when the software system is encapsulated by the hardware it
controls. The microprocessor system used to control the
various operations of many automobiles is an example of a
real-time embedded system. An RTOS differs from common
OS, in that the user when using the former has the ability to
directly access the microprocessor and peripherals. Such an
ability of the RTOS helps to meet deadlines.

II. RTOS FEATURES

The kernel is the core of the OS that provides task
scheduling, task dispatching and inter-task communication. In
embedded systems, the kernel can serve as an RTOS while
commercial

RTOSs like those used for air-traffic control systems
require all of the functionalities of a general purpose OS. The
desirable features of an RTOS include the ability to schedule
tasks and meet deadlines, ease of incorporating external
hardware, recovery from errors, fast switching among tasks and
small size and small overheads. In this section we discuss the
basic requirements of an RTOS and the POSIX standards for
an RTOS.

A. Basic Requirements of RTOS:
The following are the basic requirements of an RTOS.

a. Multi-threading and preemptibility:
To support multiple tasks in real-time applications, an

RTOS must be multi-threaded and preemptable. The scheduler
should be able to preempt any thread in the system and give the
resource to the thread that needs it most. An RTOS should also
handle multiple levels of interrupts i.e., the RTOS should not
only be preemptible at thread level, but at the interrupt level as
well.

b. Task priority:
In order to achieve preemption, an RTOS should be able to

determine which task needs a resource the most, i.e., the task
with the earliest deadline to meet. Ideally, this should be done
at run-time. However, in reality, such a deadline-driven OS
does not exist. To handle deadlines, each task is assigned a
priority level. Deadline information is converted to priority
levels and the OS allocates resources according to the priority
levels of tasks. Although the approach of resource allocation
among competing tasks is prone to error, in absence of another
solution, the notion of priority levels is used in an RTOS.

c. Predictable task synchronization mechanisms:
For multiple tasks to communicate with each other, in a

timely fashion, predictable inter- task communication, and
synchronization mechanisms are required. The ability to
lock/unlock resources to achieve data integrity should also be
supported.

d. Priority inheritance:
When using priority scheduling, it is important that the

RTOS has a sufficient number of priority levels, so that
applications with stringent priority requirements can be
implemented [13].

Unbounded priority inversion occurs when a higher priority
task must wait on a low priority task to release a resource while
the low priority task is waiting for a medium priority task. The
RTOS can prevent priority inversion by giving the lower
priority task the same priority as the higher priority task that is
being blocked (called priority inheritance). In this case, the

Mir Ashfaque Ali et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,710-714

© 2010, IJARCS All Rights Reserved 711

blocking task can finish execution without being preempted by
a medium priority task. The designer must make sure that the
RTOS being used prevents unbounded priority inversion [10].

e. Predefined latencies
An OS that supports a real-time application needs to have

information about the timing of its system calls. The behavior
metrics to be specified are:

a) Task switching latency: Task or context-switching
latency is the time to save the context of a currently
executing task and switch to another task. It is
important that this latency be short.

b) Interrupt latency: This is the time elapsed between the
execution of the last instruction of the interrupted task
and the first instruction in the interrupt handler, or
simply the time from interrupt to task run [6]. This is a
metric of system response to an external event.

c) Interrupt dispatch latency: This is the time to go from
the last instruction in the interrupt handler to the next
task scheduled to run. This indicates the time needed to
go from interrupt level to task level.

B. POSIX compliance:
IEEE Portable Operating System Interface for Computer

Environments, POSIX 1003.1b provides the standard
compliance criteria for RTOS services and is designed to allow
application programmers to write applications that can easily
be ported across OSs. The basic RTOS services covered by
POSIX 1003.1b include:

a) Asynchronous I/O: The ability to overlap application
processing and application initiated I/O operations [8].

b) Synchronous I/O: The ability to assure return of the
interface procedure when the I/O operation is
completed [8].

c) Memory locking: The ability to guarantee memory
residence by storing sections of a process that were not
recently referenced on secondary memory devices [24].

d) Semaphores: The ability to synchronize resource
access by multiple processes [19].

e) Shared Memory: The ability to map common physical
space into independent process specific virtual space
[8].

f) Execution Scheduling: Ability to schedule multiple
tasks. Common scheduling methods include round
robin and priority-based preemptive scheduling.

g) Timers: Timers improve the functionality and
determinism of the system. A system should have at
least one clock device (system clock) to provide good
real-time services.
The system clock is called CLOCK_REALTIME when
the system supports Real-time POSIX [13].

h) Inter-process Communication (IPC): IPC is a
mechanism by which tasks share information needed
for a particular application. Common RTOS
communication methods include mailboxes and
queues.

i) Real-time files: The ability to create and access files
with deterministic performance.

j) Real-time threads: Real-time threads are schedulable
entities of a real-time application that have individual
timeliness constraints and may have collective
timeliness constraints when belonging to a runnable set
of threads [13].

III. SCHEDULING ALGORITHMS FOR RTOS

In this section, the various scheduling schemes adopted in
RTOSs is discussed. For small or static real-time systems, data
and task dependencies are limited and therefore the task
execution time can be estimated prior to execution and the
resulting task schedules can be determined off-line. Periodic
tasks typically arise from sensor data and control loops,
however sporadic tasks can arise from unexpected events
caused by the environment or by operator actions. A
scheduling algorithm in RTOS must schedule all periodic and
sporadic tasks such that their timing requirements are met.

The most commonly used static scheduling algorithm is the
Rate Monotonic (RM) scheduling algorithm of Liu and
Layland [12]. The RM algorithm assigns different priorities
proportional to the frequency of tasks. RM can schedule a set
of tasks to meet deadlines if total resource utilization is less
than 69.3%. If a successful schedule cannot be found using
RM, no other fixed priority scheduling system will avail. But
the RM algorithm provides no support for dynamically
changing task periods and/or priorities and tasks that may
experience priority inversion. Priority inversion occurs in an
RM system where in order to enforce rate-monotonicity, a non-
critical task with a high frequency of execution is assigned a
higher priority than a critical task with lower frequency of
execution. A priority ceiling protocol (PCP) can be used to
counter priority inversion, wherein a task blocking a higher
priority task inherits the higher priority for the duration of the
blocked task. Earliest deadline first (EDF) scheduling can be
used for both static and dynamic real-time scheduling. Its
complexity is O(n2), where n is the number of tasks, and the
upper bound of process utilization is 100% [11]. An extension
of EDF is the time-driven scheduler. This scheduler aborts new
tasks if the system is already overloaded and removes low-
priority tasks from the queue. A variant of EDF is Least Slack
Time (LST) scheduling where a laxity is assigned to each task
in the system and minimum laxity tasks are executed first. LST
considers the execution time of a task, which EDF does not.
Another variant of EDF is the Maximum

Urgency First (MUF) algorithm, where each task is given
an explicit description of urgency. The cyclic executive is used
in many large-scale dynamic real-time systems [3]. Here, tasks
are assigned to a set of harmonic periods. Within each period,
tasks are dispatched according to a table that lists the order to
execute tasks. No start times need be specified, but a prior
knowledge of the maximum requirements of tasks in each cycle
must be known.

One disadvantage of dynamic real-time scheduling
algorithms is that even though deadline failures can be easily
detected, a critical task set cannot be specified and hence there
is no way to specify tasks that are allowed to fail during a
transient overload.

Mir Ashfaque Ali et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,710-714

© 2010, IJARCS All Rights Reserved 712

IV. COMMON FEATURES OF COMMERCIAL
RTOSS

a. Speed and efficiency: Most RTOSs are microkernels
that have low overhead. In some, no context switch
overhead is incurred in sending a message to the
system service provider.

b. System calls: Certain portions of system calls are non-
preemptable for mutual exclusion. These parts are
highly optimized, made as short and deterministic as
possible.

c. Scheduling: For POSIX compliance, all RTOSs offer
at least 32 priority levels. Many offer 128 or 256 while
others offer even 512 priority levels.

d. Priority inversion control: Many operating systems
support resource access control schemes that do not
need priority inheritance. This avoids the overhead of
priority inheritance.

e. Memory management: Support for virtual memory
management exists but not necessarily paging. The
users are offered choices among multiple levels of
memory protection.

V. GENERAL PURPOSE RTOS IN EMBEDDED
INDUSTRY

This section focuses on VxWorks [25], the most widely
adopted RTOS in the embedded industry. It is the fundamental
run-time component of Tornado II, a visual, automated and
integrated development environment for embedded systems.
VxWorks is a flexible, scalable RTOS with over 1800 APIs

and is available on all popular CPU platforms. It comprises the
core capabilities of network support, file system, I/O
management, and other standard run-time support. The micro
kernel supports a full-range of real-time features including 256
priority levels, multitasking, deterministic context switching
and preemptive and round robin scheduling. Binary and
counting semaphores and mutual exclusion with inheritance are
used for controlling critical system resources. VxWorks is
designed for scalability, which enables developers to allocate
scarce memory resources to their application rather than to the
OS. Portability requires a distinct separation of low-level
hardware dependent code from high-level application or OS
code. A Board Support Package (BSP) represents the
hardware-dependent layer. A BSP is required for any target
board that executes VxWorks. TCP, UDP, sockets and standard
Berkeley network services can all be scaled in or out of the
networking stack as necessary. VxWorks supports ATM,
SMDS, frame relay, ISDN, IPX/ SPX, AppleTalk, RMON,
web-based solutions for distributed network management and
CORBA for distributed computing environments. VxWorks
[25] supports virtual memory configuration. It is possible to
choose to have only virtual address mapping, to have text
segments and exception vector tables write protected, and to
give each task a private virtual memory upon request.

VI. COMPARISON OF COMMERCIAL RTOS

The following table lists the most widely used commercial
RTOSs and their main features with respect to the five basic
requirements of an RTOS as explained above:

Table: 1

RTOS, Vendor Scheduling Task priority
levels

Task Synchronization
mechanisms

Priority inversion
Prevention provided

AMX
KADAK Products Ltd.

Preemptive
 N/A

Mailbox or Message exchange
manager; wait-wake requests

Yes

C Executive
JMI Software
Systems

Prioritized FIFO,
time slicing 32

64 system calls; Messages, dynamic
data queues Yes

CORTEX
Australian
Real-time
Embedded Systems.

Prioritized
FIFO, prioritized
Round robin,
Time slicing

62

Recursive
Resource locks, mutexes, monitors
and counting semaphores

Yes, uses
Priority ceiling

Delta OS
CoreTek Systems

Prioritized
Round robin 256

Semaphores, timers and message
queues Yes

ECos
RedHat, Inc.

Prioritized
FIFO,
Bitmap

1 to 32
Rich set of synchronous
Primitives including timer and
counters

Yes, uses
Priority ceiling

embOS
SEGGER
MicrocontrollerSyst

Prioritized
Round robin 255

Mailbox, binary
and counting semaphore No

eRTOS
JK Microsystems,Inc.

Prioritized
Round robin 256

Inter-thread Messaging (messages
and queues), semaphores No

INTEGRITY
Green Hills
Software, Inc.

Prioritized
Round robin,
ARINC
653

255, but
configur
able

Semaphores; break points can be
placed any where in the system
including ISRs.

Yes, using
mutex, highest
locker semaphore

IRIX
SGI

Prioritized
FIFO,
Round robin

255
Message queues

Yes

Nuclear Plus
Accelerated
Technology, Inc.

Prioritized
FIFO N/A

Mailboxes, pipes and queues can be
created dynamically as required Yes

Mir Ashfaque Ali et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,710-714

© 2010, IJARCS All Rights Reserved 713

OS-9
Microware Systems
Corpn.

Prioritized
64K

Uses Active Queue, Event,
Semaphore, Wait and Sleep Queue Yes

OSE
OSESystem

Prioritized
FIFO 32

Message-based
Architecture Yes

RT-Linux
Finite State
Machine Labs

Prioritized
FIFO, uses
an
Extensible
scheduler

1K

Real-time tasks in RT Linux can
Communicate with Linux processes
via either shared memory or
through a file like interface.

Yes, uses lock free data structures
and priority ceiling

ThreadX
 Express Logic Inc.

Prioritized
FIFO,
Preemption
-Threshold 32

Event flags,
Mutexes, couting
Semaphores and message services

Yes, using
Preemption
-threshold
(Disables Preemption over ranges of
priorities instead of disabling
preemption of entire system)
and priority inheritance

QNX Neutrino
QNX Software
Systems Ltd.

Prioritized
FIFO,prioritized
Round robin

64
Message-based
Architecture

Yes, using Message based priority
inheritance

VII. CONCLUSION

 Although a variety of commercial real-time operating
systems are available in the market, selection of a particular
RTOS is crucial for a specific application. In this paper, a
review of the basic requirements of an RTOS including the
POSIX 1003.1b features is discussed. Use of RTOS is
beneficial in most real-time embedded design projects as it
provides a deterministic framework for code development and
portability. To meet the needs of commercial multimedia
applications, low code size and high peripheral integration is
needed. RTOSs should be API compatible. Code reuse
considerations are also important.

VIII. REFERENCES

[1]. S.R.Ball, Embedded Microprocessor Systems, Second
edition, Butterworth-Heinemann, 2000.

[2]. M.Bunnell, “Galaxy White Paper,”
http://www.lynx.com/lynx_directory/galaxy/galwhite.h
tml

[3]. G.D.Carlow, “Architecture of the Space Shuttle
Primary Avionics Software System,” CACM, v 27, n
9, 1984.

[4]. CompactNET, http://www.compactnet.com.
[5]. H.Gomaa, Software Design Methods for Concurrent

and Real-time Systems, First edition, Addison-Wesley,
1993.

[6]. S.Heath, Embedded Systems Design, First edition,
Butterworth-Heinemann, 1997.

[7]. http://www.rtos4voip.com/index.html
[8]. IEEE. Information technology--Portable Operating

System Interface (POSIX)-Part1: System Application:
Program Interface (API) C Language, ANSI/IEEE Std
1003.1, 1996 Edition.

[9]. Jbed RTOS, http://www.esmertec.com
[10]. E.Klein, “RTOS Design: How is Your Application

Affected?,” Embedded Systems Conference, 2001.

[11]. P.A.Laplante, Real-Time Systems Design and
Analysis: An Engineer’s Handbook, Second edition,
IEEE Press, 1997.

[12]. C.L.Liu and J.W.Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-time Environment,”
Journal of the ACM, v 20, n 1, pp. 46-61, 1973.

[13]. Jane.W.S.Liu, Real-time Systems, Prentice Hall, 2000.
[14]. LynxOS, http://www.lynuxworks.com
[15]. Microsoft Windows NT workstation resource kit.
[16]. C.Muench and R.Kath, The Windows CE Technology

Tutorial: Windows Powered Solutions for the
Developer, First edition, Addison-Wesley, 2000.

[17]. Rainfinity: http://www.rainfinity.com/index.html
[18]. H.Y.Seo, and J.Park. “ARX/ULTRA: A new real-time

kernel architecture for supporting user-level threads,”
Technical Report SNU-EE-TR1997-3, School of
Electrical Engineering, Seoul National University,
1997.

[19]. A.Silberschatz, P.B.Galvin and G.Gagne, Operating
Systems Concepts, Sixth edition, John Wiley,
2001.W.Stallings, Operating Systems: Internals and
Design Principles, Third edition, Prentice-Hall, 1997.

[20]. J.A.Stankovic and K.Ramamritham, “The Spring
Kernel: A New Paradigm for Hard Realtime Operating
Systems,” ACM Operating Systems Review, v 23, n 3,
pp. 54-71, 1989.

[21]. M.Stokely and N.Clayton, FreeBSD Handbook, Second
edition, Wind River Systems, 2001.

[22]. M.Teo, “A Preliminary Look at Spring and POSIX 4,”
Spring Internal Document, 1995.

[23]. The Open Group, http://www.opengroup.org/
[24]. VxWorks, http://www.windriver.com
[25]. C.Walls, “RTOS for Microcontroller Applications,”

Electronic Engineering, v 68, n 831, pp. 57-61, 1996.

Mir Ashfaque Ali et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,710-714

© 2010, IJARCS All Rights Reserved 714

[26]. K.M.Zuberi and K.G.Shin, “EMERALDS:A
Microkernel for Embedded Real-Time Systems,”
Proceedings of RTAS, pp.241-249, 1996.

[27]. Baskiyar and N. Meghanathan, “A Survey of
Contemporary Real-Time Operating Systems,”
Informatica pp. 233–240, 2005.

	INTRODUCTION
	RTOS FEATURES
	Basic Requirements of RTOS:
	Multi-threading and preemptibility:
	Task priority:
	Predictable task synchronization mechanisms:
	Priority inheritance:
	Predefined latencies

	POSIX compliance:

	SCHEDULING ALGORITHMS FOR RTOS
	COMMON FEATURES OF COMMERCIAL RTOSS
	GENERAL PURPOSE RTOS IN EMBEDDED INDUSTRY
	COMPARISON OF COMMERCIAL RTOS
	CONCLUSION
	REFERENCES

