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Abstract: A number of commercial real-time operating system are available. A real-time operating system (RTOS) supports real-time applications 
and embedded systems. Real-time applications have the requirement to meet task deadlines in addition to the logical correctness of the results. This 
paper focuses on pre-requisites for an RTOS to be POSIX compliant and discuss task scheduling in RTOSs. We survey the prominent commercial 
RTOSs and present a comparison of their scheduling properties. We conclude by discussing the results of the comparison and suggest future research 
directions in task scheduling in real-time operating systems. 
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I. INTRODUCTION 

A real-time system is one whose correctness involves both 
the logical correctness of the outputs and their timeliness [11]. 
A real-time system must satisfy bounded response-time 
constraints; otherwise risk severe consequences, including 
failure. Real-time systems are classified as hard, firm or soft 
systems. In hard real-time systems, failure to meet response-
time constraints leads to system failure. Firm real-time systems 
are those systems with hard deadlines, but where a certain low 
probability of missing a deadline can be tolerated. Systems in 
which performance is degraded but not destroyed by failure to 
meet response-time constraints are called soft real-time 
systems. A real-time system is called an embedded system 
when the software system is encapsulated by the hardware it 
controls. The microprocessor system used to control the 
various operations of many automobiles is an example of a 
real-time embedded system. An RTOS differs from common 
OS, in that the user when using the former has the ability to 
directly access the microprocessor and peripherals. Such an 
ability of the RTOS helps to meet deadlines. 

II. RTOS FEATURES 

The kernel is the core of the OS that provides task 
scheduling, task dispatching and inter-task communication. In 
embedded systems, the kernel can serve as an RTOS while 
commercial 

RTOSs like those used for air-traffic control systems 
require all of the functionalities of a general purpose OS. The 
desirable features of an RTOS include the ability to schedule 
tasks and meet deadlines, ease of incorporating external 
hardware, recovery from errors, fast switching among tasks and 
small size and small overheads. In this section we discuss the 
basic requirements of an RTOS and the POSIX standards for 
an RTOS. 

A. Basic Requirements of RTOS:   
The following are the basic requirements of an RTOS. 

a. Multi-threading and preemptibility: 
To support multiple tasks in real-time applications, an 

RTOS must be multi-threaded and preemptable. The scheduler 
should be able to preempt any thread in the system and give the 
resource to the thread that needs it most. An RTOS should also 
handle multiple levels of interrupts i.e., the RTOS should not 
only be preemptible at thread level, but at the interrupt level as 
well. 

b. Task priority: 
In order to achieve preemption, an RTOS should be able to 

determine which task needs a resource the most, i.e., the task 
with the earliest deadline to meet. Ideally, this should be done 
at run-time. However, in reality, such a deadline-driven OS 
does not exist. To handle deadlines, each task is assigned a 
priority level. Deadline information is converted to priority 
levels and the OS allocates resources according to the priority 
levels of tasks. Although the approach of resource allocation 
among competing tasks is prone to error, in absence of another 
solution, the notion of priority levels is used in an RTOS. 

c. Predictable task synchronization mechanisms: 
For multiple tasks to communicate with each other, in a 

timely fashion, predictable inter- task communication, and 
synchronization mechanisms are required. The ability to 
lock/unlock resources to achieve data integrity should also be 
supported. 

d. Priority inheritance: 
When using priority scheduling, it is important that the 

RTOS has a sufficient number of priority levels, so that 
applications with stringent priority requirements can be 
implemented [13]. 

Unbounded priority inversion occurs when a higher priority 
task must wait on a low priority task to release a resource while 
the low priority task is waiting for a medium priority task. The 
RTOS can prevent priority inversion by giving the lower 
priority task the same priority as the higher priority task that is 
being blocked (called priority inheritance). In this case, the 



Mir Ashfaque Ali et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,710-714 

© 2010, IJARCS All Rights Reserved                                                                                                                                               711 

blocking task can finish execution without being preempted by 
a medium priority task. The designer must make sure that the 
RTOS being used prevents unbounded priority inversion [10]. 

e. Predefined latencies 
An OS that supports a real-time application needs to have 

information about the timing of its system calls. The behavior 
metrics to be specified are: 

a) Task switching latency: Task or context-switching 
latency is the time to save the context of a currently 
executing task and switch to another task. It is 
important that this latency be short. 

b) Interrupt latency: This is the time elapsed between the 
execution of the last instruction of the interrupted task 
and the first instruction in the interrupt handler, or 
simply the time from interrupt to task run [6]. This is a 
metric of system response to an external event. 

c) Interrupt dispatch latency: This is the time to go from 
the last instruction in the interrupt handler to the next 
task scheduled to run. This indicates the time needed to 
go from interrupt level to task level. 

B. POSIX compliance: 
IEEE Portable Operating System Interface for Computer 

Environments, POSIX 1003.1b provides the standard 
compliance criteria for RTOS services and is designed to allow 
application programmers to write applications that can easily 
be ported across OSs. The basic RTOS services covered by 
POSIX 1003.1b include: 

a) Asynchronous I/O: The ability to overlap application 
processing and application initiated I/O operations [8]. 

b) Synchronous I/O: The ability to assure return of the 
interface procedure when the I/O operation is 
completed [8]. 

c) Memory locking: The ability to guarantee memory 
residence by storing sections of a process that were not 
recently referenced on secondary memory devices [24]. 

d) Semaphores: The ability to synchronize resource 
access by multiple processes [19]. 

e) Shared Memory: The ability to map common physical 
space into independent process specific virtual space 
[8]. 

f) Execution Scheduling: Ability to schedule multiple 
tasks. Common scheduling methods include round 
robin and priority-based preemptive scheduling. 

g) Timers: Timers improve the functionality and 
determinism of the system. A system should have at 
least one clock device (system clock) to provide good 
real-time services. 
The system clock is called CLOCK_REALTIME when 
the system supports Real-time POSIX [13]. 

h) Inter-process Communication (IPC): IPC is a 
mechanism by which tasks share information needed 
for a particular application. Common RTOS 
communication methods include mailboxes and 
queues. 

i) Real-time files: The ability to create and access files 
with deterministic performance. 

j) Real-time threads: Real-time threads are schedulable 
entities of a real-time application that have individual 
timeliness constraints and may have collective 
timeliness constraints when belonging to a runnable set 
of threads [13]. 

III. SCHEDULING ALGORITHMS FOR RTOS 

In this section, the various scheduling schemes adopted in 
RTOSs is discussed. For small or static real-time systems, data 
and task dependencies are limited and therefore the task 
execution time can be estimated prior to execution and the 
resulting task schedules can be determined off-line. Periodic 
tasks typically arise from sensor data and control loops, 
however sporadic tasks can arise from unexpected events 
caused by the environment or by operator actions. A 
scheduling algorithm in RTOS must schedule all periodic and 
sporadic tasks such that their timing requirements are met. 

The most commonly used static scheduling algorithm is the 
Rate Monotonic (RM) scheduling algorithm of Liu and 
Layland [12]. The RM algorithm assigns different priorities 
proportional to the frequency of tasks. RM can schedule a set 
of tasks to meet deadlines if total resource utilization is less 
than 69.3%. If a successful schedule cannot be found using 
RM, no other fixed priority scheduling system will avail. But 
the RM algorithm provides no support for dynamically 
changing task periods and/or priorities and tasks that may 
experience priority inversion. Priority inversion occurs in an 
RM system where in order to enforce rate-monotonicity, a non-
critical task with a high frequency of execution is assigned a 
higher priority than a critical task with lower frequency of 
execution. A priority ceiling protocol (PCP) can be used to 
counter priority inversion, wherein a task blocking a higher 
priority task inherits the higher priority for the duration of the 
blocked task. Earliest deadline first (EDF) scheduling can be 
used for both static and dynamic real-time scheduling. Its 
complexity is O(n2), where n is the number of tasks, and the 
upper bound of process utilization is 100% [11]. An extension 
of EDF is the time-driven scheduler. This scheduler aborts new 
tasks if the system is already overloaded and removes low-
priority tasks from the queue. A variant of EDF is Least Slack 
Time (LST) scheduling where a laxity is assigned to each task 
in the system and minimum laxity tasks are executed first. LST 
considers the execution time of a task, which EDF does not. 
Another variant of EDF is the Maximum 

Urgency First (MUF) algorithm, where each task is given 
an explicit description of urgency. The cyclic executive is used 
in many large-scale dynamic real-time systems [3]. Here, tasks 
are assigned to a set of harmonic periods. Within each period, 
tasks are dispatched according to a table that lists the order to 
execute tasks. No start times need be specified, but a prior 
knowledge of the maximum requirements of tasks in each cycle 
must be known. 

One disadvantage of dynamic real-time scheduling 
algorithms is that even though deadline failures can be easily 
detected, a critical task set cannot be specified and hence there 
is no way to specify tasks that are allowed to fail during a 
transient overload. 
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IV. COMMON FEATURES OF COMMERCIAL 
RTOSS 

a. Speed and efficiency: Most RTOSs are microkernels 
that have low overhead. In some, no context switch 
overhead is incurred in sending a message to the 
system service provider. 

b. System calls: Certain portions of system calls are non-
preemptable for mutual exclusion. These parts are 
highly optimized, made as short and deterministic as 
possible. 

c. Scheduling: For POSIX compliance, all RTOSs offer 
at least 32 priority levels. Many offer 128 or 256 while 
others offer even 512 priority levels. 

d. Priority inversion control: Many operating systems 
support resource access control schemes that do not 
need priority inheritance. This avoids the overhead of 
priority inheritance. 

e. Memory management: Support for virtual memory 
management exists but not necessarily paging. The 
users are offered choices among multiple levels of 
memory protection. 

V. GENERAL PURPOSE RTOS IN EMBEDDED 
INDUSTRY 

This section focuses on VxWorks [25], the most widely 
adopted RTOS in the embedded industry. It is the fundamental 
run-time component of Tornado II, a visual, automated and 
integrated development environment for embedded systems. 
VxWorks is a flexible, scalable RTOS with over 1800 APIs 

and is available on all popular CPU platforms. It comprises the 
core capabilities of network support, file system, I/O 
management, and other standard run-time support. The micro 
kernel supports a full-range of real-time features including 256 
priority levels, multitasking, deterministic context switching 
and preemptive and round robin scheduling. Binary and 
counting semaphores and mutual exclusion with inheritance are 
used for controlling critical system resources. VxWorks is 
designed for scalability, which enables developers to allocate 
scarce memory resources to their application rather than to the 
OS. Portability requires a distinct separation of low-level 
hardware dependent code from high-level application or OS 
code. A Board Support Package (BSP) represents the 
hardware-dependent layer. A BSP is required for any target 
board that executes VxWorks. TCP, UDP, sockets and standard 
Berkeley network services can all be scaled in or out of the 
networking stack as necessary. VxWorks supports ATM, 
SMDS, frame relay, ISDN, IPX/ SPX, AppleTalk, RMON, 
web-based solutions for distributed network management and 
CORBA for distributed computing environments. VxWorks 
[25] supports virtual memory configuration. It is possible to 
choose to have only virtual address mapping, to have text 
segments and exception vector tables write protected, and to 
give each task a private virtual memory upon request. 

VI. COMPARISON OF COMMERCIAL RTOS 

The following table lists the most widely used commercial 
RTOSs and their main features with respect to the five basic 
requirements of an RTOS as explained above:

 
Table: 1 

RTOS, Vendor Scheduling Task priority 
levels 

Task Synchronization 
mechanisms 

Priority inversion 
Prevention provided 

AMX 
KADAK Products Ltd. 

Preemptive  
 N/A 

Mailbox or Message exchange 
manager; wait-wake requests 

Yes 
 

C Executive 
JMI Software 
Systems 

Prioritized FIFO, 
time slicing 32 

64 system calls; Messages, dynamic 
data queues  Yes 

CORTEX 
Australian 
Real-time 
Embedded Systems. 

Prioritized 
FIFO, prioritized 
Round robin, 
Time slicing 

62 

Recursive 
Resource locks, mutexes, monitors 
and counting semaphores 

Yes, uses 
Priority ceiling 

Delta OS 
CoreTek Systems 

Prioritized 
Round robin 256 

Semaphores, timers and message 
queues Yes 

ECos 
RedHat, Inc. 

Prioritized 
FIFO, 
Bitmap 

1 to 32 
Rich set of synchronous 
Primitives including timer and 
counters 

Yes, uses 
Priority ceiling 
 

embOS 
SEGGER 
MicrocontrollerSyst 

Prioritized 
Round robin 255 

Mailbox, binary 
and counting semaphore No 

eRTOS 
JK Microsystems,Inc. 

Prioritized 
Round robin 256 

Inter-thread Messaging (messages 
and queues), semaphores No 

INTEGRITY 
Green Hills 
Software, Inc. 

Prioritized 
Round robin, 
ARINC 
653 

255, but 
configur 
able 

Semaphores; break points can be 
placed any where in the system 
including ISRs. 

Yes, using 
mutex, highest 
locker semaphore 

IRIX 
SGI 

Prioritized 
FIFO, 
Round robin 

255 
Message queues 

Yes 

Nuclear Plus 
Accelerated 
Technology, Inc. 

Prioritized 
FIFO N/A 

Mailboxes, pipes and queues can be 
created dynamically as required Yes 
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OS-9 
Microware Systems 
Corpn. 

Prioritized 
64K 

Uses Active Queue, Event, 
Semaphore, Wait and Sleep Queue Yes 

OSE 
OSESystem 

Prioritized 
FIFO 32 

Message-based 
Architecture Yes 

RT-Linux 
Finite State 
Machine Labs 

Prioritized 
FIFO, uses 
an 
Extensible 
scheduler 

1K 

Real-time tasks in RT Linux can 
Communicate with Linux processes 
via either shared memory or 
through a file like interface. 

Yes, uses lock free data structures 
and priority ceiling 

ThreadX 
 Express Logic Inc. 

Prioritized 
FIFO, 
Preemption 
-Threshold 32 

Event flags, 
Mutexes, couting 
Semaphores and message services 

Yes, using 
Preemption 
-threshold 
(Disables Preemption over ranges of 
priorities instead of disabling 
preemption of entire system) 
and priority inheritance 

QNX Neutrino 
QNX Software 
Systems Ltd. 

Prioritized 
FIFO,prioritized 
Round robin 

64 
Message-based 
Architecture 

Yes, using Message based priority 
inheritance 

 

VII. CONCLUSION 

 Although a variety of commercial real-time operating 
systems are available in the market, selection of a particular 
RTOS is crucial for a specific application. In this paper, a 
review of the basic requirements of an RTOS including the 
POSIX 1003.1b features is discussed. Use of RTOS is 
beneficial in most real-time embedded design projects as it 
provides a deterministic framework for code development and 
portability. To meet the needs of commercial multimedia 
applications, low code size and high peripheral integration is 
needed. RTOSs should be API compatible. Code reuse 
considerations are also important. 
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