
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 693

ISSN No. 0976-5697

Business Rules in DBMS

Abhijeet Raipurkar*
Computer Science & Engineering Department

PRMIT&R Badnera,India
abhi741@gmail.com

Gajanan Deokate
Computer Science & Engineering Department

PRMIT&R Badnera,India
deokate_gajanan@rediffmail.com

Abstract: Business rule is very important to the modeling and definition of information systems. Business rules are implemented as triggers in
relational databases. The rule expresses a policy that how organization carries out a task. Business rules represent information about real world and
database is collection of related information. Also people are interested in the set of rules that determines operation of business. Data models in
DBMS give the structure of data; business rules are sometimes used to tell how the data can and should be used. There are various types data models
supported in DBMS like network model, Hierarchical model and relational model. There are various business rules in DBMS like domain rules,
integrity rules and triggering operations. In relational database business rules can be implemented with the help of checks, assertions and triggers.
Eliciting, expressing, and capturing business rules is most important in DBMS which makes live databases more strong.

Keywords: Network model, Hierarchical Model, Trigger, Assertion, Domain rule, Integrity Rule

I. BACKGROUND OF PRESENT SYSTEM

The term business rule is an informal, intuitive one. It is
used with different (but overlapping) meanings in different
contexts. GUIDE (2000) defined business rule as follows:
“A business rule is a statement that defines or constrains
some aspect of the business. It is intended to assert business
structure or to control or influence the behavior of the
business.” Thus, the rule expresses a policy (explicitly stated
or implicitly followed) about some aspect of how the
organization carries out its tasks [1]. This definition is very
open and includes things outside the realm of information
systems (e.g., a policy on smoking). a business rule in this
sense usually specifies issues concerning some particular
data item (e.g., what fact it is supposed to express, the way it
is handled, its relationship to other data items).

In any case, the business rule represents information
about the real world, and that information makes sense from
a business point of view. That is, people are interested in
“the set of rules that determine how a business operates”.
Note that while data models give the structure of data,
business rules are sometimes used to tell how the data can
and should be used. That is, the data model tends to be
static, and rules tend to be dynamic [2]. Business rules are
very versatile; they allow expression of many different types
of actions to be taken. Because some types of actions are
very frequent and make sense in many environments, they
are routinely expressed in rules.

II. INTRODUCTION

Though informal, the concept of business rule is very
important to the modeling and definition of information
systems. Business rules are used to express many different
aspects of the representation, manipulation and processing
of data. However, perhaps due to its informal nature,
business rules have been the subject of a limited body of
research in academia.

There is little agreement on the exact definition of

business rule, on how to capture business rules in
requirements specification (the most common conceptual
models, entity relationship and UML [3], have no proviso
for capturing business rules), and, if captured at all, on how
to express rules in database systems. Usually, business rules
[1] are implemented as triggers in relational databases.
However, the concept of business rule is more versatile and
may require the use of other tools.

III. TYPES OF BUSINESS RULES IN DBMS

Domain Rules:
Rules that constrain the values that an attribute may

take. Note that domain rules, although seemingly trivial, are
extremely important. Domain rules allows

a. Verification that values for an attribute make
“business sense”

b. Decision about whether two occurrences of the
same value in different attributes denote the same
real-world value

c. Decision about whether comparison of two values
makes sense for joins and other operations.

For instance, EMPLOYEE.AGE and PAYROLL.
CLERK-NUMBER may both be integer but they are
unrelated. However, EMPLOYEE.HIRE-DATE and
PAYROLL. DATEPAID are both dates and can be
compared to make sure employees do not receive checks
prior to their hire date.

A. Integrity Rules:
Rules that bind together the existence or nonexistence of

values in attributes. This comes down to the normal
referential integrity of the relational model and specification
of primary keys and foreign keys.

Abhijeet Raipurkar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,693-696

© 2010, IJARCS All Rights Reserved 694

B. Triggering Operations:
Rules that govern the effects of insert, delete, update

operations in different attributes or different entities. This
division is tightly tied to the relational data model, which
limits its utility in a general setting.

C. Structural Assertions:
Something relevant to the business exists or is in relation

to something else. Usually expressed by terms in a language,
they refer to facts (things that are known, or how known
things relate to each other). A term is a phrase that
references a specific business concept. Business terms are
independent of representation; however, the same term may
have different meanings in different contexts (e.g., different
industries, organizations, line of business). Facts, on the
other hand, state relationships between concepts or attributes
(properties) of a concept

(Attribute facts), specify that an object falls within the
scope of another concept (generalization facts), or describe
an interaction between concepts (participation facts). Facts
should be built from the available terms. There are two main
types of structural assertions:

a. Definition of business terms:
The terms appearing on a rule are common terms and

business terms. The most important difference between the
two is that a business term can be defined using facts and
other terms, and the common term can be considered
understood. Hence, a business rule captures the business
term’s specific meaning of a context.

b. Facts relating term to each other:
Facts are relationships among terms; some of the

relationships among terms expressed are (a) being an
attribute of, (b) being a subterm of, (c) being an aggregation
of, (d) playing the role of, or (e) a having a semantic
relationship. Terms may appear in more than one fact; they
play a role in each fact.

c. Constraints (also called action assertions):
Constraints are used to express dynamic aspects.

Because they impose constraints, they usually involve
directives such as “must (not)” or “should (not).” An action
assertion has an anchor object (which may be any business
rule), of which it is a property. They may express
conditions, integrity constraints, or authorizations.

d. Derivations:
Derivations express procedures to compute or infer new

facts from known facts. They can express either a
mathematical calculation or a logical derivation. There are
other classifications of business rules [3], but the ones
shown give a good idea of the general flavor of such
classifications.

IV. BUSINESS RULES AND DATA MODELS

There are two main problems in capturing and
expressing business rules in database systems. First, most
conceptual models do not have means to capture many of

them. Second, even if they are somehow captured and given
to a database designer, most data models are simply not able
to handle business rules. Both problems are discussed in the
following sections. Focusing on the relational model, it is
clear that domain constraints and referential integrity
constraints can be expressed in the model. However, other
rules (expressing actions, etc.) are highly problematic. The
tools that the relational model offers for the task are checks,
assertions, and triggers.

V. BUSINESS RULES IN DBMS

Checks are constraints over a single attribute on a table.
Checks are written by giving a condition, which is similar to
a condition in a WHERE clause of an SQL query.

As such, the mechanism is very powerful, as the
condition can contain subqueries and therefore mention
other attributes in the same or different tables. However, not
all systems fully implement the CHECK mechanism; many
limit the condition to refer only to the table in which the
attribute resides. Checks are normally used in the context of
domains (Melton and Simon, 2002); in this context, a check
is used to constrain the values of an attribute.
For instance,
CREATE DOMAIN age int CHECK (Value >= 18 and
Value <= 65) Creates a domain named age, expressed as an
integer; only values between 18 and 65 are allowed. Checks
can be used inside a CREATE TABLE statement, too.
Checks are tested by the system when a tuple is inserted into
a table (if the check was given within a CREATE TABLE
Statement, or if the check was given within a CREATE
DOMAIN and the table schema uses the domain), or when a
tuple is updated in the table. If the condition in the check is
not satisfied, the insertion or update is rejected. However, it
is very important to realize that when check conditions
involve attributes in other tables, changes to those attributes
do not make the system test the check; therefore, such
checks can be violated. For instance, the following
declaration
CREATE TABLE dept (
Dno int,
Mgrname VARCHAR(50),
Check (Mgrname NOT IN (Select name from employee
where salary < 50,000)) would block insertions into table
dept (or updates of existing tuples) if someone introduced in
the tuple a manager that made less than 50,000. However, if
someone updated the table emp to change a manager’s
salary to less than 50,000, the update would not be rejected.

Assertions are constraints associated with a table as a
whole or with two or more tables. Like checks, assertions
use conditions similar to conditions in WHERE clauses; but
the condition may now refer to several existing tables in the
database. Note that, unlike checks, which are associated
with domains or attributes in tables, assertions exist at the
database level and are independent of any table. Assertions
are checked by the system whenever there is an insertion or
update in any of the tables mentioned in the condition. Any
transaction must keep the assertion true; otherwise, it is
rejected. This makes assertions quite powerful;

Abhijeet Raipurkar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,

© 2010, IJARCS All Rights Reserved 695

unfortunately, assertions are not fully or partially supported
by many commercial systems. Triggers are expressions of
the form E-C-A, where E is called an event, C is called a
condition, and A is called an action. An event is an
occurrence of a situation. An event is instantaneous and
atomic (i.e., it cannot be further subdivided, and it happens
at once or does not happen at all). The typical events
considered by active rules are primitive for database state
changes (e.g., an insert, delete, or update). A condition is a
database predicate; the result of such a condition is a
Boolean (TRUE/FALSE). Action is a data manipulation
program, including insertions, deletions, updates,
transactional commands, or external procedures. In order to
allow the action to process data according to the event,most
systems use the variables OLD and NEW to refer to data in
the database before and after the event takes place. If a row
is updated, both OLD and NEW variables have values. If a
row is inserted, then only the NEW variable has a value; if a
row is deleted, then only the OLD variable has a value. As a
final note, it is necessary to point out that many database
developers avoid the use of triggers, if at all possible, for
two main reasons: (a) most trigger systems add considerable
overhead, and (b) triggers bring in issues of complexity
usually associated with programming (i.e., it is hard to
ensure that the right semantics are being implemented).
However, triggers are very powerful tools and sometimes
have no substitute to express business logic.

VI. CAPTURING BUSINESS RULES

A. Eliciting and Representing Business Rules in
Conceptual Models:

Because business rules sometimes represent an implicit
type of knowledge, elicitation of business rules share
problems and challenges with knowledge elicitation in
general. In particular, complex managerial and
organizational issues must be addressed; at the minimum, a
managerial action must be taken that encourages the sharing
of knowledge by human agents. I will not address elicitation
issues here, as they are outside the scope of this article.

Clearly, business rules should be captured in the
requirement specification phase of a software project. It is
during this phase that real-world information is analyzed
and modeled and the scope of the system decided .
However, there is no single technique that will guarantee
capturing all business rules that an organization may need.

B. Expressing Business Rules in Data Models:
Even if business rules are somehow captured at

requirement specification time, the current process for
implementing, business rules (usually, to give some
specification to a programmer so that an application can be
written enforcing the rules) has several drawbacks: The
process of creating and codifying a rule is long, labor-
intensive, and involves several groups of people, creating a
risk for miscommunication; assessing impact of rules (the
quality and adequacy of the data produced by its
application) is extremely difficult; and changing the rules is
extremely difficult. To decide how to express a given

business rule, the most promising approach is to classify the
rule according to some characteristic that will allow one to
determine an efficient implementation.

There are some obvious options, such as classifying
rules as static or dynamic or classifying rules according to
the data they affect. The first classification makes sense
because some rules are more intimately bound to change
than others. For instance, a rule stating that salary increases
for employees cannot exceed 10% is clearly dependent on a
change. Therefore, I define dynamic rules as those that are
directly related to change, and static rules as those that are
not. Even though this definition is somewhat ambiguous, it
can be made more precise with a test. To specify the rule, is
there a need to refer to the before and-after of a certain
action? If one applies the test to the examples, the rule about
employees’ salaries not being higher than the managers can
be seen as static, while the rules about employees salaries
not increasing by more than 10% can be seen as dynamic.
As for classifying rules according to the data they affect, to
make such a distinction meaningful in the context of a
database the classification must be based on the conceptual
model used to design the database, one can then talk about
rules affecting a single attribute, several attributes within a
single entity, several attributes in several entities, and
relationships, which implicitly means the related entities.

VII. IMPLEMENTING BUSINESS RULES IN
DBMS

A. Rules that affect a single Attribute:
These rules should be implemented with a check. As an

example, consider the previous rule about employees’ ages.
Implementing such rules as checks is advantageous because
it is simple (i.e., checks are easy to write), natural (i.e., the
check can be attached to the domain of the attribute in
question or to its table), and, in the case where no other
attributes are present, guaranteed to hold.

B. Rules that affect several attributes in one entity:
These may include some domain rules and some

integrity rules and some facts and action. These rules should
be implemented with an assertion, because even though
checks can mention attributes in other tables, they are not
guaranteed to hold.

C. Rules that affect several attributes in one entity:
These rules should be implemented with an assertion, for

the same reasons as in the previous case. Assume, for
instance, that there are ranks in the organization and each
employee has a rank. Associated with each rank there is
some information; for instance, the maximum and minimum
salary for that rank. An obvious rule is that employees’
salaries remain within what is dictated by each employee’s
rank. Then the assertion would have to mention both tables:
CREATE ASSERTION salary-rank
(NOT EXISTS (SELECT * FROM EMPLOYEE, RANK
WHERE Employee.rankid
=RANK.rankid AND
(Employee.salary < rank.min_salary OR

Abhijeet Raipurkar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,693-696

© 2010, IJARCS All Rights Reserved 696

Employee.salary > rank.max_salary)))

VIII. FUTURE TRENDS

To implement business rules in a relational database, it is
necessary not only to find some way to capture and express
the rule in the requirement specification, perhaps using a
combination of techniques (and surely going beyond what
usual conceptual models have to offer), but also to find
some way of implementing the rule in the database, a
process that might get complicated.

It is clear that checks, assertions, and triggers together
manage to cover most of the usual business rules; however,
it is difficult to decide which tool to use for a particular rule.
It therefore would be desirable to develop either a new
construct specifically tailored to business rules or to extend
the existing rules to make the task more manageable. From
the analysis used here, some obvious avenues of
development can be pointed out. For instance, extending
checks and assertions with the ability to specify what to do
in case a condition is violated or ensuring that a check is
always guaranteed to hold would allow many static rules to
be expressed without having to resort to triggers, which
could then be used only if truly necessary.

IX. CONCLUSION

Although business rules are a very important part of
information systems, there is little academic research on
them. Some practitioners have contributed to the
understanding of the subject, but there is no underlying
framework for its study. Also, support for business rules in
conceptual models and database systems leaves much to be

desired. As a result, eliciting, expressing, and capturing
business rules remain more of an art than a science.
However, given their practical importance, more research in
the subject is expected in the near future.

X. REFERENCES

[1]. Badia, A. (2004, March). Entity-relationship modeling
revisited. ACM SIGMOD Record, 33(1), 77-82.

[2]. Chen, P. (1976). The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database
Systems, 1(1), 9-36

[3]. Date, C. (2000). An introduction to database systems (7th
Ed.). Reading, MA: Addison-Wesley.

[4]. Davis, F. (1993). Requirement specification: Objects,
functions and states. Upper Saddle River, NJ: PrenticeHall.

[5]. Ibrahim, H., Gray, W.A. and Fiddian, N.J. SICSDD – A
Semantic Integrity Constraint Subsystem for a Distributed
Database. Proceedings of the 1998 International Conference
on Parallel and Distributed Processing Techniques and
Applications, USA, 1998, pp. 1575-1582.

[6]. Ibrahim, H., Gray, W.A. and Fiddian, N.J. SICSDD– A
Semantic Integrity Constraint Subsystem for a Distributed
Database. Proceedings of the 1998 International Conference
on Parallel and Distributed Processing Techniques and
Applications, USA, 1998, pp.1575-1582.

[7]. Ibrahim, H., Gray, W.A. and Fiddian, N.J. The Subsystem
for a Distributed Database (SICSDD). Databases, UK,
1996, pp. 74-91.

	BACKGROUND OF PRESENT SYSTEM
	INTRODUCTION
	TYPES OF BUSINESS RULES IN DBMS
	Domain Rules:
	A. Integrity Rules:
	B. Triggering Operations:
	C. Structural Assertions:
	Definition of business terms:
	Facts relating term to each other:
	Constraints (also called action assertions):
	Derivations:

	BUSINESS RULES AND DATA MODELS
	BUSINESS RULES IN DBMS
	CAPTURING BUSINESS RULES
	A. Eliciting and Representing Business Rules in Conceptual Models:
	B. Expressing Business Rules in Data Models:

	IMPLEMENTING BUSINESS RULES IN DBMS
	A. Rules that affect a single Attribute:
	B. Rules that affect several attributes in one entity:
	C. Rules that affect several attributes in one entity:

	FUTURE TRENDS
	CONCLUSION
	REFERENCES

