
��������	�
����	��������������

������������������������������������ ����!����"���������������

�##��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 370

ISSN No. 0976-5697

Yet Another Organized Move towards Solving Sudoku Puzzle

Arnab K. Maji*

Department Of Information Technology

 North Eastern Hill University

Shillong 793 022, Meghalaya, India

e-mail: arnab.maji@gmail.com

Rajat K. Pal
Department Of Information Technology

Assam University, Silchar

 Cachar 788 011, Assam, India

e-mail: rajatkp@vsnl.net

Abstract: "Sudoku" is the Japanese abbreviation of a longer phrase, "Suuji wa dokushin ni kagiru", meaning "the digits must remain single". It is

a challenging numeric puzzle that trains our logical mind. Solving a Sudoku puzzle requires no math, not even arithmetic. Even so, the game

poses a number of intriguing mathematical problems. This paper describes an algorithm to solve the Sudoku puzzle in a systematic way. It

guarantees a unique solution to the problem for all difficulty levels.

Keywords: Sudoku, Puzzle, Grid, Clue, Difficulty level, Logic, Algorithm, Backtracking.

I. INTRODUCTION

A Sudoku puzzle is a grid of n rows and n columns, in
which some pre-assigned clues or givens have been entered.
The size of the grid can be n×n, where n is an integer. The
most common size of such a (square) grid is 9×9. We have
divided a 9×9 grid into nine 3×3 minigrids. We have labeled
each minigrid from 1 to 9, with minigrid 1 at the top-left
corner and minigrid 9 at the bottom-right corner as shown in
Figure 1. We refer to each cell in the grid by its column
number followed by its row number. Figure 2 shows the
coordinates of each cell in the grid.

Figure 1. The rows and columns in a Sudoku puzzle.

Figure 2. The coordinates of cells in a Sudoku grid.

Besides the standard 9×9 grid, variants of Sudoku puzzles
include the following:
• 4×4 grid with 2×2 minigrids,
• 5×5 grid with pentomino [6] regions published under the
name Logi-5. A pentomino is composed of five congruent
squares, connected orthogonally. Pentomino is seen in
playing the game Tetris [13],
• 6×6 grid with 2×3 regions,
• 7×7 grid with six heptomino [7] regions and a disjoint
region,
• 16×16 grid (super Sudoku),
• 25×25 grid (Sudoku, the Giant),
• A 3D Sudoku puzzle [8] (being invented by Dion Church
was published in the Daily Telegraph in the U.K. in May
2005),
• Alphabetical variations, which use letters rather than
numbers. The Guardian (in the U.K.) calls these Godoku
[11] while others refer to them as Wordoku [12], etc.

A complete Sudoku solution grid may be arrived at in
more than one way, as we can start from any given clues
that are distributed over the minigrids of a given incomplete
grid. Nobody has yet succeeded in determining how many
different starting grids there are. Moreover, a Sudoku
starting grid is really only interesting to a mathematician if it
is minimal, i.e., if removing a single number means that the
solution is no longer unique. No one has figured out the
number of possible minimal grids, which amounts to the
ultimate count of distinct Sudoku puzzles. It is a challenge
that is sure to be taken up in the near future.

Another problem of minimality also remains unsolved;
to wit, what is the smallest number of digits a puzzle maker
can place in a starting grid and still guarantee a unique
solution? The answer seems to be 17. Gordon Royle of the
University of Western Australia has collected more than
38,000 examples that fit this criterion and cannot be
translated into one another by performing elementary
operations [5]. Gary McGuire of the National University of
Ireland, Maynooth, is conducting a search for a 16-clue
puzzle with a unique solution but has so far come up empty-
handed [1]. It begins to look as if none exists. On the other
hand, Royle and others working independently have
managed to find one 16-clue puzzle that has just two

Amab K. Maji et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 370-375

© 2010, IJARCS All Rights Reserved 371

solutions [4]. Searchers have not yet uncovered any
additional examples.

Is anyone near to proving that no valid Sudoku puzzle
can have only 16 clues? Still the answer is “no”. If we could
analyze one grid per second, looking for a valid 16-clue
puzzle within it, then the total time for searching all the
grids might take 173 years [10]. Even using a fast computer
we cannot achieve it in a reasonable amount of time. Even a
distributed computing environment of 10,000 fast
computers, might take time of about one year. It depicts the
amount of computation involved in this problem, and a
breakthrough (in developing a much better algorithm for
searching) is necessary in our understanding to make it
feasible to search all the grids in some realistic time.

Mathematicians do know the solution to the opposite of
the minimum number of clues problem: What is the
maximum number of givens that do not guarantee a unique
solution? The answer is 77 [10]. It is very easy to see that
with each of 80, 79, or 78 givens, if there is a solution, it is
unique. But the same cannot be guaranteed for 77 givens.

Figure 3. Sudoku example with 17 clues and its unique solution.

Figure 4. Sudoku example with 16 clues and its non-unique solution.

The minimum number of clues that a 9×9 Sudoku puzzle
can start with and still yield a unique solution seems to be
17; an example is shown in Figure 3. One particular filled-in
grid, known to Sudoku aficionados as “Strangely Familiar”,
or SF, hides 29 in equivalent 17-clue starting boards, an
unusually high number; this means that from an SF grid we
can deduce as much as 29 number of Sudoku puzzles with
only 17 givens. SF is once considered the grid most likely to
harbour a 16-clue puzzle with a unique solution, but an
exhaustive search has dashed that hope. The only known 16-
clue Sudoku having just two solutions appears in Figure 4;
the final grids interchange the 8’s and 9’s.

II. LITERATURE SURVEY

An n2×n2 Sudoku grid (consisting of n×n blocks) is an
NP-complete problem [3]. So, it is unlikely to develop a
polynomial time algorithm to solve this problem. Hence, in
this paper we have developed a heuristic algorithm that
follows a set of organized moves to solve a given Sudoku
puzzle. There are quite a few logic techniques people use to
solve this problem. Some are basic simple logic, some are
more advanced. Depending on the difficulty of the puzzle, a
mixture of techniques may be needed in order to solve a
puzzle. In fact, most computer generated Sudoku puzzles

rank the difficulty based upon the number of empty cells in
the puzzle and how much effort is needed to solve each of
them. Table 1 shows a comparison chart of the number of
empty cells for different difficulty levels [2].

Now we review on the backtracking technique that has
been adopted for solving Sudoku puzzles [3]. The basic
backtracking algorithm works as follows. The program
places number 1 in the first empty cell. If the choice is
compatible with the existing clues, it continues to the second
empty cell, where it places a 1 (in some other row, column,
and minigrid). When it encounters a conflict (which can
happen very quickly), it erases the 1 just placed and inserts 2
or, if that is invalid, 3 or the next legal number. After
placing the first legal number possible, it moves to the next
cell and starts again with a 1. If the number that has to be
changed is a 9 (which cannot be raised by one in a standard
Sudoku grid), the program backtracks and increases the
number in the previous cell (the next-to-last number placed)
by one. Then it moves forward until it hits a conflict.

In this way, the program may sometimes backtrack
several times before advancing. It is guaranteed to find a
solution if there is one, simply because it eventually tries
every possible number in every possible location. This
algorithm is very effective for size two puzzles.
Unfortunately, for size three puzzles, there are nine
possibilities for each square. This means that there are
roughly 981−n possible states that might need to be searched,
where n is the number of given values. Obviously this
version of backtracking search does not work for size 3
puzzles. Fortunately, there are several means by which this
algorithm can be improved: constraint propagation [9],
forward checking [9], and choosing most constrained value
first [9] are some of them.

III. THE PROPOSED METHOD

The algorithms discussed above are very lengthy as well
as time consuming as so much of trial and errors as well as
guessing works are involved in those methods. In the
proposed approach, we have tried to solve the Sudoku
puzzle in an organized way where a limited number of
guessing is involved. The proposed method is based on
several elimination techniques. First we scan each of the
cells in rows, columns, minigrids, and try to find out
possible unique values for the empty cell. If unique values
are found, we place one of them on the empty cell.
Otherwise, note down the list of possible values for each of
the empty cells. We called it as Elimination Technique-I
(ET-I), as it eliminates most of the values that are not valid
for a minigrid.

We try to differentiate the minigrids by solitary number,
where in a cell only a unique number could be placed. If
found, put the solitary numbers in the empty cells and again
apply ET-I in the way as stated above. If the puzzle is not
solved, then try to find out the minigrids that are clones and
triads, and eliminate some of them based on the same logic.

 Table 1. Number of empty cells for each difficulty level.

 Level # of Empty Cells

 1 (Easy) 40 to 45

 2 (Medium) 46 to 49

 3 (Difficult) 50 to 53

4(Extremely Difficult) 54 to 58

Amab K. Maji et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 370-375

© 2010, IJARCS All Rights Reserved 372

After elimination in the same way, we try again to find out
the solitary number, if any. Then again apply ET-I. Note that
for each valid assignment of a number to a minigrid, a clone
may be converted to a solitary number and a triad may be
converted to a clone. Now we discuss the proposed
approach of ET-I as follows.

A. Elimination Technique-I (ET-I)

Most Sudoku puzzles can be solved by a process of
elimination. In this technique, first we scan every column of
the puzzle, then every row and minigrid. The values already
present in the cell are kept aside. From the list of unassigned
value, if we can get one unique value, satisfying the
constraint of Sudoku puzzle, we assign that value for a
particular cell. Otherwise, we list out the possible values for
an empty cell. The method is expressed in the form of an
algorithm below.

Elimination Technique-I (ET-I)

Scan each cell of column number 1 through 9
 For each cell
 Set possible values for each cell to 123456789;
 Eliminate the values already present;
Scan each cell of row number 1 through 9
 For each cell
 Set possible values for each cell to 123456789;
 Eliminate the values already present;
If there is only one possible value for the cell, the value is
assigned to the cell;
Otherwise, list down the possible values for the cell until no
more cells can be confirmed.

Figure 5. A given Sudoku puzzle

Figure 6. Scanning by column, row, and minigrid

Now we consider an example to explain ET-I. Figure 5
shows a partially filled Sudoku puzzle. Scanning each cell
from left to right, and then from top to bottom, the first
empty cell we encounter is (2,1). Examining the column,
that is the second column, we find the possible values left
for this cell are 2, 3, 4, 6, 7, 8, and 9. However, scanning the
row, that is the first row, we find the only possibility is 9,
because all the other values have already been present there.

Continuing with the scanning, the next empty cell is
(2,2); see Figure 6. Scanning by its column and row, the

possible values obtained are 3, 4, 6, 7, and 8; any one of
them can be placed over there. By scanning the minigrid
next we see that it already has the values of 1, 2, 3, 4, and 9,
so the possible values are now reduced to 6, 7, and 8. Hence

Figure 7. Possible values for empty cells of a Sudoku puzzle.

We cannot achieve a unique value for this position from
the present status of the puzzle; we just list out the possible
values for the same.

In this way, scanning through each column, row, and
minigrid, we ultimately list out the possible values for each
empty cell, as shown in Figure 7.

At this stage of the algorithm, when multiple possible
values are present for an empty cell in the puzzle, we can
eliminate some of the possibilities already computed above
by applying the following elimination techniques one after
another:

i) Solitary number based,
ii) Clone based, and
iii) Triad based.

Finally, the puzzle can be solved by applying all these
elimination techniques repeatedly.

B. Elimination Technique-II (ET-II): Solitary Number

based Elimination

Solitary number is a term that is used to refer to a number
that is one of multiple possible values for a cell but appears
only once in a row, column, or minigrid. To see what this
means in practice, consider the row shown in Figure 8. In
this row, six cells have already been filled in, leaving three
unsolved cells (second, eighth, and ninth) with their possible
values written in them (derived after applying ET-I). Notice
that the second cell is the only cell that contains the possible
value 8. Since no other cells in this row can possibly contain
the value 8, this cell can now be confirmed with the value 8.
In this case, the 8 is known as a solitary number. Stepwise
this method is as shown below.

Figure 8. An example row of the Sudoku puzzle with a solitary number.

Elimination Technique-II (ET-II)

Scan every cell of each minigrid number 1 through 9
 For each cell

Find the solitary numbers and place them in
respective minigrids;

 Apply ET-I again, if any change is made;
Scan every cell of row number 1 through 9

Amab K. Maji et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 370-375

© 2010, IJARCS All Rights Reserved 373

 For each cell
Find the solitary numbers and place them in
respective minigrids;

 Apply ET-I again, if any change is made;
Scan every cell of column number 1 through 9
 For each cell

Find the solitary numbers and place them in
respective minigrids;
Apply ET-I again, if any change is made until no
more changes can be confirmed.

Figure 9. Possible values for the cells after applying ET-I
 for a portion of the Sudoku puzzle.

Solitary numbers are extremely useful for solving a
Sudoku puzzle. Figure 9 shows a partial Sudoku puzzle after
applying ET-I. One interesting observation is found by
looking at the third minigrid. If we observe cell (7,2), one of
the possible values is 1, along with the other numbers like 3,
4, and 5. However, the number 1 appears as a possible value
only for (7,2) and not for the other cells within the minigrid.
Logically, we can now conclude that as long as a number
appears only once (as a possible value) within the minigrid,
that number can be confirmed as the number for the cell.
This is logical, because cells (7,1), (8,1), and (9,1) do not
contain the value 1, and hence only (7,2) can contain 1.
Following this argument, we can now put a 1 in (7,2), as
shown in Figure 10.

Figure 10. Confirming the value for cell (7,2).

C. Elimination Technique-III (ET-III): Clone based
Elimination

 If two same possible values are present for two cells in
a Sudoku puzzle, they are referred as clone. Consider the
partially solved Sudoku puzzle after applying all those
previously stated techniques shown in Figure 11. Observe
the two cells (5,2) and (6,2). They both contain the value 23
(means either 2 or 3). So, if cell (5,2) takes the value 2, then
cell (6,2) must contain 3, and vice versa. This type of
situation is known as clone. Our proposed clone based
elimination technique is as shown below.

Figure 11. A partially solved Sudoku puzzle with the

 possible values for empty cells.

Elimination Technique-III (ET-III)

Scan each cell of row number 1 through 9

 Find out the clones present in any two cells;

 Eliminate the component of the clone find in any other

 cell;

Scan each cell of minigrid number 1 through 9

 Find out the clones present in any two cells;

 Eliminate the component of the clone find in any other

 cell;

Scan each cell of column number 1 through 9

 Find out the clones present in any two cells;

 Eliminate the component of the clone find in any other
 cell;
Now apply ET-II and ET-I once again for each cell in the grid
until no more cells can be confirmed.

Figure 12. Identification of clones.

Figure 13. Elimination of 2 and 3 as possible values for
 other cells in the same row as clones.

Figures 12 and 13 show identification of clones and
elimination based on clones in the second row, respectively.
As shown in Figure 13, we can eliminate 2 and 3 as possible
values for cells (1,2) and (3,2) in the row, as clones are
found in cells (5,2) and (6,2), as shown in Figure 12. Now
we apply the same elimination techniques for minigrids as
well as for columns, respectively, as shown in Figures 14
and 15. As shown in Figure 14, that clones are found in cells
(5,2) and (6,2), we can eliminate 2 and 3 as possible values
for cells (4,1) and (5,1) for the second minigrid. Similarly, 2
and 3 can be eliminated as possible values for cells (5,5),
(5,6), (5,7), (5,8), and (5,9), as shown in Figure 15.

Figure 14. Elimination of 2 and 3 as possible values for
other cells in the same minigrid.

Figure 15. Scanning the columns for the clones and
elimination of numbers based on them.

Amab K. Maji et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 370-375

© 2010, IJARCS All Rights Reserved 374

D. Elimination Technique-IV (ET-IV): Triad based
Elimination

If three cells are spotted with a set of three same possible

values, they are referred as triads. Like clones, triads are also
useful for eliminating some other possible values for the cells.
Triads have several variations like the following.
Variety# 1: Three cells with same three possible values, as
shown in Figure 16.

Variety# 2: Two cells with same three possible values and
the other cell containing any two of them, as shown in
Figure 17.
Variety# 3: One cell with three possible values and two cells
containing two different subsets of two possible values of
the earlier three values, as shown in Figure 18.

Figure 16. Variety# 1 Figure 17. Variety# 2 Figure 18. Variety# 3

triad. triad. triad.

Our proposed triad based elimination technique is as shown
below.

Elimination Technique-IV (ET-IV)

Scan each cell of minigrid number 1 through 9
 Find out the triads present in any three cells;
 Eliminate the components of the triads found in any
 other cell;
Scan each cell of row number 1 through 9
 Find out the triads present in any three cells;
 Eliminate the components of the triads found in any
 other cell;
Scan each cell of column number 1 through 9
 Find out the triads present in any three cells;
 Eliminate the components of the triads found in any
 other cell;
Now apply ET-III, ET-II, and ET-I once again for each cell
in the grid, until no more cells can be confirmed.

Figures 19 and 20 show triads and their elimination,
respectively. As shown in Figure 19, triads are present in
cells (1,8), (1,9), and (2,9). So we can eliminate the values
belonging to those triads from cells (2,7), (3,7), and (3,8); see
Figure 20.

Figure 19. A partial Sudoku puzzle with triads

Figure 20. Elimination based on triads.

E. Complexity Analysis

An n2×n2 Sudoku grid (consisting of n×n blocks) is an NP-
complete problem [3]. So, development of a heuristic
algorithm is the only way out. In this paper we have
developed a heuristic algorithm that follows a set of
organized moves to solve a given Sudoku puzzle. Needless
to mention that the space complexity of the algorithm is
O(m2), as a constant number of elimination techniques has
been adopted on the given grid structure of size O(m2),
where m = n2. On the other hand, for each of the O(m2) cells
O(m) alternatives are applied to find out the desired unique
entries, if any, in the worst case. This results the overall time
complexity of the algorithm is O(m3), where m = n2.

IV. EXPERIMENTAL RESULTS

In this paper, we have developed a systematic heuristic
approach to solve Sudoku puzzle. Incidentally, there are
several existing Sudoku solvers, like versions V2.0, V1.01,
etc. In doing experimentation, we have executed all these
including the algorithm developed by us for a valid set of 60
Sudoku puzzles of different difficulty levels using a
platform of Pentium Dual Core 2.40 GHz Processor with 1.0
GB RAM in Java, which results are shown in Figure 21
using bar charts; note that the average computation time (in
milliseconds) taken using our approach is almost one-third
to that taken by Sudoku solver V1.01 and half to that of
Sudoku solver V2.0. So, on an average we can state that our
Sudoku solver is much faster to each of such solvers (like
V2.0 and V1.01) to solve a valid Sudoku puzzle.

Figure 21. Average times (in milliseconds) taken in the experimentation to
solve a set of 60 valid Sudoku instances using Sudoku solvers V2.0 and

V1.01, and using our approach.

V. CONCLUSION

The Sudoku is an NP-complete problem. So, developing
heuristic algorithms is the only way out. There are several
existing solvers for solving the problem including
backtracking; the algorithm is highly time consuming. In
this paper we have developed an organized method to solve
the problem. It takes O(m3) time and O(m2) space, where m
= n2, for solving a Sudoku grid of size n2×n2 (consisting of
n×n blocks). Our proposed algorithm solves a 9(32)×9(32)
Sudoku puzzle for all difficulty levels, and the results
obtained using our approach is highly interesting in terms of
computation time in comparison to that of other existing
Sudoku solvers.

456 456 456

 × × ×

 × × ×

45 46 456

× × ×

× × ×

456 456 46

× × ×

× × ×

Amab K. Maji et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 370-375

© 2010, IJARCS All Rights Reserved 375

In future our objective is to further tune and generalize
the algorithm developed in this paper for any larger values
of n, and execute thousands of instances using the newly
developed version of the algorithm. In addition, we like to
implement other existing Sudoku solvers and algorithms
including backtracking to compare the results obtained in
terms of CPU time and required memory for any generalized
Sudoku puzzle.

We have calculated the difficulty of the puzzle based on
the number of empty cells. But the difficulty level does not
always depend on that; it depends on the positioning of the
empty grids too. There exist many easy to solve grids with
17 givens only, whereas really hard to solve grids can exist
with more than 30 givens. In future, we also like to make all
these issues explicit.

VI. REFERENCES

[1] Berthier D., The Hidden Logic of Sudoku, Second

Edition, Lulu, Morrisville, France, 2007.

[2] Lee W.-M., Programming Sudoku, First Edition, Apress

Inc., New Jersey, USA, 2006.

[3] Narendra J., A to Z Sudoku, Second Edition, ISTE

Limited Publications, United Kingdom, 2007.

[4]http://www-imai.is.s.u-

tokyo.ac.jp/~yato/data2/MasterThesis.pdf.

[5] http://www.csse.uwa.edu.au/gordon/sudokumin.php.

[6] http://www.en.wikipedia.org/wiki/Pentomino

[7] http://mathworld.wolfram.com/Heptomino.html

[8] http://www.sudoku.org.uk/PDF/Dion_Cube.pdf

[9] http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf

[10]http://www.userweb.cs.utexas.edu/~kuipers/readings/Su

doku-sciam-06.pdf

[11] http://www.goduku.com

[12] http://www.wordoku.biz

[13] http://www.en.wikipedia.org/wiki/Tetris

