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Abstract: "Sudoku" is the Japanese abbreviation of a longer phrase, "Suuji wa dokushin ni kagiru", meaning "the digits must remain single". It is 

a challenging numeric puzzle that trains our logical mind. Solving a Sudoku puzzle requires no math, not even arithmetic. Even so, the game 

poses a number of intriguing mathematical problems. This paper describes an algorithm to solve the Sudoku puzzle in a systematic way. It 

guarantees a unique solution to the problem for all difficulty levels. 
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I. INTRODUCTION  

A Sudoku puzzle is a grid of n rows and n columns, in 
which some pre-assigned clues or givens have been entered. 
The size of the grid can be n×n, where n is an integer. The 
most common size of such a (square) grid is 9×9. We have 
divided a 9×9 grid into nine 3×3 minigrids. We have labeled 
each minigrid from 1 to 9, with minigrid 1 at the top-left 
corner and minigrid 9 at the bottom-right corner as shown in 
Figure 1. We refer to each cell in the grid by its column 
number followed by its row number. Figure 2 shows the 
coordinates of each cell in the grid.  

 

Figure 1. The rows and columns in a Sudoku puzzle. 

 

 
 

Figure 2. The coordinates of cells in a Sudoku grid. 

 
 

Besides the standard 9×9 grid, variants of Sudoku puzzles 
include the following: 
• 4×4 grid with 2×2 minigrids, 
• 5×5 grid with pentomino [6] regions published under the 
name Logi-5. A pentomino is composed of five congruent 
squares, connected orthogonally. Pentomino is seen in 
playing the game Tetris [13], 
• 6×6 grid with 2×3 regions, 
• 7×7 grid with six heptomino [7] regions and a disjoint 
region, 
• 16×16 grid (super Sudoku), 
• 25×25 grid (Sudoku, the Giant), 
• A 3D Sudoku puzzle [8] (being invented by Dion Church 
was published in the Daily Telegraph in the U.K. in May 
2005), 
• Alphabetical variations, which use letters rather than 
numbers. The Guardian (in the U.K.) calls these Godoku 
[11] while others refer to them as Wordoku [12], etc. 

A complete Sudoku solution grid may be arrived at in 
more than one way, as we can start from any given clues 
that are distributed over the minigrids of a given incomplete 
grid. Nobody has yet succeeded in determining how many 
different starting grids there are. Moreover, a Sudoku 
starting grid is really only interesting to a mathematician if it 
is minimal, i.e., if removing a single number means that the 
solution is no longer unique. No one has figured out the 
number of possible minimal grids, which amounts to the 
ultimate count of distinct Sudoku puzzles. It is a challenge 
that is sure to be taken up in the near future.  

Another problem of minimality also remains unsolved; 
to wit, what is the smallest number of digits a puzzle maker 
can place in a starting grid and still guarantee a unique 
solution? The answer seems to be 17. Gordon Royle of the 
University of Western Australia has collected more than 
38,000 examples that fit this criterion and cannot be 
translated into one another by performing elementary 
operations [5]. Gary McGuire of the National University of 
Ireland, Maynooth, is conducting a search for a 16-clue 
puzzle with a unique solution but has so far come up empty-
handed [1]. It begins to look as if none exists. On the other 
hand, Royle and others working independently have 
managed to find one 16-clue puzzle that has just two 
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solutions [4]. Searchers have not yet uncovered any 
additional examples. 

Is anyone near to proving that no valid Sudoku puzzle 
can have only 16 clues? Still the answer is “no”. If we could 
analyze one grid per second, looking for a valid 16-clue 
puzzle within it, then the total time for searching all the 
grids might take 173 years [10]. Even using a fast computer 
we cannot achieve it in a reasonable amount of time. Even a 
distributed computing environment of 10,000 fast 
computers, might take time of about one year. It depicts the 
amount of computation involved in this problem, and a 
breakthrough (in developing a much better algorithm for 
searching) is necessary in our understanding to make it 
feasible to search all the grids in some realistic time.  

Mathematicians do know the solution to the opposite of 
the minimum number of clues problem: What is the 
maximum number of givens that do not guarantee a unique 
solution? The answer is 77 [10]. It is very easy to see that 
with each of 80, 79, or 78 givens, if there is a solution, it is 
unique. But the same cannot be guaranteed for 77 givens. 

 

           

Figure 3. Sudoku example with 17 clues and its unique solution. 

         

Figure 4. Sudoku example with 16 clues and its non-unique solution. 

The minimum number of clues that a 9×9 Sudoku puzzle 
can start with and still yield a unique solution seems to be 
17; an example is shown in Figure 3. One particular filled-in 
grid, known to Sudoku aficionados as “Strangely Familiar”, 
or SF, hides 29 in equivalent 17-clue starting boards, an 
unusually high number; this means that from an SF grid we 
can deduce as much as 29 number of Sudoku puzzles with 
only 17 givens. SF is once considered the grid most likely to 
harbour a 16-clue puzzle with a unique solution, but an 
exhaustive search has dashed that hope. The only known 16-
clue Sudoku having just two solutions appears in Figure 4; 
the final grids interchange the 8’s and 9’s. 

II. LITERATURE SURVEY 

An n2×n2 Sudoku grid (consisting of n×n blocks) is an 
NP-complete problem [3]. So, it is unlikely to develop a 
polynomial time algorithm to solve this problem. Hence, in 
this paper we have developed a heuristic algorithm that 
follows a set of organized moves to solve a given Sudoku 
puzzle. There are quite a few logic techniques people use to 
solve this problem. Some are basic simple logic, some are 
more advanced. Depending on the difficulty of the puzzle, a 
mixture of techniques may be needed in order to solve a 
puzzle. In fact, most computer generated Sudoku puzzles 

rank the difficulty based upon the number of empty cells in 
the puzzle and how much effort is needed to solve each of 
them. Table 1 shows a comparison chart of the number of 
empty cells for different difficulty levels [2]. 

 
 
 

 

 
 

 

 

 

Now we review on the backtracking technique that has 
been adopted for solving Sudoku puzzles [3]. The basic 
backtracking algorithm works as follows. The program 
places number 1 in the first empty cell. If the choice is 
compatible with the existing clues, it continues to the second 
empty cell, where it places a 1 (in some other row, column, 
and minigrid). When it encounters a conflict (which can 
happen very quickly), it erases the 1 just placed and inserts 2 
or, if that is invalid, 3 or the next legal number. After 
placing the first legal number possible, it moves to the next 
cell and starts again with a 1. If the number that has to be 
changed is a 9 (which cannot be raised by one in a standard 
Sudoku grid), the program backtracks and increases the 
number in the previous cell (the next-to-last number placed) 
by one. Then it moves forward until it hits a conflict. 

In this way, the program may sometimes backtrack 
several times before advancing. It is guaranteed to find a 
solution if there is one, simply because it eventually tries 
every possible number in every possible location. This 
algorithm is very effective for size two puzzles. 
Unfortunately, for size three puzzles, there are nine 
possibilities for each square. This means that there are 
roughly 981−n possible states that might need to be searched, 
where n is the number of given values. Obviously this 
version of backtracking search does not work for size 3 
puzzles. Fortunately, there are several means by which this 
algorithm can be improved: constraint propagation [9], 
forward checking [9], and choosing most constrained value 
first [9] are some of them.  

III. THE PROPOSED METHOD 

The algorithms discussed above are very lengthy as well 
as time consuming as so much of trial and errors as well as 
guessing works are involved in those methods. In the 
proposed approach, we have tried to solve the Sudoku 
puzzle in an organized way where a limited number of 
guessing is involved. The proposed method is based on 
several elimination techniques. First we scan each of the 
cells in rows, columns, minigrids, and try to find out 
possible unique values for the empty cell. If unique values 
are found, we place one of them on the empty cell. 
Otherwise, note down the list of possible values for each of 
the empty cells. We called it as Elimination Technique-I 
(ET-I), as it eliminates most of the values that are not valid 
for a minigrid.  

We try to differentiate the minigrids by solitary number, 
where in a cell only a unique number could be placed. If 
found, put the solitary numbers in the empty cells and again 
apply ET-I in the way as stated above. If the puzzle is not 
solved, then try to find out the minigrids that are clones and 
triads, and eliminate some of them based on the same logic. 

 

    Table 1. Number of empty cells for each difficulty level. 

              Level # of Empty Cells 

            1 (Easy)           40 to 45 

         2 (Medium)           46 to 49 

         3 (Difficult)           50 to 53 

4(Extremely Difficult)           54 to 58 
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After elimination in the same way, we try again to find out 
the solitary number, if any. Then again apply ET-I. Note that 
for each valid assignment of a number to a minigrid, a clone 
may be converted to a solitary number and a triad may be 
converted to a clone. Now we discuss the proposed 
approach of ET-I as follows. 

A. Elimination Technique-I (ET-I) 
 

Most Sudoku puzzles can be solved by a process of 
elimination. In this technique, first we scan every column of 
the puzzle, then every row and minigrid. The values already 
present in the cell are kept aside. From the list of unassigned 
value, if we can get one unique value, satisfying the 
constraint of Sudoku puzzle, we assign that value for a 
particular cell. Otherwise, we list out the possible values for 
an empty cell. The method is expressed in the form of an 
algorithm below. 

Elimination Technique-I (ET-I) 

Scan each cell of column number 1 through 9 
      For each cell 
 Set possible values for each cell to 123456789; 
            Eliminate the values already present; 
Scan each cell of row number 1 through 9 
      For each cell 
 Set possible values for each cell to 123456789; 
            Eliminate the values already present; 
If there is only one possible value for the cell, the value is 
assigned to the cell; 
Otherwise, list down the possible values for the cell until no 
more cells can be confirmed. 

 
 

Figure 5. A given Sudoku puzzle  
      

    

Figure 6. Scanning by column, row, and minigrid 

 

Now we consider an example to explain ET-I. Figure 5 
shows a partially filled Sudoku puzzle. Scanning each cell 
from left to right, and then from top to bottom, the first 
empty cell we encounter is (2,1). Examining the column, 
that is the second column, we find the possible values left 
for this cell are 2, 3, 4, 6, 7, 8, and 9. However, scanning the 
row, that is the first row, we find the only possibility is 9, 
because all the other values have already been present there.  

Continuing with the scanning, the next empty cell is 
(2,2); see Figure 6. Scanning by its column and row, the 

possible values obtained are 3, 4, 6, 7, and 8; any one of 
them can be placed over there. By scanning the minigrid 
next we see that it already has the values of 1, 2, 3, 4, and 9, 
so the possible values are now reduced to 6, 7, and 8. Hence  

 

Figure 7. Possible values for empty cells of a Sudoku puzzle. 

We cannot achieve a unique value for this position from 
the present status of the puzzle; we just list out the possible 
values for the same. 

In this way, scanning through each column, row, and 
minigrid, we ultimately list out the possible values for each 
empty cell, as shown in Figure 7. 

At this stage of the algorithm, when multiple possible 
values are present for an empty cell in the puzzle, we can 
eliminate some of the possibilities already computed above 
by applying the following elimination techniques one after 
another: 

i) Solitary number based, 
ii) Clone based, and 
iii) Triad based. 

Finally, the puzzle can be solved by applying all these 
elimination techniques repeatedly. 

 
B. Elimination Technique-II (ET-II): Solitary Number 

based Elimination 
 

Solitary number is a term that is used to refer to a number 
that is one of multiple possible values for a cell but appears 
only once in a row, column, or minigrid. To see what this 
means in practice, consider the row shown in Figure 8. In 
this row, six cells have already been filled in, leaving three 
unsolved cells (second, eighth, and ninth) with their possible 
values written in them (derived after applying ET-I). Notice 
that the second cell is the only cell that contains the possible 
value 8. Since no other cells in this row can possibly contain 
the value 8, this cell can now be confirmed with the value 8. 
In this case, the 8 is known as a solitary number. Stepwise 
this method is as shown below. 

Figure 8. An example row of the Sudoku puzzle with a solitary number. 

Elimination Technique-II (ET-II) 

Scan every cell of each minigrid number 1 through 9 
     For each cell 

Find the solitary numbers and place them in 
respective minigrids; 

 Apply ET-I again, if any change is made; 
Scan every cell of row number 1 through 9 
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       For each cell 
Find the solitary numbers and place them in 
respective minigrids; 

 Apply ET-I again, if any change is made; 
Scan every cell of column number 1 through 9 
       For each cell 

Find the solitary numbers and place them in 
respective minigrids; 
Apply ET-I again, if any change is made until no 
more changes can be confirmed. 

 

Figure 9. Possible values for the cells after applying ET-I 
 for a portion of the Sudoku puzzle. 

Solitary numbers are extremely useful for solving a 
Sudoku puzzle. Figure 9 shows a partial Sudoku puzzle after 
applying ET-I. One interesting observation is found by 
looking at the third minigrid. If we observe cell (7,2), one of 
the possible values is 1, along with the other numbers like 3, 
4, and 5. However, the number 1 appears as a possible value 
only for (7,2) and not for the other cells within the minigrid. 
Logically, we can now conclude that as long as a number 
appears only once (as a possible value) within the minigrid, 
that number can be confirmed as the number for the cell. 
This is logical, because cells (7,1), (8,1), and (9,1) do not 
contain the value 1, and hence only (7,2) can contain 1. 
Following this argument, we can now put a 1 in (7,2), as 
shown in Figure 10. 

 

Figure 10. Confirming the value for cell (7,2). 

C. Elimination Technique-III (ET-III): Clone based 
Elimination 

 If two same possible values are present for two cells in 
a Sudoku puzzle, they are referred as clone. Consider the 
partially solved Sudoku puzzle after applying all those 
previously stated techniques shown in Figure 11. Observe 
the two cells (5,2) and (6,2). They both contain the value 23 
(means either 2 or 3). So, if cell (5,2) takes the value 2, then 
cell (6,2) must contain 3, and vice versa. This type of 
situation is known as clone. Our proposed clone based 
elimination technique is as shown below. 

 

Figure 11. A partially solved Sudoku puzzle with the 

 possible values for empty cells. 

Elimination Technique-III (ET-III) 

Scan each cell of row number 1 through 9 

      Find out the clones present in any two cells; 

          Eliminate the component of the clone find in any other    

         cell; 

Scan each cell of minigrid number 1 through 9 

      Find out the clones present in any two cells; 

          Eliminate the component of the clone find in any other  

         cell; 

Scan each cell of column number 1 through 9 

      Find out the clones present in any two cells; 

          Eliminate the component of the clone find in any other  
         cell; 
Now apply ET-II and ET-I once again for each cell in the grid 
until no more cells can be confirmed.  

 

Figure 12. Identification of  clones. 

 

Figure 13. Elimination of 2 and 3 as possible values for 
 other cells in the  same row as  clones. 

Figures 12 and 13 show identification of clones and 
elimination based on  clones in the second row, respectively. 
As shown in Figure 13, we can eliminate 2 and 3 as possible 
values for cells (1,2) and (3,2) in the row, as  clones are 
found in cells (5,2) and (6,2), as shown in Figure 12. Now 
we apply the same elimination techniques for minigrids as 
well as for columns, respectively, as shown in Figures 14 
and 15. As shown in Figure 14, that clones are found in cells 
(5,2) and (6,2), we can eliminate 2 and 3 as possible values 
for cells (4,1) and (5,1) for the second minigrid. Similarly, 2 
and 3 can be eliminated as possible values for cells (5,5), 
(5,6), (5,7), (5,8), and (5,9), as shown in Figure 15. 

 

Figure 14. Elimination of 2 and 3 as possible values for 
other cells in the same minigrid. 

 

 
 

Figure 15. Scanning the columns for the  clones and 
elimination of numbers based on them. 
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D. Elimination Technique-IV (ET-IV): Triad based 
Elimination  
 
If three cells are spotted with a set of three same possible 

values, they are referred as triads. Like clones, triads are also 
useful for eliminating some other possible values for the cells. 
Triads have several variations like the following. 
Variety# 1: Three cells with same three possible values, as 
shown in Figure 16. 

Variety# 2: Two cells with same three possible values and 
the other cell containing any two of them, as shown in 
Figure 17. 
Variety# 3: One cell with three possible values and two cells 
containing two different subsets of two possible values of 
the earlier three values, as shown in Figure 18. 
 

  
Figure 16. Variety# 1        Figure 17. Variety# 2       Figure 18. Variety# 3 

triad.                               triad.                              triad. 
 

Our proposed triad based elimination technique is as shown 
below. 

Elimination Technique-IV (ET-IV) 

Scan each cell of minigrid number 1 through 9 
      Find out the triads present in any three cells; 
          Eliminate the components of the triads found in any    
         other cell;                                                                  
Scan each cell of row number 1 through 9 
      Find out the triads present in any three cells; 
          Eliminate the components of the triads found in any  
         other cell; 
Scan each cell of column number 1 through 9 
      Find out the triads present in any three cells; 
          Eliminate the components of the triads found in any  
         other cell; 
Now apply ET-III, ET-II, and ET-I once again for each cell 
in the grid, until no more cells can be confirmed. 
 

Figures 19 and 20 show triads and their elimination, 
respectively. As shown in Figure 19, triads are present in 
cells (1,8), (1,9), and (2,9). So we can eliminate the values 
belonging to those triads from cells (2,7), (3,7), and (3,8); see 
Figure 20. 
 

 
          

Figure 19. A partial Sudoku puzzle with triads 

 

Figure 20. Elimination based on triads. 

 

E. Complexity Analysis 

An n2×n2 Sudoku grid (consisting of n×n blocks) is an NP-
complete problem [3]. So, development of a heuristic 
algorithm is the only way out. In this paper we have 
developed a heuristic algorithm that follows a set of 
organized moves to solve a given Sudoku puzzle. Needless 
to mention that the space complexity of the algorithm is 
O(m2), as a constant number of elimination techniques has 
been adopted on the given grid structure of size O(m2), 
where m = n2. On the other hand, for each of the O(m2) cells 
O(m) alternatives are applied to find out the desired unique 
entries, if any, in the worst case. This results the overall time 
complexity of the algorithm is O(m3), where m = n2.   

IV. EXPERIMENTAL RESULTS 

In this paper, we have developed a systematic heuristic 
approach to solve Sudoku puzzle. Incidentally, there are 
several existing Sudoku solvers, like versions V2.0, V1.01, 
etc. In doing experimentation, we have executed all these 
including the algorithm developed by us for a valid set of 60 
Sudoku puzzles of different difficulty levels using a 
platform of Pentium Dual Core 2.40 GHz Processor with 1.0 
GB RAM in Java, which results are shown in Figure 21 
using bar charts; note that the average computation time (in 
milliseconds) taken using our approach is almost one-third 
to that taken by Sudoku solver V1.01 and half to that of 
Sudoku solver V2.0. So, on an average we can state that our 
Sudoku solver is much faster to each of such solvers (like 
V2.0 and V1.01) to solve a valid Sudoku puzzle. 

 

 

Figure 21. Average times (in milliseconds) taken in the experimentation to 
solve a set of 60 valid Sudoku instances using Sudoku solvers V2.0 and 

V1.01, and using our approach. 

V. CONCLUSION 

The Sudoku is an NP-complete problem. So, developing 
heuristic algorithms is the only way out. There are several 
existing solvers for solving the problem including 
backtracking; the algorithm is highly time consuming. In 
this paper we have developed an organized method to solve 
the problem. It takes O(m3) time and O(m2) space, where m 
= n2, for solving a Sudoku grid of size n2×n2 (consisting of 
n×n blocks). Our proposed algorithm solves a 9(32)×9(32) 
Sudoku puzzle for all difficulty levels, and the results 
obtained using our approach is highly interesting in terms of 
computation time in comparison to that of other existing 
Sudoku solvers.  

456 456 456 

 × × × 

   × × × 

45 46 456 

× × × 

× × × 

456 456 46 

× × × 

× × × 
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In future our objective is to further tune and generalize 
the algorithm developed in this paper for any larger values 
of n, and execute thousands of instances using the newly 
developed version of the algorithm. In addition, we like to 
implement other existing Sudoku solvers and algorithms 
including backtracking to compare the results obtained in 
terms of CPU time and required memory for any generalized 
Sudoku puzzle. 

We have calculated the difficulty of the puzzle based on 
the number of empty cells. But the difficulty level does not 
always depend on that; it depends on the positioning of the 
empty grids too. There exist many easy to solve grids with 
17 givens only, whereas really hard to solve grids can exist 
with more than 30 givens. In future, we also like to make all 
these issues explicit. 
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