
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 546

ISSN No. 0976-5697

Abstract Syntax Trees with Latent Semantic Indexing for Source Code Plagiarism
Detection

Resmi N.G.*

Department of Computer Science and Engineering
Sahrdaya College of Engineering and Technology

Thrissur, India
resming@sahrdaya.ac.in

K.P. Soman
Centre for Excellence in Computational Engineering and

Networking, Amrita Vishwa Vidyapeetham
Coimbatore, India

kp_soman@amrita.edu

Abstract: In this paper, we study and analyze the results of combining two source code plagiarism detection approaches by making some
modifications as compared to the existing systems to detect source code plagiarism in academic field. Structure based techniques which have
increased efficiency in detecting similarity compared to software metric based techniques are generally computationally complex. Here, we combine
an attribute-metric based detection approach - Latent Semantic Indexing (LSI), with a structure based approach - Abstract Syntax Tree (AST)
comparison. LSI is first used for identifying a set of potentially plagiarized programs which are further tested for similarities by comparing their
abstract syntax trees. Use of LSI for screening reduces the computational cost involved in tree generation and comparison. Moreover, we have
modified the preprocessing stage of LSI and have added a post processing stage for improved performance. Our method was tested for C, C++ and
Java source code files. Both the approaches were initially tested individually for a collection of student programs of varying functionality and size.
These were then combined and found to give better results than executing independently. The performances are evaluated by calculating the precision
and recall.

Keywords: abstract syntax trees; latent semantic indexing; plagiarism detection; singular value decomposition

I. INTRODUCTION

Source code plagiarism occurs when source code is
copied and edited without proper acknowledgement of the
original author [1]. Plagiarism can be defined in many ways
by identifying the causes, sources, and types of plagiarism in
written text as well as in programming languages [1],[2],[3].
Plagiarism of any type is always considered a serious
problem and has to be detected. Since the task of manually
detecting plagiarism in a large database of programs is very
tedious and time-consuming, efforts are continuously being
made to automate the process. An analysis of methods used
by a number of tools currently available to detect source
code plagiarism is done in [1],[2],[3]. An earlier study
shows that systems which gather details of program
structure are more effective in detecting plagiarism than
those that employs attribute counting mechanism [4].

The first algorithm for plagiarism detection, by
Ottenstein [5], was based on attribute counting using
Halstead’s software science metrics [6]. Vector space model
is used for automatic indexing of text documents in [7], and
it facilitates the retrieval of documents matching a user
query or in identification of similar documents. It considers
each document as a vector in a document space and
similarity between two documents is given by their dot
product. Documents with high similarity tend to cluster
together and document space consists of several such
clusters. A user query might return all documents belonging
to a particular cluster. Information retrieval using Latent
Semantic Indexing (LSI), [8] also treats documents as
vectors and applies term weighting but can automatically
identify the latent semantic structure of the data through

Singular Value Decomposition (SVD). This method too
computes cosine similarity and is more efficient than raw
term matching method used for information retrieval. In [1],
Cosma uses LSI for detecting similarity in source code files.
Section 2 explains this method in more detail and we also
discuss how our approach differs from that adapted by
Cosma.

In [9], Baker uses a lexical analyzer to generate a
parameterized string for which a compact representation of
trie, a parameterized suffix tree, is constructed to identify
clones in large software systems. Parameterized match is
detected when one part of the code differs from the other
only by a change in parameter names. A parser is used to
construct Abstract Syntax Trees (ASTs) and find the source
code clones in [10]. Each subtree is assigned a hash value
and those subtrees with the same hash value, grouped into
the same set, are compared to detect tree matches. Even
though an existing parser is modified to produce ASTs, and
the number of subtree-pair comparisons is reduced through
hashing, the time required is still high. In [11], the authors
describe a clone detection method which uses abstract
syntax suffix trees but avoids direct tree comparison. A
source code file is first parsed and its AST is produced on
which a preorder traversal is performed to obtain a sequence
of AST node types. A string based algorithm then replaces
the parameterized string matching used in [9]. The use of
parsers in source code similarity detection makes the system
highly language dependent and hence, less scalable.

Moreover, parser-dependent techniques allow the users
to check only those program files which are free of
compilation errors. Another line-by-line comparison
approach described in [12] uses hashing and string matching

Resmi N.G. et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,546-550

© 2010, IJARCS All Rights Reserved 547

after a simple preprocessing of source files and is language
independent. JPlag, a tool to detect code plagiarism,
converts each source program to a string of tokens after
parsing [13] and then uses greedy string tiling [14] to detect
token matches.

Our main objective in this paper is to study and analyze
the results of combining two source code plagiarism
detection approaches by making some modifications as
compared to the existing systems to detect source code
plagiarism in academic field. We executed both the methods
independently and in a combined manner. The results of our
experiments are discussed in section 3.

Rest of the paper is organized as follows: Section 2
briefly describes how the two plagiarism detection
approaches – Latent Semantic Indexing and Abstract Syntax
Tree comparison, were modified for use in our system. It
also discusses the method we adapted by combining these
two approaches. Results and discussions are given in
Section 3. Section 4 discusses the possible extensions and
future scope of our work.

II. METHODS USED

A. Latent Semantic Indexing:
Latent Semantic Indexing is an established technique in

the field of information retrieval [8] and document
classification. It is used in web search engines to retrieve
documents that match a user query. Automatic indexing for
text documents first uses a simple word analyzer to identify
the words in a document. It discards words which are used
very often, as they are irrelevant in identifying a particular
document. The list of relevant words which is used for
indexing is formed out of a sample document corpus and a
term document matrix is constructed with normalized term
frequencies. Term frequency (tf) for the ith term in jth
document is given by

,
,

,

i j
i j

k j
k

n
tf

n
=
∑

 (1)

Where ,i jn is the number of times the term i occurred in
document j and denominator gives the total number of
occurrences of all the terms in document j. The inverse
document frequency (idf) is computed for each term to
know its significance among a set of files. It is given by

{ }
log

:i
i

D
idf

d t d
=

∈
 (2)

Where D is the total number of files to be compared and
d is the number of files in which the term i has occurred. tf-
idf transform is then computed as

, ,()i j i j itf idf tf idf− = × (3)
This matrix, say A, is decomposed into three matrices

using Singular Value Decomposition (SVD) as
A = USVT (4)

Where U is an orthonormal matrix with columns as
eigenvectors of AAT, S is a diagonal matrix with square
roots of eigenvalues of AAT or ATA in descending order,
and V is an orthonormal matrix with eigenvectors of ATA.

Term-term similarity, document-document similarity and
term-document association can be obtained using these
matrices. By retaining only columns corresponding to k
largest singular values, we can also achieve dimensionality
reduction.

B. Modified LSI for Source Code Plagiarism Detection:
The general approach for text comparison takes into

account all the words in a document, except for a short list
of stop-words. Our approach is designed to detect similarity
between source code files for a specific programming
language. It takes into account only the keywords specific to
a particular language. Each language has its own set of
keywords. Only this small set of words along with the set of
operators is considered while creating the term-document
matrix. This greatly reduces the number of terms in the
matrix, thereby making the matrix compact and hence,
reduces the computational cost involved in the
decomposition of a huge matrix.

In our analysis, we have considered 3 widely used
programming languages in the academic field - C, C++ and
Java. Separate token files are maintained for each language
taking into account their language features.

C. Abstract Syntax Trees for Source Code Plagiarism
Detection:

Abstract Syntax Tree (AST) is an intermediate
representation of the source code. A parser generator is
required to produce ASTs. The trees generated by parser
generators are called parse trees and are usually huge in size.
These trees can be reduced in size by making suitable
modifications in the parser definition [15] for a specific
language to remove redundant nodes which do not add any
extra information to the program structure. This reduced tree
will contain only those nodes which carry useful
information and hence the name abstract syntax tree. LSI
treats source code file just as a collection of words and
cannot keep track of the structure information. This
limitation is overcome by the use of ASTs.

Each source code file is parsed and its AST is generated.
Once the ASTs are generated, comparison of ASTs can be
done in different ways. One simple way is to compare the
ASTs node by node. However, this method is not very
efficient since such an algorithm halts whenever it
encounters two nodes with different labels. There is hardly
any meaning in this approach if root nodes of the ASTs have
immediate children with different labels. Another method is
to partition the ASTs into subtrees and compare each subtree
in one AST with each subtree in another AST. However,
this requires huge amount of time as well as space. A better
approach employing hash functions is used by the authors in
[10] as already discussed in the introduction section.

In [15], Ligaarden proposes an AST based approach to
detect plagiarism in Java source code, which we have
modified for C and C++ source code files. The author
modifies the parse tree generated using open source scanner
and parser generator JavaCC and tree builder JJTree to
obtain the corresponding AST. A preorder traversal is done
through the ASTs to be compared as done in [11] to

Resmi N.G. et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,546-550

© 2010, IJARCS All Rights Reserved 548

generate node sequences. Sequence matching algorithms-
Top Down Unordered Maximum Common Subtree
Isomorphism, Needleman-Wunsch(NW) algorithm and
Longest Common Subsequence(LCS) algorithm, are then
used to compare the node sequences and find matches. Top
down unordered maximum common subtree isomorphism is
used for the tree as a whole. Since it does an unordered
matching, it can find good match between independent
structures. However, it fails to find good match between the
statements and local variable declarations of two blocks.

This is solved by using NW algorithm. It also finds low
similarity between the trees of different loops and different
selection statements. This is solved by using LCS algorithm.
Maximum weight bipartite matching algorithm is used to
find the size of maximum common subtree of two tree
structures. This approach proved to be very efficient in
terms of similarity detection, but for a huge program
database the runtime was found to be very high. Hence, we
use an LSI based approach to reduce the number of
programs given as input to the AST algorithm.

D. Combining AST Based Approach and LSI Based
Approach:

LSI algorithm can identify sets of potentially plagiarized
programs in a large program database but is incapable of
identifying which portions of the programs tend to be
similar. Moreover, attribute-based detection is less accurate
for large program files and larger number of files. Hence,
we use LSI only for extracting groups of possibly
plagiarized files. To improve the overall performance of the
AST-LSI combined approach, we have modified the
preprocessing stage of LSI and have added a post processing
stage to LSI.

a. Preprocessing Stage:
The preprocessing of files occurs during the lexical

analysis phase of LSI. In [1], Cosma removes comments,
Java reserved words, terms occurring in a single file or all
files, and single character tokens during preprocessing. A
different method is followed in [16] which takes into
account only the identifier names (variable names and
method names) in source files and term document matrix is
created out of these identifier names obtained from the
corpus.

During this phase, our system skips the comments and
uses a token file for lookup which consists of keywords and
predefined words for a specific programming language and
the set of operators. For each source file to be compared, we
count the number of occurrences of each of these tokens. It
also stores the number of distinct variable names and
method names in each file. This is different from the normal
approach where the algorithm is allowed to create index
automatically by analyzing words in the sample corpus. In
our approach, we achieve this by dropping the zero rows
from the matrix corresponding to terms that occur in none of
the documents.

b. Similarity Score Calculation and Evaluation
Criteria:

Document-document similarity for all files in the
database is obtained by finding the product ATA as

ATA = (SVT)T(SVT) (5)
Where A is the term-document matrix referred to in (4)

and S and V are the matrices of singular vectors obtained
using SVD. We have used the evaluation criteria given in
[13]. During testing, it was observed that LSI could retrieve
documents with high recall but there was a fall in precision
as we increased the number of files. Precision and recall
depend on the similarity score cut-off and therefore the
similarity threshold should be so chosen that it is low
enough to accommodate all the true positives but high
enough to reduce the number of false positives. The number
of false positives showed a slight increase with increasing
number of files. In order to reduce the number of false
positives to zero and thus reduce the number of files to be
given as input to AST algorithm, which is our main
objective, we add a post processing stage to LSI.

c. Post processing Stage:
The vectors in the initial term document matrix

corresponding to the files identified as plagiarized are
extracted and a different similarity score, Dice’s coefficient,
is calculated. A high value for both LSI and Dice’s
coefficient indicates that the files are potentially similar.
This stage could filter out all the false positives obtained
with LSI.

III. RESULTS AND DISCUSSIONS

We tested our approach for a student program database
with 80 C source code files of varying functionality and size
and a smaller database of C++ and Java files. The initial
database had implementations of different sorting
algorithms, greedy algorithms, algorithms for numerical
analysis, and linear algebra algorithms. These files were
manually plagiarized using the different student cheating
strategies listed in [15], which includes changing identifier
names, replacing for with while, while with for, while with
do-while, do-while with while, if-else-if with switch, switch
with if-else-if, function calls with function bodies, group of
statements with function calls and so on. This database was
initially tested using AST algorithm and we obtained
maximum precision and recall of 1. It was observed that
increase in the number of files did not affect the precision
and recall. However, runtime of AST increased with
increase in the number of files. However, runtime of AST
increased with increase in the number of files. Fig. 1 shows
plots of runtimes of AST and LSI algorithms against number
of files under comparison.

Resmi N.G. et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,546-550

© 2010, IJARCS All Rights Reserved 549

Figure 1. This figure shows the plots of runtimes of LSI and AST

algorithms against number of files under comparison.

In [15], Ligaarden makes an estimate of runtime for
2000 files using modified ASTs which is also very high.
Hence, we have used LSI to reduce the number of files to be
given as input to AST algorithm.

A. Choice of LSI and Selection of Tokens in TokenFile:
Initially, we represented each file as a vector with counts

of occurrences of all terms in each file. We used two
similarity measures - Dice’s coefficient and cosine
similarity. We computed precision and recall by using
different token lists - with only the keywords, with only the
identifiers, with keywords and operators, and with
keywords, operators and punctuators. The results were not
satisfactory because there were a large number of false
positives. A high threshold for similarity identified most of
the highly similar files but decreasing the threshold, to
accommodate files with slightly lower similarity, decreased
the precision.

We then used LSI and tested it using the different token
lists and found it to be more promising than the previous
measures. The token file we used finally to create the term
document matrix was obtained after numerous trials.
Considering all the tokens in a file was not found to be
effective. A list of identifiers alone produced high similarity
scores between very small programs and large programs
with same number of variable and method counts. The final
token list contains keywords and a set of operators. LSI
could effectively retrieve all the similar documents in our
database (high recall) for a certain similarity threshold.

Fig. 2 shows the plots of precision and recall against
number of files on applying LSI on C source code database.

Figure 2. This figure shows the plots of precision and recall against number

of files on applying LSI on C source code database.

The fall in precision is due to increase in the number of
False Positives(FPs) with increase in number of files (Fig.3).

Figure 3. This figure shows the plot of number of false positives against the

number of file-pairs on applying LSI.

For the postprocessing of LSI output, we first used
cosine similarity of identifier vectors. The counts of
occurrences of distinct variable names and distinct method
names were stored as two vectors. Cosine similarities were
found after making suitable modifications to these identifier
vectors to account for their distinct occurrences in the
program files. However, it produced many false positives.
Then, we tested using Dice’s coefficient on vectors
extracted from term document matrix which gave better
results when applied on LSI output and reduced the false
positives to zero.

LSI approach was tested on C, C++ and Java files by
selecting respectively the token lists designed for C, C++
and Java.

B. Applying AST Algorithm on Potentially Plagiarized
Files:

To generate ASTs for C, C++ and Java files, we have
used their respective grammars and have used JavaCC and
JJTree tree builder.

The parse tree generated, without any modification in C
grammar, for a simple C program consisted of 41 levels and
69 nodes(including 5 leaf nodes). Fig. 4 shows the AST
generated for the same program with suitable modifications
in the grammar.

Figure 4. This figure shows the AST for a simple C program.

The size of AST is considerably small compared to the
parse tree. Hence, there is a significant reduction in the
computational cost involved in AST-based comparison in

10 20 30 40 50 60 70 80 0
1
2
3
4

Number of files

LSI Runtime Vs Number of files

5 10 15 20 25 30 35 40 0
100
200
300

Number of files

AST Runtime Vs Number of files

Ti
m

e
(in

 s
ec

on
ds

)

Ti
m

e
(in

 s
ec

on
ds

)

10 20 30 40 50 60 70 80 0
0.2
0.4
0.6
0.8

1

Number of files

LSI Precision Vs Number of files

10 20 30 40 50 60 70 80 0 0.2 0.4 0.6 0.8 1
1.2

Number of files

LSI Recall Vs Number of files

P
re

ci
si

on

R

ec
al

l

0 500 1000 1500 2000 2500 3000 3500 0
10
20
30

Total number of file-pairs

LSI-Number of false positives Vs Total number of file-pairs

N
o.

 o
f F

Ps

Resmi N.G. et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,546-550

© 2010, IJARCS All Rights Reserved 550

plagiarism detection as compared to parse tree based
comparison.

IV. CONCLUSION

In this paper, we have studied and analyzed the results of
combining Abstract Syntax Trees (ASTs) and Latent
Semantic Indexing (LSI) for detecting plagiarism in source
code files written in C, C++ and Java. We look forward to
try different modifications on the parse tree generated by
JavaCC to reduce its size and also try different sequence
matching algorithms for comparison. We are also exploring
methods which can detect cross-language plagiarism. We
limit our method for detection of plagiarism in student
assignments in educational institutions, the reason being the
fact that LSI results are less reliable since it greatly depends
on the token list and chosen dimensionality. Our method
gave good results on our database. However, finally, it is
upto the investigator to decide whether the files flagged as
plagiarized are actually plagiarized. Our system just
identifies the highly similar files.

V. ACKNOWLEDGMENT

We would like to thank O. S. Ligaarden, research fellow
at SINTEF ICT, Norway, for his help and guidance in
carrying out this research.

VI. REFERENCES

[1] G. Cosma, An approach to source-code plagiarism
detection and investigation using latent semantic analysis,
Ph.D. Thesis, University of Warwick, July 2008.

[2] P. Clough, “Plagiarism in natural and programming
languages: an overview of current tools and technologies,”
2000.

[3] R. Koschke, “Survey of research on software clones,” In
Proc. of Dagstuhl Seminar 06301: Duplication,
Redundancy, and Similarity in Software 2007, 962.

[4] K.L. Verco, and M.J. Wise, “Software for detecting
suspected plagiarism: comparing structure and attribute-

counting systems,” First Australian Conference on
Computer Science Education, Sydne y, Australia, July 3-5,
1996.

[5] K.J. Ottenstein, “An algorithmic approach to the detection
and prevention of plagiarism,” CSD-TR 200, August, 1976.

[6] M.H. Halstead, Elements of software science, Elsevier,
1977.

[7] G. Salton, A. Wong, and C.S. Yang, “A vector space model
for automatic indexing,” Commun. ACM 1975, 18(11):
613-620.

[8] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer,
and R. Harshman, Indexing by latent semantic analysis. J.
Am. Soc. Inform. Sci. 1990, 41(6):391-407.

[9] B.S. Baker, “On finding duplication and near-duplication
in large software systems,” Proc. 2nd WCRE 1995; 86-95.

[10] I.D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L.
Bier, “Clone detection using abstract syntax trees,” Proc.
IEEE ICSM 1998; (Cat. No. 98CB36272):368-377.

[11] Koschke R, Falke R, and Frenzel P, Clone detection using
abstract syntax suffix trees. 13th WCRE 2006; 253-262.

[12] Ducasse S, Rieger M, and Demeyer S, A language
independent approach for detecting duplicate code. Proc.
IEEE ICSM 1999; 109-118.

[13] Prechelt L, Malpohl G, and Philippsen M, Finding
plagiarisms among a set of programs with JPlag. J.
Univers. Comput. Sci. 2002; 8(11): 1016-1038.

[14] Wise MJ, String similarity via greedy string tiling and
running Karp-Rabin matching. TR, Dept. of CS, University
of Sydney, December 1993; 1-17.

[15] Ligaarden OS, Detection of plagiarism in computer
programming using abstract syntax trees. Master Thesis,
University of Oslo, November 2007.

[16] Kawaguchi S, Garg PK, Matsushita M, and Inoue K,
Automatic categorization algorithm for evolvable software
archive. Proc. 6th International Workshop on Principles of
Software Evolution, 2003.

	INTRODUCTION
	METHODS USED
	Latent Semantic Indexing:
	Modified LSI for Source Code Plagiarism Detection:
	Abstract Syntax Trees for Source Code Plagiarism Detection:
	Combining AST Based Approach and LSI Based Approach:
	Preprocessing Stage:
	Post processing Stage:

	RESULTS AND DISCUSSIONS
	Choice of LSI and Selection of Tokens in TokenFile:
	Applying AST Algorithm on Potentially Plagiarized Files:

	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

