
Volume 1, No. 2, July‐August 2010

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

1
© 2010, IJARCS All Rights Reserves

ISSN No. 0976-5697

Adoption to Service Oriented Architecture

Ashish Seth*
Assistant Professor

Department of Computer Applications
Ideal Institute of Technology, Ghaziabad, India

ashish_may13@rediffmail.com

Kirti Seth
Assistant Proffesor

Department of Computer Science and Engineering
Ajay Kumar Garg Engineering College, Ghaziabad

Kirti.twins@gmail.com

Abstract: This SOA is a Buzzword today and much is said about it, the actual goal of SOA is to help align IT capabilities with business goals
.Another important goal of SOA is to provide an agile technical infrastructure that can be quickly and easily reconfigured as business require-
ment change. Until the emergence of SOA based IT systems, business and government organizations were faced off with difficult trade off be-
tween the expanses of custom solution and the convenience of packaged applications. In this paper we have argued that how service based in-
formation systems are different from component based systems. Further we have identified the line of division between two approaches and
pointed out the issues of SOA adoption in an organization.

Keywords: component, modelling, security, CBSE, services

I. INTRODUCTION

In today’s competitive scenario where business demand
changes very frequently, the expectation from technology is
raised to level where we are expecting the business processes
are developed in such a manner that they can adapt the frequent
changes without affecting the overall organization business
architecture. Thus the need to assume business processes as a
smart services that can be loosely coupled and form the basis of
target architecture. Thus need of service oriented architecture
arises.

A Service Oriented Architecture (SOA) is a style of design
that guides an organization during all aspect of creating and
using business services (including conception, modelling, de-
sign, development, deployment, management, versioning, and
retirement).

Though SOA gives you the ability to more easily integrate
IT systems, provide multi channel access to your systems, to
automate business process, and is the need for current business;
it is still in nascent stage and is facing number of issues that
must be properly taken care of in order to adopt it completely.

SOA provides a design framework for realizing rapid and
low-cost system development and improving total system qual-
ity. SOA uses the Web services standards and technologies and
is rapidly becoming a standard approach for enterprise informa-
tion systems. SOA is an architectural software concept whose
core working is based on services, a functionality that can per-
form any specific task and facilitates to support business re-
quirements. In an SOA environment, resources are made avail-
able to other participants within the network as independent
services that are accessible across the network in a standardized
way.

Overall, a business centric, SOA approach delivers a num-
ber of benefits, which includes the following: reduced time to
market, improved business alignment for growth, reduced
costs, reduced business risk. Each Service Oriented Architec-
ture plays one or more of three roles:

• It is a web service responsible for deciding the type of in-
formation exposed. A service provider has to make trade-
offs between availability & security.

• Service broker or service register is responsible for making
information available to a requestor. A service broker has
to decide the amount of information transfer.

• The service requestor or Web service client requests for a
service and binds to the service provider in order to call
upon one of its Web services.

II. COMPONENT BASED SOFTWARE
ENGINEERING (CBSE) VS SERVICE ORIENTED

ARCHITECTURE (SOA)

Component based software development approach is based
on the idea to develop applications using components, compo-
nents is analogous to function or procedure in a procedure ori-
ented development, component is more abstract form and is
capable to perform specific functionality. Component based
software systems are developed by selecting appropriate off-
the-shelf components and then to assemble them with a well-
defined software architecture.

CBSE is a process that aims to design and construct soft-
ware systems using reusable software components. CBSE
emerged from the failure of object-oriented development to
support reuse effectively. Components may constructed with
the explicit goal to allow them to be generalized and reused

CBSE is about creating a software package in such a man-
ner as to be able to easily reuse its constituent components in
other similar or dissimilar applications. It includes writing high
level code that glues together pieces of pre-built functionalities
or software building blocks called components. Component is
one of the parts of the system that make up a system. It may be
hardware, software or firmware and may be sub divided into
other components [1].

A component is a software object, meant to interact with
other components, encapsulating certain functionality or a set
of functionalities. A component has a clearly defined interface
and conforms to a prescribed behavior common to all compo-

Ashish Seth et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1-5

nents within an architecture [2]. Component reusability should
strive to reflect stable domain abstractions, hide state represen-
tations, independent (low coupling), and propagate exceptions
via the component interface.

Component-based software development approach is based
on the idea to develop software systems by selecting appropri-
ate off-the-shelf components and then to assemble them with a
well-defined software architecture. The term component-based
software development (CBD) can be referred to as the process
for building a system using components [3]. This approach is
based on the idea that software systems can be developed by
selecting appropriate off-the-shelf components and then assem-
bling them with well-defined software architecture [4, 5]. This
new software development approach is very different from the
traditional approach in which software systems can only be
implemented from scratch. These commercial off-the shelf
(COTS) components can be developed by different developers
using different languages and different platforms. This can be
shown in Fig. 1, where COTS components can be checked out
from a component repository, and assembled into a target soft-
ware system.

Figure. 1 Component-Based Software Development

The following table (fig 2) provides the comparison among
current component technologies and can be found in [4]-[10].
Here is simply a summarization of their different features

Figure. 2 Comparison of current component technologies

The basic SOA is not architecture only about services; it is
a relationship of three kinds of participants: the service pro-
vider, the service discovery agency, and the service requestor
(client)(see figure 3)

Figure 3. Basic SOA Architecture

Component based architectures and Service-oriented archi-
tectures seem to have the same goal: To provide a foundation
for loosely joined and highly interoperable software architec-
ture, enabling efficient, error-free software development. Near-
ly all evolution in recent years had this intention: To develop a
type of architecture, that allows loose coupling and high reus-
ability of its components. These attributes should allow more
efficient, faster, error-free software production. In more ab-
stract terms, one evolutionary step enhanced the previous step
and helped to get closer to these objectives.

There is no clear dividing line between Service Oriented
Architecture and Component Based Architecture. In principle
SOA is the enhancement of Components: The individual ser-
vices are single components, which can be linked to gain new
business logic, new services or a new component. But the dif-
ference between SOA und components seems to consist of two
major points:
• Services have to be publicly accessible. Models for con-

sumption will probably be developed though not neces-
sarily cost free. But through registries (UDDI) it should be
possible to find services like other business partners in the
yellow pages.

• Services have to be largely independent from implementa-
tion specific attributes. For users and customers it is irrele-
vant, if the service is released with Java, .NET or Perl. The
shared communication is XML based, and as long as no
other protocol exits, the protocol will probably be SOAP.

III. SOA MODELLING ISSUES

Major modeling activities will concentrate on service dis-
covery, service composition, (as described in basic SOA mod-
el)and service granularity, defining Service Level Agreements
(SLAs).Zimmermann et al. (2004) specify quality attributes for
SOA that cover reusable (well-crafted services), loosely cou-
pled, cohesive abstractions, stateless, meaningful to business
and standardized to comply with enterprise architecture pat-
terns and underlying technologies..

According to Ravichandran et al. (2007) IT architectural
design features for SOA must include reusable components,
modular, autonomous, i.e. capable of interaction and adaptabil-
ity without human intervention, interoperable, and re-
configured flexibly in run time through service matching and
dynamic binding.

.Ren & Lyytinen (2008) classify three design features for
service-based information systems as system design features,
service design features and business design features. system
design features deals with issues like platform-independence,

2
© 2010, IJARCS All Rights Reserves

Ashish Seth et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1-5

loose coupling, re-usability and interoperability, service design
features handles issues like encapsulation, autonomy, deceiv-
ability and designed for contracting and business design fea-
tures takes care of issues related to business semantics, comply
with business process and suitable for enterprise integration .
They further distinguish between reusability, agility and scal-
ability as quality attributes for IT architectures.

Lin et al. (2009) emphasize workflow monitoring and man-
agement, provenance management and data quality manage-
ment as core building blocks for SOAs. Provenance module
will cover Querying, Exception handling, RDF-to-Relational
data mapping, OWL (Web Ontology Language)-to-Relational
Schema mapping and Relational Provenance repository. Whe-
reas the data quality module will cover XML-to-Relational data
mapping and the workflow management module will cover
workflow scheduling, removing redundancy, orchestration and
breakdown into discrete, autonomous task activities.

According to Mike Rogers As a result of SOA, businesses
can achieve better alignment through process optimization and
differentiated capability. Yet, in order to realize this compelling
new promise of high performance, organizations will need to
examine their current IT strategy with a perspective that re-
flects the new realities of SOA

IV. SOA DEVELOPMENT ISSUES

According to Zimmermann et al. (2004) service-oriented in-
formation systems analysis and design (they refer to as SOAD)
have roots in three major existing disciplines; Object-Oriented
Analysis and Design (OOAD), Business Process Modeling
(BPM) techniques, and Enterprise Architecture (EA) frame-
works,. They suggest a hybrid approach that collates suitable
elements from OOAD, EA, and BPM to come up with a three
layers SOAD approach to include component, software service
& business service layers. In the business service layer the
approach suggests the use of BPM techniques, such as work-
flow diagrams, as well as UML Sequence and Interaction dia-
grams to model the interaction between the different compo-
nents across the enterprise service bus. In the software service
layer the approach suggests the encapsulation and granularity
of services. In this regard, integration of existing legacy appli-
cations can be decomposed into stateless services, where reus-
able business processes and rules are abstracted into autono-
mous services managed by a business choreography model
represented by BPEL specifications.

Phased approach is suggested by Bell (2008) for service-
oriented modeling. He suggested three phases for SOA envi-
ronment which includes service abstraction, service analysis
and design activities. In the abstraction phase service discov-
ery and conceptualization (high-level abstractions of business
logic and re-usable processes) will be carried out, in the analy-
sis phase service descriptions will be carried out along with
business integration, enterprise architecture and meta-data
specifications, and in the design phase component and archi-
tecture logical and physical designs will be outlined.

Bitzer & Schumann (2009) emphasize appropriate interac-
tions between Functional and IT departments in order to over-
come the Business/IT gap in modeling service-based informa-
tion systems.. They suggest development process starts with a
business analysis and service conceptualizations by the Func-
tional department. Then both departments collaborate in de-
signing the SOA by producing the corresponding BPM models
and BPEL specifications supported by BPEL editors. This is
followed by orchestration of the different services which will
be carried out by the IT department in order to form the service
choreography supported by BPEL editors. Finally execution

and governance of services within the required SOA will be
undertaken by the IT department.

Niemann et al. (2008) suggest a generic governance model
for SOA to govern development, provisioning and operation of
service-based information systems. In their model they specify
four phases; planning, design realization and operation. The
planning phase will cover SOA preliminary specifications
along with organizational governance issues such as staffing,
competences, streamlining cross department processes, migra-
tion of legacy systems & processes, enterprise-wide consolida-
tion, as well as policy and metrics planning. The design phase
will address detailed business and technical requirements, SOA
topology and detailed service specifications. The realization
phase will target implementation issues, such as realizing the
service registry and semantics, SLA implementations, continu-
ous service tests and reviews and lastly the operation phase
will cover the major governance activities that will include
business service registry management, business service evolu-
tion management, architecture evolution and management,
SLA management, etc

V. ISSUES IN UNDERSTANDING

Businesses can achieve better alignment through process
optimization and differentiated capability. Whenever any in-
vestment is made on new infrastructure and new technology it
is always very important to understand its scope and relevancy
that how it suits to your business needs. Not only this but it is
must to understand the right way to do it and what you can and
can’t do. SOA and web services are powerful, but it doesn’t
mean that they can do everything as identified by Grace
A.Lewis et al [16] following are the misconceptions:

• SOA provides the complete architecture for a system
• Legacy systems can be easily integrated into an SOA envi-

ronment
• SOA is all about standards and standards are all that is

needed
• SOA is all about technology
• The use of standards guarantees inter operability among ser-

vices in an SOA environment
• It is easy to develop applications based on services
• It is easy to develop services anybody can use
• It is easy to compose services dynamically at runtime
• Services can only be business services
• SOA can be implemented quickly
• Testing applications that use services is no different than

testing any other application

Understanding the SOA in respect to above points is very im-
portant, it requires a fresh approach, clear vision and a multi
dimensional view to understand the SOA scope.

VI. SECURITY ISSUES

Security is a not a goal in and of itself. It is a business en-
abler. The great Robert Garigue [11] said that security is like
brakes on a car. Because we have brakes we can drive faster.
SOA security architects, this is your mantra. Find ways that
you can deliver security services to your organization while
enabling your business to grow.

Each progression in distributed computing - from object-
orientation to component-based design and now to service-
orientation - has introduced unique security considerations.
Objects and components use similar binary runtimes, but when

3
© 2010, IJARCS All Rights Reserves

Ashish Seth et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1-5

building services as Web services, we can no longer rely on
binary controls for security (fig 4).

Figure 4: Different distributed programming paradigms introduce differ-

ent security considerations

The primary security functions required by most systems

are: authentication, authorization auditing, and assurance A
basic SOA architecture contains components service requestor,
service provider and service repository., the communication
exists between service requestor to provider in the form of
message passing and is the scope for intruder to enter, therefore
it is within the message exchange where the authentication,
authorization, audit, and assurance services add true value.

Gunnar Peterson shows (fig 5) how security services are

needed to mediate communication between a subject and its
objects - or, in the SOA world, between the service provider
and its requesters (or consumers).

Figure 5 .Security service model

Gunnar Peterson has also suggested following points that

might be helpful to incorporate security into SOA:
1. Plan out a security architecture that represent the system

from an end to end perspective, and focuses on your assets
2. For each service requester and service provider - and

anything in the middle like proxies - understand the current
state of access control by analyzing authentication, authoriza-
tion, and auditing

3. Determine what policy enforcement and policy decision
points exist today and which can be strengthened in the future

VII. ISSUES IN IMPLICATION FOR EDUCATION

As SOA is at its nascent stage, the expertization and clear
understanding of the concept is not found among the peoples.
Thus it is one of the major academic challenges facing depart-
ments is to train existing faculty to teach the various technolo-

gies that support the SOA infrastructure. As ERP is already
understood and successfully implemented in industries. Many
universities have tie-up with industry and major vendors such
as SAP / Oracle to standardize their curriculum on ERP back-
bone .The universities try to cover the conceptual part of ERP
within its traditional teaching duration and practical exposure
will be given at collaborating industry partner like one univer-
sity may choose to instruct Business Process Modeling using
the ARIS Toolset while another may choose to illustrate the
technology using the Net Beans IDE's Business Process Execu-
tion Language (BPEL) support.

Also as new technology is emerging day by day it is really

difficult to cover all in any particular course curriculum. As it is
found that engineering and professional graduates has already
wide contents in their course duration. Adding new subjects
into their syllabus left the question as to which subject is elimi-
nated form the course in order to balance the student load

VIII. CONCLUSIONS

To create an IT environment that maximises the benefits of
an SOA approach, certain issues discussed above must be
taken care of. It is necessary to be aware of your business and
understand well before trying to automate them. SOA can
align IT with business, but that simply boost up problems.
SOA should consider hardware availability as well as software.
If SOA grows to a good extent, then there should be a separate
SOA governance system. Further more exploration in the iden-
tified issues and finding suitable solutions for them will be the
future scope of work.

IX. REFERENCES

[1] Sajan Mathew, “Software Engineering”, Edition 2nd
S.Chand. CBSE Network, “Component based software
engineering workshop”,Budapest April 3-4
www.scitation.aip.org/getabs.

[2] Xia Cai, Michael R. Lyu, Kam-Fai Wong Roy Ko
,“Component-Based Software Engineering Technologies
Development Frameworks and Quality Assurance
Schemes”, The Chinese University of Hong Kong Hong
Kong Productivity Council.

[3] G. Pour, “Component-Based Software Development
Approach: New Opportunities and Challenges”,
Proceedings Technology of Object- Oriented Languages,
TOOLS 26.,pp. 375-383,1998.

[4] A.W.Brown, K.C. Wallnau, “The Current State of
CBSE”, IEEE Software ,Volume:15 5, pp. 37-46.,Sept.-
Oct. 1998.

[5] G. Pour, “Enterprise JavaBeans, JavaBeans & XML
Expanding the Possibilities for Web-Based Enterprise
Application Development”, Proceedings Technology of
Object-Oriented Languages and Systems, TOOLS 31,
pp.282-291. 1999.

[6] G.Pour, M. Griss, J. Favaro, “Making the Transition to
Component-Based Enterprise Software Development:
Overcoming the Obstacles –Patterns for Success”,
Proceedings of Technology of Object-Oriented Languages
and systems, pp.419 – 419, 1999.

[7] G. Pour, “Software Component Technologies JavaBeans
and ActiveX”, Proceedings of Technology of Object-
Oriented Languages and systems, pp. 398 – 398, 1999.

[8] C. Szyperski, "Component Software: Beyond Object-
Oriented Programming", Addison-Wesley, New York,
1998.

4
© 2010, IJARCS All Rights Reserves

Ashish Seth et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1-5

[9] "Thinking about Robert Garigue", 1 Raindrop
Blog,Security in SOA - It's the Car, Not the Garage, by
Gunnar Peterson Published: February 9, 2008 (SOA
Magazine Issue XV: February 2008, Copyright © 2008)

[10] Douglas W. Frye Enterprise Integration, Inc., Alexandria,
Virginia, USA, and Thomas R. Gulledge Enterprise
Integration, Inc., Alexandria, Virginia, USA and George
Mason University, Fairfax, Virginia, USA Industrial
Management & Data Systems Vol. 107 No. 6, 2007 pp.
749-761 q Emerald Group Publishing Limited 0263-5577

[11] Creating and maintaining coherency in loosely coupled
systems ,Written by Lori MacVittie | Technical Marketing
Manager, Application Services

[12] Grace A. Lewis, Edwin Morris, Soumya Simanta, Lutz
Wrage, “Common Misconceptions about Service-Oriented
Architecture” Sixth International IEEE Conference on
Commercial-off-the-Shelf (COTS)-Based Software
Systems (ICCBSS'07), IEEE, 2007

5
© 2010, IJARCS All Rights Reserves

http://www.soamag.com/contributors/bio-gpeterson.php

	I.
	I. INTRODUCTION
	II. COMPONENT BASED SOFTWARE ENGINEERING (CBSE) VS SERVICE ORIENTED ARCHITECTURE (SOA)
	III. SOA MODELLING ISSUES
	IV. SOA DEVELOPMENT ISSUES
	V. ISSUES IN UNDERSTANDING
	VI. SECURITY ISSUES
	VII. ISSUES IN IMPLICATION FOR EDUCATION
	VIII. CONCLUSIONS
	IX. REFERENCES

