Available Online at www.ijarcs.info

Deviation Approach to Missing Attribute values in Data Mining

Pallab kumar Dey*
Department of Computer Science, The University of Burdwan
Bardhaman - 713 104, West Bengal, India
pallabkumardey@gmail.com

Sripati Mukhopadhay
Department of Computer Science,
The University of Burdwan
Bardhaman - 713 104, West Bengal, India
dr.sripatim@gmail.com

Abstract

In real-life data, information is not complete because of presence of missing values in attributes. Several models have been developed to overcome the drawbacks produced by missing values in data mining tasks. Statistical methods and techniques may be applied to change an incomplete information system to a complete one in preprocessing/imputation stage of Data Mining. With the help of statistical methods and techniques, we can recover incompleteness of missing data and reduce ambiguities. In this work, we introduce a mean deviation method by which missing attribute values may be replaced with minimum computational complexity when they occur at random.

$\underline{\text { Keywords: Data Mining, Missing attribute Values, preprocessing, Incomplete Information, Deviation approach. }}$

I. INTRODUCTION

Most of Data Mining algorithm based on high quality data. Data Mining with inaccurate, redundant and missing data may produce wrong result and may consume more time. Information System having missing attribute values (in practical) hamper accurate estimation of data mining. To deal with missing attribute values mainly three methods are used $[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]$ in data mining.

First method is very simple and low cost, just ignore the sample instances which has missing values. By list-wise or pair-wise we can delete samples [4].We can apply list-wise deletion when information system is very large, missing values are completely random and missing rate is low. Pairwise deletion is not so popular because of computational complexity of covariance matrix, though in pair-wise deletion all available information has been considered.

Second One is based on change of Incomplete Information System (i.e., data sets with missing attribute values) to a complete Information System in preprocessing step and then extraction of knowledge from complete data sets. Preprocessing is one of the most important steps in data mining. We can handle missing attributes values in preprocessing step by different strategies like, maximum occurring (same concept) attribute value[13,14],all feasible domain values (within same concept) of the attribute[9,15] or by various statistical methods [1,2,3,6].

Next approach is based on extraction of knowledge from incomplete data sets, i.e. original data sets are not converted into complete data sets. The later approach have been used by the C4.5 method[11] where decision tree can be used to classify new records, or by a modified LEM2 algorithm [12] by computing block of the attributes with the objects of known values and then induced certain rules using original LEM2 method. In the later approach preprocessing are not done, here incompleteness is handled at the time of rule generation.

Missing value can be handled independently in by preprocessing. So we can use most appropriate learning algorithm (which are already present) for each situation according to requirements. There is no method which we can be considered as a best method, we have to select a method which is better for that problem according to attribute nature, missing characteristic, missing rate and complexity. Objective of this work is to propose a statistical method to recover missing values from incomplete information. Before this work a lot of statistical methods have been proposed by various authors. Among those, mean-mode method [1] is very popular to use as it is very simple and low cost. Here every numerical missing value of an attribute has been replaced by it's observe mean value and characteristic/linguistic missing value of an attribute by it's observe mode. In [3] missing values are replaced randomly by retaining standard deviation same but complex to implement. In [2], closest fit approach, we replace missing value by average of, mean of the attributes and average of preceding \& succeeding values of the missing value. In mean-mode and closest fit approach deviation of sample values are underestimated

II. MATHEMATICAL MODELLING

The proposed method is based on deviation from observe mean and previous \& following values for completeness of Incomplete Information. This method is applicable for numerical attribute values. We will show that proposed method is very simple, low cost and produce the best result comparing with mean-mode and closest fit. This method is applicable where missing value is completely at random and no of observation is reasonable high such that missing value can be scattered within observe scatter area.

Neglecting missing values Mean for an attribute A_{j} (\bar{A}_{j}) is the sum of attribute values divided by no of sample object (m) which are present. Mean represent central
tendency of attribute values. \bar{A}_{j} Can be represented mathematically by following equation,

$$
\bar{A}_{j}=\frac{1}{m} \sum_{i=1}^{m} V_{i j}
$$

By neglecting missing values we calculate mean absolute deviation for each attribute, which can be represented mathematically by following equation,

$$
\bar{A}_{j M A D}=\frac{1}{m} \sum_{i=1}^{m}\left|V_{i j}-\bar{A}_{j}\right|
$$

Now missing value may deviate positively or negatively from mean or may be same as mean. We have to predict this deviation direction. For that we have taken help of previous and following values as the estimator of present value.

Previous value ($V_{i j \text { Pre }}$) and following value ($V_{i j F l w}$) have been taken as the estimator of missing value so it may be mean of this two value which can be represent mathematically by following equation,

$$
\bar{V}_{i j P F}=\frac{\left(V_{i j \mathrm{Pre}}+V_{i j F l w}\right)}{2}
$$

If previous value and following value both less than observed mean value $\left(\bar{A}_{j}\right)$ then we may assume the missing value ($V_{i j}$) may be less than mean(i.e., missing value has negative deviation from mean). It may not be true but for statistical computation from dataset wrong prediction of negative and positive deviation cancel each other. This approximated value may be as follows:

$$
V_{i j}=\frac{\left(\bar{V}_{i j P F}+\left(\bar{A}_{j}-\bar{A}_{j M A D}\right)\right)}{2}
$$

If previous value and following value both greater than observed mean value then we may assume the missing value may be greater than mean(i.e., missing value has positive deviation from mean).This approximated value may be as follows:

$$
V_{i j}=\frac{\left(\bar{V}_{i j P F}+\left(\bar{A}_{j}+\bar{A}_{j M A D}\right)\right)}{2}
$$

But if previous value and following value have deviation in opposite direction from observed mean value then we may assume the missing value has no deviation from mean. This approximated value may be as follows:

$$
V_{i j}=\frac{\left(\bar{V}_{i j P F}+\bar{A}_{j}\right)}{2}
$$

According to that discussion we propose following algorithm:

III. ALGORITHM

Input: Incomplete information System S ,

$S=\left\{A_{j}, V_{i j}: j=1,2, \ldots, k ; i=1,2, \ldots, n\right.$ where $V_{i j}$ may be missing\}
$\mathrm{k}=$ number of Attributes, $\mathrm{n}=$ number of Objects
Output: Complete Information System
$\mathrm{S}^{\prime}=\left\{\mathrm{A}_{\mathrm{j}}, \mathrm{V}_{\mathrm{ij}}: \mathrm{j}=1,2, \ldots, \mathrm{k} ; \mathrm{i}=1,2, \ldots, \mathrm{n}\right.$ where V_{ij} not null $\}$
Step 1. For Each Attribute (j)
Step 2. $\quad \bar{A}_{j}=\frac{1}{m} \sum_{i=1}^{m} V_{i j}$
//where m is the no of non missing Attribute value for $\mathrm{j}^{\text {th }}$ attribute.
Step 3. $\quad \bar{A}_{j M A D}=\frac{1}{m} \sum_{i=1}^{m}\left|V_{i j}-\bar{A}_{j}\right|$
Step 4. For Each object(i),
Step 5. If $V_{i j}$ missing
Step 6. Find not null, previous value ($V_{i j \text { Pre }}$) and following value ($V_{i j F l w}$)
Step 7. $\quad \bar{V}_{i j P F}=\frac{\left(V_{i j \operatorname{Pr} e}+V_{i j F l w}\right)}{2}$
Step 8. If $V_{i j P r e}<\bar{A}_{j}$ and $V_{i j F l w}<\bar{A}_{j}$
Step 9. $\quad V_{i j}=\frac{\left(\bar{V}_{i j P F}+\left(\bar{A}_{j}-\bar{A}_{j M A D}\right)\right)}{2}$
Step 10. \quad Else If $V_{i j \text { Pre }}>\bar{A}_{j}$ and $V_{i j F l w}>\bar{A}_{j}$

Step 11. $V_{i j}=\frac{\left(\bar{V}_{i j P F}+\left(\bar{A}_{j}+\bar{A}_{j M A D}\right)\right)}{2}$

Step 12. Else $V_{i j}=\frac{\left(\bar{V}_{i j P F}+\bar{A}_{j}\right)}{2}$
Step 13.
Step 14 End // step
End If. // step5
Step15. End For // step4
Step16. End For // step1
Step17. Stop.

$\begin{aligned} & \text { Yea } \\ & \mathbf{r} \end{aligned}$	Coal	Oil	Natur al Gas	Year	Coal	Oil	Natura 1 Gas	Year	Coal	Oil	Natura 1 Gas	Year	Coal	Oil	Natur al Gas
Million Tons of Carbon				Million Tons of Carbon				Million Tons of Carbon				Million Tons of Carbon			
1960	1,410	849	235	1960	1,410	849	235	1960	1,410	849	235	1960	1,410	849	235
1961	1,349	904	254	1961	1,349	904	254	1961	1,349	904	254	1961	1,349	904	254
1962	1,351	980	277	1962	1,351	980	277	1962	1,351	980	277	1962	1,351	980	277
1963		1,052		1963	1,396	1,052	300	1963	1,747.1	1,052	589.5	1963	1505	1,052	419.4
1964	1,435	1,137	328	1964	1,435	1,137	328	1964	1,435	1,137	328	1964	1,435	1,137	328
1965	1,460	1,219	351	1965	1,460	1,219	351	1965	1,460	1,219	351	1965	1,460	1,219	351
1966	1,478	1,323	380	1966	1,478	1,323	380	1966	1,478	1,323	380	1966	1,478	1,323	380
1967	1,448		410	1967	1,448	1,423	410	1967	1,448	1,834.1	410	1967	1,448	1583.8	410
1968	1,448	1,551		1968	1,448	1,551	446	1968	1,448	1,551	662.5	1968	1,448	1,551	492.4
1969	1,486	1,673	487	1969	1,486	1,673	487	1969	1,486	1,673	487	1969	1,486	1,673	487
1970		1,839	516	1970	1,556	1,839	516	1970	1811.8	1,839	516	1970	1569.8	1,839	516
1971	1,559	1,946	554	1971	1,559	1,946	554	1971	1,559	1,946	554	1971	1,559	1,946	554
1972	1,576	2,055	583	1972	1,576	2,055	583	1972	1,576	2,055	583	1972	1,576	2,055	583
1973	1,581	2,240	608	1973	1,581	2,240	608	1973	1,581	2,240	608	1973	1,581	2,240	608
1974	1,579	2,244		1974	1,579	2,244	618	1974	1,579	2,244	746	1974	1,579	2,244	575.9
1975	1,673	2,131	623	1975	1,673	2,131	623	1975	1,673	2,131	623	1975	1,673	2,131	623
1976	1,710	2,313	650	1976	1,710	2,313	650	1976	1,710	2,313	650	1976	1,710	2,313	650
1977	1,766		649	1977	1,766	2,395	649	1977	1,766	2,291.9	649	1977	1,766	$\underline{2542.3}$	649
1978	1,793	2,392	677	1978	1,793	2,392	677	1978	1,793	2,392	677	1978	1,793	2,392	677
1979		2,544	719	1979	1,887	2,544	719	1979	1,985.6	2,544	719	1979	$\underline{1743.5}$	2,544	719
1980	1,947	2,422	740	1980	1,947	2,422	740	1980	1,947	2,422	740	1980	1,947	2,422	740
1981	1,921		756	1981	1,921	2,289	756	1981	1,921	2,270.1	756	1981	1,921	$\underline{2270.1}$	756
1982	1,992	2,196	746	1982	1,992	2,196	746	1982	1,992	2,196	746	1982	1,992	2,196	746
1983	1,995	2,177		1983	1,995	2,177	745	1983	1,995	2,177	826.8	1983	1,995	2,177	656.7
1984		2,202	808	1984	2,094	2,202	808	1984	2,108.6	2,202	808	1984	$\underline{2108.6}$	2,202	808
1985	2,237	2,182	836	1985	2,237	2,182	836	1985	2,237	2,182	836	1985	2,237	2,182	836
1986	2,300		830	1986	2,300	2,290	830	1986	2,300	2,236.6	830	1986	2,300	$\underline{2236.6}$	830
1987	2,364	2,302	893	1987	2,364	2,302	893	1987	2,364	2,302	893	1987	2,364	2,302	893
1988	2,414	2,408	936	1988	2,414	2,408	936	1988	2,414	2,408	936	1988	2,414	2,408	936
1989	2,457			1989	2,457	2,455	972	1989	2,457	2,346.9	928.8	1989	2,457	$\underline{2597.3}$	1098.9
1990	2,409	2,517	1,026	1990	2,409	2,517	1,026	1990	2,409	2,517	1,026	1990	2,409	2,517	1,026
1991		2,627	1,069	1991	2,341	2,627	1,069	1991	2,232.3	2,627	1,069	1991	$\underline{2474.4}$	2,627	1,069
1992	2,318	2,506	1,101	1992	2,318	2,506	1,101	1992	2,318	2,506	1,101	1992	2,318	2,506	1,101
1993	2,265	2,537	1,119	1993	2,265	2,537	1,119	1993	2,265	2,537	1,119	1993	2,265	2,537	1,119
1994	2,331	2,562	1,132	1994	2,331	2,562	1,132	1994	2,331	2,562	1,132	1994	2,331	2,562	1,132
1995	2,414			1995	2,414	2,586	1,153	1995	2,414	2,412.1	1,023.3	1995	2,414	$\underline{2662.5}$	1193.4
1996		2,624	1,208	1996	2,451	2,624	1,208	1996	2,274.1	2,624	1,208	1996	$\underline{2516.2}$	2,624	1,208
1997	2,480	2,707	1,211	1997	2,480	2,707	1,211	1997	2,480	2,707	1,211	1997	2,480	2,707	1,211
1998	2,376	2,763	1,245	1998	2,376	2,763	1,245	1998	2,376	2,763	1,245	1998	2,376	2,763	1,245
1999	2,329	2,716	1,272	1999	2,329	2,716	1,272	1999	2,329	2,716	1,272	1999	2,329	2,716	1,272
2000	2,342	2,831	1,291	2000	2,342	2,831	1,291	2000	2,342	2,831	1,291	2000	2,342	2,831	1,291
2001			1,314	2001	2,460	2,842	1,314	2001	2,257.8	$\underline{2,528.1}$	1,314	2001	$\underline{2499.9}$	$\underline{2778.5}$	1,314
2002	2,487	2,819		2002	2,487	2,819	1,349	2002	2,487	2,819	1,116.5	2002	2,487	2,819	1286.6
2003	2,638	2,928	1,399	2003	2,638	2,928	1,399	2003	2,638	2,928	1,399	2003	2,638	2,928	1,399
2004	2,850	3,032	1,436	2004	2,850	3,032	1,436	2004	2,850	3,032	1,436	2004	2,850	3,032	1,436
2005		3,079	1,479	2005	3,032	3,079	1,479	2005	$\underline{2561.3}$	3,079	1,479	2005	$\underline{2803.4}$	3,079	1,479
2006	3,193		1,527	2006	3,193	3,092	1,527	2006	3,193	2,657.1	1,527	2006	3,193	$\underline{2907.5}$	1,527
2007	3,295	3,087		2007	3,295	3,087	1,551	2007	3,295	3,087	1,217.3	2007	3,295	3,087	$\underline{1387.4}$
2008	3,401	3,079	1,589	2008	3,401	3,079	1,589	2008	3,401	3,079	1,589	2008	3,401	3,079	1,589

Pallab kumar Dey et al, International Journal of Advanced Research in Computer Science, 3 (3), May -June, 2012,116-122

2009	3,393	3,019	1,552	2009	3,393	3,019	1,552	2009	3,393	3,019		1,552	2009	3,393	3,019	1,552
Mean	2,101	2,231	877	Mean	2,109	2,262	879	Mean	2,104.6	2,245		878.54	Mean	2109.4	2265.9	878.54
Missing Data (here DATA HAS BEEN DELETED ARBITRARILY)				TAB ACT Sour www	A DATA e: rth-policy	.org		TABL APPRO ATTRI If we appro			ode 876.		TABLE D Deviation approach to missing attribute values			

Figure: 1

Figure: 2

Figure: 3

IV. ANALYSIS OF ALGORITHM COMPLEXITY:

Step 1 will execute k (no of attribute) times. Time complexity of Step 2 depends on number of object (n), so time complexity is $\mathrm{O}(\mathrm{n})$. Time complexity of Step 3 also depends on no of object (n) ,so time complexity is $\mathrm{O}(\mathrm{n})$.To identify each missing attribute value we have to check n times .so time complexity for step 4 to step 15 is $\mathrm{O}(\mathrm{n})$, as all other operation take constant time and ignoring consecutive missing values. so time complexity for step 2 to step 15 is $\mathrm{O}(\mathrm{n})+\mathrm{O}(\mathrm{n})+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})$. So the total time complexity of the proposed algorithm is $\mathrm{O}(\mathrm{k}) * \mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{k} * \mathrm{n})$.Also space required to execute the program is constant, so space complexity is $\mathrm{O}(1)$. So clearly, computational complexity for proposed algorithm is simple.

V. EXPERIMENTAL RESULT

Dataset presented in closet fit [2] has been selected to compare the performance. In Table A an actual dataset is presented. Some attribute values are randomly remove, which are presented in Table B. In Table C we fill up missing attribute values using Closest Fit approach and also present the result if we fill missing values using mean-mode method. In Table D our proposed algorithm has been applied to fill missing attribute values. From table values it is clear that our proposed algorithm can predict better result, compare to meanmode and best-fit approach. Proposed algorithm can handle consecutive missing values though best-fit approach can't handle it. In three consecutive figures we compared, these three methods along with actual and missing attribute values considering three attribute separately. From the figure it is clear that not only statistical computation result but also our predicted values are better than other, so our proposed algorithm can be used to generate rule also. So clearly proposed algorithm is easy and efficient to implement in any software packages

VI. CONCLUSIONS

We have to select one method to fill the missing attribute which will give moderately better performance, easy to implement and low cost. In that point of view proposed algorithm may be best for some category of problem where proposed algorithm may be applied. In this work we have discussed application of proposed algorithm on numerical attribute values were missing data are randomly present. We will choose this method (or any statistical based method) to mainly handle missing attribute to take any decision based on statistical data generated from dataset.

VII. REFERENCES

[1] Han, J. and Kamber, M.: "Data Mining: Concepts and Techniques", Morgan Kaufmann Publishers, 2001.
[2] Gaur, Sanjay and Dulawat, M.S.: "A Closest Fit Approach to Missing Attribute Values in Data Mining", International

Journal of Advances in Science and Technology, Vol. 2, No.4, 2011.
[3] Pyle, D.: "Data Preparation for Data Mining". Morgan Kaufmann Publishers, Inc, 1999.
[4] Acock, A.: "Working with Missing Values". Journal of Marriage and Family, 67,1012-1028. 2005.
[5] Grzymala-Busse, J. W.: "Three Approaches to Missing Attribute Values-A Rough Set Perspective", Workshop on Foundations of Data Mining, associated with the fourth IEEE International Conference on Data Mining, Brighton, UK, November 1-4, 2004
[6] Young,W., Weckman, G., and Holland, W.: "A survey of methodologies for the treatment of missing values within datasets: limitations and benefits.", Theoretical Issues in Ergonomics Science Vol. 12, No. 1, 15-43, JanuaryFebruary 2011.
[7] Luengo, J., García,S., Herrera,F., "On the choice of the best imputation methods for missing values considering three groups of classification methods", Springer-Verlag London Limited 2011.
[8] Zhang,Z., Li, R., Li, Z., Zhang,H., and Yue,G.: "An Incomplete Data Analysis Approach Based on the Rough Set Theory and Divide-and-Conquer Idea", IEEE,Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).
[9] Grzymala-Busse, J. W. and Hu,M.: "A Comparison of Several Approaches to Missing Attribute Values in Data Mining", RSCTC 2000, LNAI 2005, pp 85,378 2001,Springer- Verlag Berlin Heidelberg 2001.
[10] Little, R.J.A. and Rubin, D.B., "Statistical Analysis with Missing Data". New York: John Wiley \& Sons, Inc., 1987
[11] Quinlan, J. R., "C4.5: Programs for Machine Learning". Morgan Kaufmann Publishers, 1993.
[12] Grzymala-Busse, J. W., and Wang, A. Y., " Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values". Proc. of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC'97) at the Third Joint Conference on Information Sciences (JCIS'97),Research Triangle Park, , 6972, NC, March 2-5, 1997.
[13] Clark, P. Niblett, T.: "The CN2 induction algorithm. Machine Learning 3", 261-283, 1989.
[14] Knonenko, I., Bratko, and I. Roskar, E.: Experiments in automatic learning of medical diagnostic rules. Technical Report, Jozef Stefan Institute, Lljubljana, Yugoslavia, 1984.
[15] Grzymala-Busse, J. W.: "On the unknown attribute values in learning from examples". Proc. of the ISMIS-91, 6th International Symposium on Methodologies for Intelligent Systems, Charlotte, North Carolina, October 16-19, 1991, Lecture Notes in Artificial Intelligence, vol. 542. SpringerVerlag, Berlin Heidelberg New York 368-377, 1991.
[16] Grzymala-Busse, J. W., "Data with missing attribute values: Generalization of indiscernibility relation and rule induction. Transactions on Rough Sets", Lecture Notes in Computer Science Journal Subline, Springer-Verlag, vol. 1 78-95. 2004
[17] Grzymala-Busse, J. W. "Knowledge acquisition under uncertainty—A rough set approach". Journal of Intelligent \& Robotic Systems 1, 1, 3-16, 1988

Short Bio Data for the Authors:

Sri. Pallab kumar Dey, MCA, is a faculty of the Department of Computer Science, The University of Burdwan, West Bengal, India. He has teaching experience of 2 \& $1 / 2$ years. He worked as a Software Developer in Assurgent

Technology Solutions Pvt. Ltd. for 1 year. He is currently working for his PhD degree under Dr. Sripati Mukhopadhyay, Professor Department of Computer Science, The university of Burdwan, in the field Data Mining.

Dr. Sripati Mukhopadhyay, MSC, DIIT, M.Tech., Ph.D, is a professor of Department of Computer Science, The university of Burdwan, West Bengal, India. He has teaching experience of 27 years. His major research interests are Artificially Intelligence, Data Mining, Soft Computing etc. He has over 40 publications in different national and foreign journals and Conferences.

