
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 107

ISSN No. 0976-5697

Optimal Search Mechanism using Backtracking in Cloud Environment

K.Govinda*
SCSE,VIT University,Vellore, India

kgovinda@vit.ac.in

Gurunathaprasad V
SCSE,VIT University, Vellore, India

gurunathaprasad.v2010@vit.ac.in

SathishKumar H
SCSE,VIT University, Vellore, India

sathishkumar.h2010@vit.ac.in

Abstract: Cloud computing presents a significant technology trend and is revolutionizing information technology processes and the IT market
space. The computing resources are accessed on –demand from pool of configurable computing resources. Accessing data is difficult in mixed
and dynamic environment like cloud where resources are accessed and analyzed in real time to address the above issue. This paper presents an
optimal search method using backtracking in order to maintain QOS (Quality of Service).

Keywords: Backtracking, Search, Quality of Service, Cloud, Optimal

I. INTRODUCTION

Cloud computing becomes a widespread environment,
plenty of data’s such as emails, industrial records, defense
records etc. had been stored on the cloud in day today life.
Since the cloud provides on-demand high quality data
storage service the data owners can be freed up from the
trouble of the stored data’s and privacy of the data’s.
Although, the data owners and cloud server may not belong
to the same trusted domain they put the outsourced data at
risk, though the cloud server may not be fully trusted. The
priority of the cloud is to encrypt the sensitive data's, in need
of data privacy and struggle for unwanted access. Since
there are plenty of outsourced data files in the cloud data
utilization become a challenging task. Moreover, the data
owners may share their outsourced data with as many
number of cloud users. In case of individual user, they may
want to retrieve a single specific file in which they are
interested. By using multi-tenancy or virtualization model
the cloud service providers can able to serve multiple cloud
users and based on the user demand the physical and virtual
resources have been dynamically assigned and reassigned
[1]. By using knowledge of the location, formation, and
originalities of the resources, the pool-based model
concludes that the computing resources become 'invisible' to
users. In such a scenario we need an efficient and optimal
search over the resources in the cloud as shown in the Fig1.

The best way for selectively retrieve files from the pool
is through backtracking approach.

Figure 1. Search in Cloud Environment

II. LITERATURE REVIEW

The American mathematician D. H. Lehmer has
discovered the term "backtrack" in 1950. the general back
tracking algorithm had been derived from the pioneer string-
processing language SNOBOL in the year 1962. Almost all
of the computational problem can be solved by general
algorithms like Backtracking which formally builds the
candidates to the solution in increasing order, and abandons
the partial candidate p ("backtracks") as soon as it determines
that p cannot be a complete valid solution.[2]. One of the
problems which can be solved by applying backtracking
algorithm is the eight queen's puzzle, in which the eight
queens’ should be arranged in such a way that no queens
attacks any other. In backtracking approach, the partial
candidates are arranged in such a manner that the first k
queens in the k rows of the board and all in different rows
and columns. A partial solution can be neglected in case they
contain mutually attacking queens, since it cannot be a valid
solution. The concept of "partial candidate solution"
problems can be solved by applying backtracking algorithm
and a relatively quick test whether it can be a valid
solution[3]. It becomes worthless, for problems such as
searching a value in an unordered array. However,
backtracking eliminates a huge number of candidates on a
single test. It's much faster than a brute force enumeration of
all complete candidates.

The constraint satisfaction problems (CSP) such as
Sudoku, maze, knapsack and many other can find solution
using backtracking.. It becomes a convenient tool for parsing
in case of knapsack and other combinational optimization
problems[4]. The logic programming languages like Icon,
Planner and Prolog are based on backtracking; moreover it's
used as a search engine in media wiki software. Backtracking
is based on the user-given ""black box procedures" which
defines the problem, the character of the partial candidates,
and how they are enlarged into a complete candidate. it is a
meta-heuristic instead of a specific algorithm although, not
like many other meta-heuristic , it assures to find all solution
to the finite problem for the given time[5].

K.Govinda et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,107-110

© 2010, IJARCS All Rights Reserved 108

A. The Eight Queens Puzzle:
The concept of backtracking is to solve uncomplicated

puzzles like eight Queens Problem [6]. The problem is to
find a solution for placing eight queens on a chessboard in
such a manner that any queen should not attack its
neighboring queen. A queen can attack another queen if it
exists in the same row, column or diagonal as the queen.
Since There are 64 places in a standard chess board is for
the first queen, for each of these there are 63 places for the
second queen, and so on, for a total of 64*63*….*57 =
178,462,987,637,760 cases. These cases can be reduced by
observing that a queen must be placed in a single column.
We have 8^8 = 16,777,216 ways of placing eight queens in
such a manner that one per column, into eight columns. The
solution is a vector of length 8

(a(1), a(2), a(3),, a(8)).
a(i), denotes the column for I-th queen where we should

place. The solution for 8*8 queen problem is by building the
partial solution element by element. We couldn't expand any
more, when we reach a partial solution of length k in this
case we should back track.

Figure 2. 8 Queens Puzzle

B. The Maze Problem:
In maze the traversing is done from the initial point to the

final point.

Figure 3. Maze problem

The problem is to choose a exact path for reaching the
final point. We should change the direction by backtracking,

when it leads to dead end before we reach the final point. We
can traverse only in north, south, east and west directions.
Until we get to the final point we should move and
backtrack. Let us consider a multi-dimensional maze cell
[W][H].A wall on the maze is denoted by cell[x][y]=1 and a
free cell is denoted by cell[x][y]=0 corresponding to the x, y
locations in maze. Initially we want to set the array boundary
as 1 for the multi-dimensional array which ensures that we
can't get out of the maze and at any time we reside inner part
of the maze. Since the array boundary is set to 1 we start
traversing from the initial point and to find the upcoming free
cell, then the next free cell and the process goes on. Once we
got an dead-end then we should backtrack and make
assignment as cell[x][y]=1 which denotes a wall on the path
as we saw earlier. the process is repeated until we reach the
final point[7].

C. The Sudoku Puzzle:
Since Sudoku adapt the concept of “partial candidate

solution” it can be solved by backtracking. consider a n*n
grid which has subset of n boxes where the grid is filled by
the numbers from 1 to n. a normal Sudoku has 27 zones
which is classified into rows and columns each of size 9 and
9 squares of 3*3.

The way for solving Sudoku based on backtracking is to
construct a graph on n2 vertices, in which each vertex of the
grid can be represented in a single vertex. if two boxes
belongs to a same zone then an edge is drawn between two
vertices. The Sudoku problem is to design the graph with N
colors, where the same color should not exists among the
adjacent vertices. This can be solved by starting with
assigning color to an unfilled vertices based upon some
fixed order. While assigning a color to an vertex, we must
check whether the assigning color is exist among the filled
vertices[8]. If it's false, then we assign the color to the
corresponding vertex and the process continuous for rest of
the unfilled vertices. Once we try all of the N colors for a
single vertex, then we backtrack. We get a solution while all
the vertices had been filled with a color. at initial stage,
when the boxes of the Sudoku has been filled already, then
the back tracking begins after assigning colors and it
includes only the empty boxes in the vertex sequence

III. PROPSED METHOD

A. Back Tracking Search:
The backtracking search algorithm computes a group of

partial candidates which will give a solution for defined
problem. The completion is done incrementally, by a
sequence of candidate extension steps[9]. Consider the
partial candidates to be the nodes of a tree structure. Every
partial candidate is the parent for the candidates which is
different in a single extension step. The partial candidate at
the leaves of the tree cannot be extended anymore. It
traverses this search tree recursively, in such a manner from
root to leaves, by following depth-first order. At each node c,
it checks whether c leads to a valid solution. If it not, then the
sub-tree rooted under c is skipped. Otherwise, the algorithm
ensures that c is a valid solution, and it’s reported to the user,
then it recursively computes all the sub-trees under c. the
children’s under each node is defined by applying the
procedures given by the user.

K.Govinda et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 96-102

© 2010, IJARCS All Rights Reserved 109

B. Depth First Search (DFS):
Data structures such as trees, graphs, networks can be

traversed by using the Depth-first search (DFS) algorithm. In
case of graphs consider any one of the node to be root and
traverse along the branch of the corresponding node before
backtracking. Initially the vertices are processed in deeper
way followed by wider manner. It will recursively process
the descendants of the corresponding vertices.

C. DFS Algorithm:
For searching the data inside the cloud we use DFS

(depth first search). Consider the data’s on the cloud has to
be nodes of graph.
Step1. Consider a graph of vertex v and edges e.
Step2. Start at any vertex make the vertex as visited and
push the adjacent vertex into the stack until data is found or
all the nodes have been visited.
Step3. If the required data is found at the vertex then stop
traversing of nodes else search for the process
continuous.
Step4. Once the vertex is marked as visited then you could
not push the vertex into the stack.

D. Implementation:
Consider the A as the staring vertex and push the adjacent

Elements B, D into the stack Then pop the element D at the
top of the stack then push the adjacent of D into the stack if
the vertex is visited then it should not be pushed .Now pop
out the C vertex then push it’s adjacent and mark C as visited
since the adjacent of C vertex is already inside the stack so
no vertex element is pushed into stack. Now pop out the E
vertex at the top of the stack then push it’s adjacent and mark
E as visited since the adjacent of E vertex is already inside
the stack so no vertex element is pushed into stack. Now pop
out the B vertex at the top of the stack since B is the final
vertex of the stack the final Expression of DFS is given as
shown in Fig 4.

Figure 4. Sample Graph

E. DFS Cconversion:
 Step1 Step2 Step3

 Step4

Final DFS Expression is :

F. DFS Tree for Graph:
The resultant tree structure after applying DFS on the

cloud network is shown in Fig5.

Figure 5. The resultant tree after DFS

IV. CONCLUSION

In this paper we proposed the optimal search mechanism
using DFS algorithm in cloud environment. By using DFS
the sources in graph can be converted in to tree format which
is easier for traversing of sources. More over we can use
breadth first search (BFS) algorithm for searching process
instead of DFS. This method makes the searching and
retrieving of sources faster and reduces the time complexity.

K.Govinda et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,107-110

© 2010, IJARCS All Rights Reserved 110

V. REFERENCES

[1] Tharam Dillon, Chen Wu, Elizbeth Chang , “ Cloud
Computing : Issues and Challenges”, In Proceeding of 24th
IEEE International Conference on Advanced Information
Networking and Applications,2010.

[2] Zhou, R., and Hansen, E. 2004. Breadth-first heuristic
search. In Proceedings of the 14th International Conference
on Automated Planning and Scheduling, pp. 92–
100xzmcnbzxcbvk

[3] Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree search. Artificial Intelligence,pp.:97–109.

[4] Hohwald, H.; Thayer, I.; and Korf, R.. Comparing best-first
search and dynamic programming for optimal multiple
sequence alignment. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence
(IJCAI-2003), pp. 1239–1245.

[5] Bitner, J.R. and E.M. Reingold (1975), "Backtracking
programming techniques," Communications of the ACM,
Vol. 18, No. 11, pp. 651-56.

[6] Bernhardsson, B. (1991), "Explicit solutions to the n-
queens problems for all n," ACM SIGART Bulletin, Vol.
2, No. 7.

[7] Wikipedia article on Maze Generation Algorithms,
http://en.wikipedia.org/wiki/Maze_generation_algorithm.

[8] Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. In Proc. of the 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), pp.
1184–1189.

[9] Thomas H. Cormen; Charles E. Leiserson, Ronald R.
Rivest, Cliff Stein (1990). Introduction to Algorithms.
McGraw-Hill.

[10] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A
functional approach to external graph algorithms.
Algorithmica, 32(3):437–458, 2002

	INTRODUCTION
	LITERATURE REVIEW
	The Eight Queens Puzzle:
	The Maze Problem:
	The Sudoku Puzzle:

	PROPSED METHOD
	Back Tracking Search:
	Depth First Search (DFS):
	DFS Algorithm:
	Implementation:
	DFS Cconversion:
	DFS Tree for Graph:

	CONCLUSION
	REFERENCES

