
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 364

ISSN No. 0976-5697

Implementation And Analysis Of Benchmarking Test Function For Genetic Operators
Puja Kumari*

M.Tech (CSE) Student
N.C.College of Engineering Panipat, India

Puja.8986@gmail.com

Vaishali Wadhwa
Assistant Professor (CSE)

N.C.College of Engineering Panipat, India
Wadhwavaishali25@yahoo.in

Abstract: The GA is a global search method that mimics the metaphor of natural biological evolution.In this paper; we have used six popular
benchmark functions for studying the performance of GAs and GA operators. They are Rastrigin’s function, Rosenbrock Function, Sphere Function,
Ackley Function, Generalized Rastrigin and Branin Function.

Keywords: Genetic Algorithm; Benchmarking; GA; Genetic Algorithm; Matlab

I. INTRODUCTION

Genetic Algorithms (GAs) are a class of probabilistic
algorithms that are loosely based on biological evolution.
This paper presents experimental results on the major
benchmarking functions used for performance evaluation of
Genetic Algorithms (GAs). GAs relies heavily on random
number generators. In addition, each of the basic genetic
operators used in a simple GA (crossover, mutation) utilizes
``random choice'' to one extent or another. [1]

II. GENETIC ALGORITHM

The GA is a stochastic global search method that mimics
the metaphor of natural biological evolution. GAs operates
on a population of potential solutions applying the principle
of survival of the fittest to produce (hopefully) better and
better approximations to a solution. At each generation, a
new set of approximations is created by the process of
selecting individuals according to their level of fitness in the
problem domain and breeding them together using operators
borrowed from natural genetics. This process leads to the
evolution of populations of individuals that are better suited
to their environment than the individuals that they were
created from, just as in natural adaptation.

Individuals, or current approximations, are encoded as
strings, chromosomes, composed over some alphabet(s), so
that the genotypes (chromosome values) are uniquely
mapped onto the decision variable (phenotypic) domain. The
most commonly used representation in GAs is the binary
alphabet {0, 1} although other representations can also be
used, e.g. ternary, integer, real-valued etc.

A. Major Elements of the Genetic Algorithm:

a. Initialization:-
Start with a population of randomly generated

individuals, or use
a) A previously saved population.
b) A set of solutions provided by a human expert.
c) A set of solutions provided by another heuristic

algorithm.

b. Evaluation:-
a) Solution is only as good as the evaluation function;

choosing a good one is often the hardest part.
b) Similar-encoded solutions should have a similar

fitness.

c. Termination condition:-
a) A pre-determined number of generations or time has

elapsed
b) A satisfactory solution has been achieved
c) No improvement in solution quality has taken place for

a pre-determined number of generations
The Evolutionary Cycle:

Figure: 1

B. The Objective and Fitness Functions:-
The objective function is used to provide a measure of

how individuals have performed in the problem domain. The
fitness function is normally used to transform the objective
function value into a measure of relative fitness [2], thus:

F (x) = g (f (x))
Where f is the objective function, g transforms the value

of the objective function to a non-negative number and F is
the resulting relative fitness. This mapping is always
necessary when the objective function is to be minimized as
the lower objective function values correspond to fitter
individuals.

C. Selection Methods:-
Selection is the process of determining the number of

times, or trials, a particular individual are chosen for
reproduction and, thus, the number of offspring that an

Puja Kumari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,364-370

© 2010, IJARCS All Rights Reserved 365

individual will produce. The selection of individuals can be
viewed as two separate processes:
a) determination of the number of trials an individual can

expect to receive, and
b) Conversion of the expected number of trials into a

discrete number of offspring.[3], [4]

a. Roulette Wheel Selection Methods:

Many selection techniques employ a “roulette wheel”
mechanism to probabilistically select individuals based on
some measure of their performance. A real-valued interval,
Sum, is determined as either the sum of the individuals’
expected selection probabilities or the sum of the raw fitness
values over all the individuals in the current population

Figure: 1

b. Crossover:-

The basic operator for producing new chromosomes in
the GA is that of crossover. Crossover:
a) Crossover point(s) is determined stochastically.
b) The Crossover Operator is the most important feature

in a GA. [6]
Single Point Crossover Example:-
 Parent 1 1 0 0 1 0 0 1 0 1 0
 Parent 2 0 0 1 0 1 1 0 1 1 1
 Child 1 1 0 0 0 1 1 0 1 1 1
 Child 2 0 0 1 1 0 0 1 0 1 0
Double Point Crossover Example:-
 Parent 1 1 1 0 1 0 0 1 0 0 1 0 1 1
 Parent 2 0 1 0 1 1 0 0 0 1 0 1 0 1
 Child 1 1 1 0 1 0 0 0 0 1 0 0 1 1
 Child 2 0 1 0 1 1 0 1 0 0 1 1 0 1

c. Mutation:-

In natural evolution, mutation is a random process where
one allele of a gene is replaced by another to produce a new
genetic structure. In GAs, mutation is randomly applied with
low probability, typically in the range 0.001 and 0.01, and
modifies elements in the chromosomes.
a) The Mutation operator guarantees the entire state-space

will be searched, given enough time.
b) Restores lost information or adds information to the

population.
c) Performed on a child after crossover.
d) Performed infrequently (For example, 0.005

probability of altering a gene in a chromosome).
 Child 1 1 1 0 1 0 0 0 0 1 0 0 1 1
 After mutation 1 1 0 1 1 0 0 0 1 0 0 1 1

d. Termination of the GA:-

The following are the termination criteria. A solution is
found that satisfies minimum criteria.
a) Fixed number of generations is reached.
b) Allocated budget (computation time/money) is

reached.
c) The highest-ranking solution’s fitness is reached or has

reached a plateau such that successive iteration no
longer produces better result.

d) Manual setting of inspection criteria.
 Combination of two or more criteria can also be used. [5]

III. BENCHMARKING

Within this theory, a benchmark is defined as a
standardized test or set of tests used for comparing
alternatives. A benchmark has three components, a
Motivating Comparison, a Task Sample, and Performance
Measures.

A. Benefits of Benchmarking:-
Benchmarking can have a strong positive effect on the

scientific maturity of a research community. The benefits of
benchmarking include a stronger consensus on the
community’s research goals, greater collaboration between
laboratories, more rigorous examination of research results,
and faster technical progress.

B. Dangers of Benchmarking:-
Any discussion of benchmarking must include

consideration of the costs and risks. There is a significant
cost to developing and maintaining the benchmark, so there
is a danger in committing to a benchmark too early. Tychy
wrote: “Constructing a benchmark is usually intense work,
but several laboratories can share the burden. Once defined,
a benchmark can be executed repeatedly at moderate cost. In
practice, it is necessary to evolve benchmarks to prevent
over fitting”.

C. Optimization techniques:-
The parameters that best fit the experimental curve were

determined by minimizing the difference between the
experimental and the simulated data. The parameters that
characterized the system were involved in non – linear partial
differential equations. As an example to show how the
techniques were applied, the experimental data used were the
ketone concentration from Daly and Yin’s paper. If Yi (Xi)
represents the experimental ketone concentration values and
Si (Xi) are the simulated ones obtained by solving the partial
differential equations, the function to be minimized was

F=∑i (Si (Xi) - Yi (Xi))

The parameters were selected by the optimization
algorithm in such a manner that the function kept decreasing.
The search of the best parameters was terminated when the
function F fell below an acceptable value. There were
numerous techniques available to solve the problem. We
show two techniques we employed in determination of the
best rate constants.

 2

Puja Kumari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,364-370

© 2010, IJARCS All Rights Reserved 366

a. Direct Search Method for Optimization:
The technique was very simple. To explain the technique

of optimization, we pick the simple example of Daly and
Yin’s model [7]. This model was considered because it
employed two reaction rate equations and thus two rate
constants. This made it convenient to explain the techniques
employed for the optimization of our models. The reaction
system in Daly and Yin’s model [7] was given as follows:

R* + O2 →RO2* (k1

RO
)

2* + R*→RCO + 2R* (k2
We started with a guess value of the rate constant

parameters. The direct search technique followed a simple
step procedure.

)

a) It increased one of the parameters, say k1, by a pre –
set incremental value given by ∆k1. The simulated
ketone concentration values were evaluated at this
new rate constant and then we evaluated the
function F. We stored this value as F1
corresponding to F (k1 + ∆k1, k2

b) Similarly the technique then decreased the value of
the first rate constant by the same incremental value
∆k

).

1. The function was evaluated at this new rate
constant and stored in a value F2 corresponding to F
(k1 - ∆k1, k2

c) Next, the technique selected the function that has
smaller of the two values (F

).

1 or F2). It retained the
rate constants that gave the minimum function as
the new set of refined rate constants. For example, if
F2 < F1, then the new rate constants are k1 = k1 -
∆k1 and k2 = k2

d) It checked whether the function F = F
.

2

e) Similarly as in step 1 and 2, the technique evaluated
F

 had dropped
below the termination criteria. If it did, then the
technique stopped and the rate constants were
returned as the best rate constants. If not then the
technique proceeded to step 5.

3 = F (k1, k2 + ∆k2) and F4 = F (k1, k2 - ∆k2),
where ∆k2 was an incremental value in F2

f) Given the next two function values, the technique
then compares the values and selects one which is
lower and updates the rate constants. It then
checked whether the function had dropped below
the termination criteria. If it did, then the technique
stopped and the rate constants were reported as the
best rate constants. If not then the procedure was
repeated from step 1.

.

g) The Direct Search technique begins as shown with
an initial guess and then proceeds by picking the
rate constants that minimize the function F. The
technique is very well suited for optimization of two
parameters.

b. Sequential Programming:
The nature of the solution technique was sequential in

nature, which meant, we needed to solve for each increment
and decrement. This sequential problem was written in
Fortran 77 to apply the technique to minimize the function
for Daly and Yin’s model.

c. Parallel Computation
Evaluation of the each function value corresponding to

each increment and decrement of the rate constants
(parameters) is an independent process with respect to each
other. This means, F (k1, k2), F1 (k1 + ∆k1, k2), F2 (k1 - ∆k1,
k2), F3 (k1, k2 + ∆k2) and F4 (k1, k2 - ∆k2

Hence, if we had to optimize a two parameter function
such as one for Daly and Yin’s model [7], F(x

) can be evaluated
independently by different processors without affecting each
other and then brought together to compare the function
value for one set of rate constants was now utilized for
evaluating five function values simultaneously, thereby
effectively reducing the time of computation.

1, x2

Evaluate

), then we
carried out the following optimization procedure:

F1 = F (k1 + ∆k1, k2

F
)

2 = F (k1 - ∆k1, k2

F
)

3 = F (k1, k2 + ∆k2

F
)

4 = F (k1, k2 - ∆k2
The four functions were computed by each processor

simultaneously. After each function was evaluated, the
values were sent to the root processor that compared the
values of all the functions and kept one with the minimum
value. The root processor employed MPI_REDUCE and
MPI_MINLOC to find the minimum function. It checked for
the termination criteria and if not met then the corresponding
rate constants were broadcasted to the four processors and
the process continued until the function F fell below
termination criteria. [8]

)

IV. TEST FUNCTIONS

We use six popular benchmark functions for studying the
performance of GAs and GA operators. They are Rastrigin’s
function, Rosenbrock Function, Sphere Function, Ackley
Function, Generalized Rastrigin and Branin Function.
These functions and the fitness functions are described
below:

A. Rastrigin’s Function:-
Rastrigin’s function is based on the function of De Jong

with the addition of cosine modulation in order to produce
frequent local minima. Thus, the test function is highly
multimodal. However, the location of the minima is
regularly distributed.
Function has the following definition: [13], [9], [10]
 F(x) =10n+ i

2 – 10 cos (2πxi
Test area is usually restricted to hypercube -5.12<=x

)].

I

Global minimum f(x) = 0 is obtainable for x

<=5.12, i=1… n.

I

B. Rosenbrock’s Valley:-

 = 0, I = 1…n.

Rosenbrock’s valley is a classic optimization problem,
also known as banana function or the second function of De
Jong. The global optimum lies inside a long, narrow,
parabolic shaped flat valley. To find the valley is trivial,
however convergence to the global optimum is difficult and
hence this problem has been frequently used to test the

Puja Kumari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,364-370

© 2010, IJARCS All Rights Reserved 367

performance of optimization algorithms. Function has the
following definition [9], [13]
 F(x) = 100(xi+1-x2

i) 2 + (1-xi) 2
Test area is usually restricted to hypercube -2.48<=x

].
i

Its global minimum equal f(x) = 0 is obtainable for x

2.48,
i=1… n.

i,

C. The Sphere Function:-

 i=1…
n.

The Sphere function is defined as follows: [13], [9]
F(x) = 2

Where D is the dimension and x = (x1, x2… x D) is a D-
dimensional row vector (i.e., a 1×D matrix). The Sphere
function is very simple and is mainly used for
demonstration. In this test suite this function serves as
separable part when using a naturally no separable function
to form some partially no separable functions.

i

D. Ackley Function:-
Ackley’s is a widely used multimodal test function. It

has the following definition: [9], [10]
F(x) = -a.exp (-b.2i) – exp (1/n (cxi

It is recommended to set a = 20, b = 0.2, c = 2π Test area
is usually restricted to hypercube -32.768 <=x

)) +a+ exp (1)

i <= 32.768, i
= 1… n. Its global minimum f(x) = 0 is obtainable for xi

E. Generalized Rastrigin Function:-

 = 0,
i = 1… n.

The Generalized Rastrigin Function (Equation 1) is a
typical example of non-linear multimodal function. It was
first proposed by Rastrigin as a 2-dimensional function and
has been generalized by Miihlenbein et al in. This function
is a fairly difficult problem due to its large search space and
its large number of local minima. [9]

F(x) = A. n + 2i – A. cos (ω. xi
A=10, ω=2.π, x

)
i

The Rastrigin function has a complexity of O (n1n (n)),
where n is the dimension of the problem. The surface of the
function is determined by the external variables A and ω,
which control the amplitude and frequency modulation
respectively.

ϵ [-5.12, 5.12]

F. Branins’s Function:-
The Branin function is a global optimization test

function having only two variables. The function has three
equal-sized global optima, and has the following definition:
[9], [10]
F(x1, x2) = a(x2 – bx2

1 + cx1 + d) 2 + e (1 – f) cos (x1
It is recommended to set the following values of

parameters: a = 1, b = 5.1/4π

) + e.

2

c = 5/π, d = 6, e =10, f=1/8 π. Three global optima equal
f (x

,

1, x2) = 0.397887 are located as follows: (x1, x2

V. RESULT AND CONCLUSION

) = (-π,
12.275), (π, 2.275), (9.42478, 2.475).

Table1, Table 2, Table 3 shows fitness with 2 variables,
10 variables and 20 variables when Population Type is
changing while other options remain default which are
shown as:-

Fitness scaling function=Rank, Selection
function=Stochastic uniform, Mutation function=Gaussian,
Crossover function=Scattered

Table 1: Fitness with 2 variable when population type changes

Table 1 show the results for fitness when we vary the

population type. The table shows the result for two
variables. The results show that when we change the
population type from Double Vector to Bit String, there is
change in fitness (best fitness, mean fitness) and the fitness
is decrease. Remember that we are minimizing the
benchmarks functions, so lower the fitness value, better is
the performance. The table shows when we choose Bit
String as population type, the performance of genetic
algorithm is much better than double Vector.

Table 2: Fitness with 10 variable when population type changes

Functions

Population Type

Double Vector Bit String
Best

Fitness
Mean

Fitness
Best

Fitness
Mean

Fitness
Rastrigin’s

function 16.8745 55.0668 0 0.05

Rosenbrock
Function 39.4568 465.619 9 9

Sphere
Function 0.19307 1.22630 0 0.05

Ackley
Function 0.76575 1.94870 -8.8818e-

16 0.06128

Generalized
Rastrigin 15.1837 52.0701 2 2

Branin
Function 0.39813 0.97380 0 0.05

Table 2 shows the result for best fitness and mean fitness

value when we varies the population type and use the
different benchmarks functions with ten variables. The
fitness value is increased as compared to fitness value when
we use the function with two variables. As a comparative
study when we compare the two of population type using
function with ten variables the result shows that the
performance of bit string population type is better than
double vector.

Functions

Population Type

Double Vector Bit String

Best
Fitness

Mean
Fitness

Best
Fitness

Mean
Fitness

Rastrigin’s
function 0.04066 3.78650 0 0

Rosenbrock
Function 0.01149 18.8125 0 5.0000

Sphere
Function 0.00275 0.34290 0 0

Ackley
Function 0.01972 1.17570 8.8818e-

16 8.8818e-16

Generalized
Rastrigin 0.02989 8.42150 0 0

Branin
Function 0.39799 0.95491 0 0

Puja Kumari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,364-370

© 2010, IJARCS All Rights Reserved 368

Table 3: Fitness with 20 variable when population type changes

Functions

Population Type

Double Vector Bit String
Best

Fitness
Mean

Fitness
Best

Fitness
Mean

Fitness
Rastrigin’s

function 27.4594 98.786 1 1.15

Rosenbrock
Function 145.9792 1014.52

 105 105

Sphere
Function 1.37 3.6269 1 1.15

Ackley
Function 1.8748 2.6855 1.2257 1.2257

Generalized
Rastrigin 42.7229 114.3473 1 1.15

Branin
Function 9.718 17.4735 4.2813 4.2813

Table 3 shows the results for different benchmarks

functions with twenty variables when we change the
population type. The results confirm the conclusion of table
1 and table 2. Like, table 1 and table 2, the result of table 3
shows that performance of genetic algorithm is much better
when we use the bit string as population type as compare to
double vector.

Table for fitness when Scaling Function is changing
while other options remain default which is shown as:-
Population type=Double vector, Selection
function=Stochastic uniform,
Mutation function=Gaussian, Crossover function=Scattered

Table 4: Fitness when scaling function changes

Function

Selection Function

Stochastic Remainder Uniform Roulette Wheel Tournament

Best Mean Best Mean Best Mean Best Mean Best Mean

Rastrigin’s function
Rosenbrock Function

Sphere Function
Ackley Function

Generalized Rastrigin
Branin Function

0.0122
0.0586
0.0002
0.0311
1.0062
0.3979

6.5048
68.258
0.2378
1.5726
10.139
2.3684

0.0105
0.0061
0.0003
0.0766
0.0097
0.3994

5.2067
24.265
0.2564
1.7593
11.752
1.2960

0.0825
0.0849
0.0014
0.2349
0.1039
0.4044

14.195
143.70
0.6107
2.9226
13.816
2.3745

0.0008
0.5238
0.0002
0.1223
1.0073
0.3991

8.9790
25.273
0.3090
1.0676
11.743
0.8085

1.0245
0.4904
0.0110
0.2763
1.3382
0.4149

6.2878
32.758
0.0567
0.0799
5.0775
1.2595

Table 5: Fitness when selection function changes

Function
Scaling Function

Rank Proportion Top Shift Linear
Best Mean Best Mean Best Mean Best Mean

Rastrigin’s function
Rosenbrock Function

Sphere Function
Ackley Function

Generalized Rastrigin
Branin Function

0.0351
0.0151
0.0006
0.0040
0.0666
0.3984

6.3410
42.474
0.3179
1.3805
5.3002
0.6950

0.0171
0.0066
0.0003
0.0942
0.0974
0.3983

6.3242
25.532
0.2083
1.0969
5.1373
0.9330

0.2162
0.3895
0.0018
0.9159
0.0513
0.4085

4.0440
9.4210
0.1147
1.3704
3.3444
0.7495

0.1479
0.0355
0.0010
0.09123
0.0220
0.4000

1.5511
30.445
0.2313
0.8008
4.3985
1.5352

Table 4 shows the performance of six benchmarks

function in the form of mean fitness and best fitness. The
fitness shown is evaluated using benchmarks function with
four variables. The performance shows the comparison
between all four types of scaling function (i.e. Rank,
Proportion, Top and Shift Linear. The results show that
performance of proportion using scaling function is much
better than performance of Rank scaling function followed
by top scaling function.

Table for fitness when Selection function is changing
while other options remain default which are shown as: -
Population type=Double vector, Scaling function=Rank,
Mutation function=Gaussian, Crossover function=Scattered
The table 5 shows the results when selection function is
changing (i.e. stochastic, Remainder, Uniform, Roulette
Wheel, Tournament). The table shows the comparison
between performances of genetic algorithm by using
different types of scaling function in the genetic algorithm.
The table shows that when is used Remainder as a scaling
function the best fitness and mean fitness is comes better

than Roulette wheel when it is used as a scaling function
followed by the performance of Stochastic Function.
Table for fitness when Mutation function is changing while
other options remain default as:-
Population type=Double vector, Scaling function=Rank,
Selection function= Stochastic uniform, Crossover
function=Scattered

Table 6 shows the comparison in the performance of
genetic algorithm when we change the mutation function.
The mutation function is change due to comparative study of
performance evaluation by using the different benchmarks
function with four variables. The results from tables 6 show
that when we used Gaussian as mutation function the
performance of genetic algorithm is improved than other
two functions. The performance of Gaussian is superior than
performance of Adaptive Feasible followed by Uniform
mutation function.

Table for fitness when Crossover function is changing
while other options remain default which is shown as:-

Puja Kumari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,364-370

© 2010, IJARCS All Rights Reserved 369

Population type=Double vector, Scaling function=Rank,
Selection function=Stochastic uniform, Mutation
Function=Gaussian

Table 7 shows the best fitness and mean fitness of the all
six benchmarks functions. The results shows that when we

use two points crossover function the results are always
superior to other types of crossover function. After two
points crossover function the performance of single point
crossover is much better followed by scattered crossover
function.

Table 6: Fitness when mutation function changes

Function
Mutation Function

Gaussian Uniform Adaptive Feasible
Best Mean Best Mean Best Mean

Rastrigin’s function
Rosenbrock Function

Sphere Function
Ackley Function

Generalized Rastrigin
Branin Function

0.2285
0.0060
0.0011
0.0612
0.1090
0.4042

9.6641
69.693
0.2050
1.1228
5.4176
0.9490

0.4066
0.1577
0.0018
0.2212
1.7482
30.646

0.4066
0.1577
0.0146
0.2212
1.7482
30.646

0
0.0060

1.7946e-015
6.5582e-008
5.2047e-013

0.4058

0
5.4151

1.1542e-013
3.6219e-007
3.4807e-012

0.4442

Table 7: Fitness when crossover function changes

Function

Crossover Function

Scattered Single Point Two Points Intermediate Heuristic Arithmetic

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

Rastrigin’s Function
Rosenbrock Function

Sphere Function
Ackley Function

Generalized Rastrigin
Branin Function

0.1121
0.0103
0.0005
0.0324
0.0977
0.3997

6.9208
21.646
0.0848
1.2293
8.9253
1.3886

0.0028
0.1497
0.0003
0.0361
0.1455
0.3991

5.6924
47.808
0.2586
1.7253
5.8766
0.7614

0.0766
0.0023
0.0001
0.0305
0.2650
0.3991

6.4230
24.716
0.1360
1.1409
5.3562
2.2225

0.9950
0.0058
5.5e-06
0.0002
0.9949
0.3980

7.5540
42.109
0.1425
1.3888
4.9667
1.0070

0.9949
0.0005
6.4e-10
8.2e-05
0.9949
0.3978

5.8189
5.8141
0.1731
0.8012
5.0541
0.7386

0.9949
0.0016
4.9e-08
0.0006
0.0037
0.3978

8.6786
32.281
0.1481
1.1908
8.4358
0.5975

VI. REFERENCES

[1]. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/tcw2
/report.html#Internet

[2]. Pohlheim, H. (1997). ‘‘GEATbx: Genetic and Evolutionary
Algorithm Toolbox for use with MATLAB’’,
http://www.systemtechnik.tuilmenau.de
/pohlheim/GA_Toolbox

[3]. Tom V.Mathew ,”Genetic Algorithm”,
http://www.civil.iitb.ac.in/tvm/2701_dga/2701-ga-
notes/gadoc.pdf

[4]. Fundamentals of genetic algorithms:AI course lecture 39-
40,notes,slides,
http://www.myreaders.info/09_Genetic_Algorithms.pdf
June 01,2010

[5]. Andrew chipperfield,Peter Flemming,Hartmut and
Carlos,”Genetic Algorithm Toolbox”,
http://www.shef.ac.uk/polopoly_fs/1.60188!/file/manual.pd
f

[6]. J.J.Liang, P.N.Suganthan and K.Deb,”Novel Compostion
Test Functions For Numerical Global
Optimization”,2005,IEEE

[7]. More, J. J., Garbow, B. S., and Hillstrom, K. E. (1981).
‘‘Testing Unconstrained Optimization Software, {ACM}
Transactions on Mathematical Software, vol 7, pp. 17–41

[8]. Edwin S.H. Hou,Nirwan Ansari and Hong Ren,”A Genetic
Algorithm For Multiprocessor Scheduling”,1994,IEEE
transactions on parallel and distributed
processing,Vol.5,No.2,p113

[9]. Dr.Elgasim Elamin Elnima Ali,”A Proposed Genetic
Algorithm Selection Method”,2000

[10]. Saroj and Devraj,”A Non-Revisiting Genetic Algorithm
For Optimizing Numeric Multidimensional
Functions”,2012,IJCSA,Vol.2,p-92

[11]. Md.Sakahawat Hossen,Fazle Rabbi and Md.Mainur
Rahman.”APSO For Multimodal Function
Optimization”,2009,IJET,Vol.1(3)

[12]. Chapter 09.03,Multidimensional Direct Search
Method,

[13]. J.G.DIGALAKIS and K.G.MARGARITIS,” On
Benchmarkig For Genetic Algorithms “,2000,p-3

numericalmethods.eng.usf.edu/.../mws_gen_opt_t
xt_multidirect.doc

[14]. Salomon. R. (1995). ‘‘Reevaluating Genetic Algorithm
Performance under Coordinate Rotation of Benchmark
Functions’’, BioSystems vol. 39, pp. 263–278, Elsevier
Science

[15]. Baeck, T. (1991). ‘‘Optimization by Means of Genetic
Algorithms’’. In Internationales Wissenschaftliches
Kolloquium (pp. 1–8). Germany: Technische Universit’’

Puja Kumari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,364-370

© 2010, IJARCS All Rights Reserved 370

[16]. De Jong, K. A. (1975). ‘‘An analysis of the behaviour of a
class of genetic adaptive systems’’, University of
Michigan, Ann Arbor. (University Microfilms No. 76-
9381)

[17]. Goldberg, D. E. (1989). ‘‘Genetic algorithms in search,
optimization and machine learning’’, New York: Addison-
Wesley, pp. 40–45

	INTRODUCTION
	GENETIC ALGORITHM
	BENCHMARKING
	Optimization techniques:-

	TEST FUNCTIONS
	RESULT AND CONCLUSION
	REFERENCES

