
Volume 3, No. 3, May-June 2012 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                                                                                                                   364 

ISSN No. 0976-5697 

Implementation And Analysis Of Benchmarking Test Function For Genetic Operators 
Puja Kumari* 

M.Tech (CSE) Student 
N.C.College of Engineering Panipat, India 

Puja.8986@gmail.com 

Vaishali Wadhwa 
Assistant Professor (CSE) 

N.C.College of Engineering Panipat, India 
Wadhwavaishali25@yahoo.in

Abstract: The GA is a global search method that mimics the metaphor of natural biological evolution.In this paper; we have used six popular 
benchmark functions for studying the performance of GAs and GA operators. They are Rastrigin’s function, Rosenbrock Function, Sphere Function, 
Ackley Function, Generalized Rastrigin and Branin Function. 
 
Keywords: Genetic Algorithm; Benchmarking; GA; Genetic Algorithm; Matlab 

 
I. INTRODUCTION  

Genetic Algorithms (GAs) are a class of probabilistic 
algorithms that are loosely based on biological evolution. 
This paper presents experimental results on the major 
benchmarking functions used for performance evaluation of 
Genetic Algorithms (GAs). GAs relies heavily on random 
number generators. In addition, each of the basic genetic 
operators used in a simple GA (crossover, mutation) utilizes 
``random choice'' to one extent or another. [1] 

II. GENETIC ALGORITHM 

The GA is a stochastic global search method that mimics 
the metaphor of natural biological evolution. GAs operates 
on a population of potential solutions applying the principle 
of survival of the fittest to produce (hopefully) better and 
better approximations to a solution. At each generation, a 
new set of approximations is created by the process of 
selecting individuals according to their level of fitness in the 
problem domain and breeding them together using operators 
borrowed from natural genetics. This process leads to the 
evolution of populations of individuals that are better suited 
to their environment than the individuals that they were 
created from, just as in natural adaptation.  

Individuals, or current approximations, are encoded as 
strings, chromosomes, composed over some alphabet(s), so 
that the genotypes (chromosome values) are uniquely 
mapped onto the decision variable (phenotypic) domain. The 
most commonly used representation in GAs is the binary 
alphabet {0, 1} although other representations can also be 
used, e.g. ternary, integer, real-valued etc. 

A. Major Elements of the Genetic Algorithm: 

a. Initialization:- 
Start with a population of randomly generated 

individuals, or use 
a) A previously saved population. 
b) A set of solutions provided by a human expert. 
c) A set of solutions provided by another heuristic 

algorithm. 

 

b. Evaluation:- 
a) Solution is only as good as the evaluation function; 

choosing a good one is often the hardest part. 
b) Similar-encoded solutions should have a similar 

fitness. 

c. Termination condition:- 
a) A pre-determined number of generations or time has 

elapsed 
b) A satisfactory solution has been achieved 
c) No improvement in solution quality has taken place for 

a pre-determined number of generations 
The Evolutionary Cycle: 

 
Figure: 1 

B. The Objective and Fitness Functions:- 
The objective function is used to provide a measure of 

how individuals have performed in the problem domain. The 
fitness function is normally used to transform the objective 
function value into a measure of relative fitness [2], thus: 

F (x) = g (f (x)) 
Where f is the objective function, g transforms the value 

of the objective function to a non-negative number and F is 
the resulting relative fitness. This mapping is always 
necessary when the objective function is to be minimized as 
the lower objective function values correspond to fitter 
individuals. 

C. Selection Methods:- 
Selection is the process of determining the number of 

times, or trials, a particular individual are chosen for 
reproduction and, thus, the number of offspring that an 
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individual will produce. The selection of individuals can be 
viewed as two separate processes: 
a) determination of the number of trials an individual can 

expect to receive, and 
b) Conversion of the expected number of trials into a 

discrete number of offspring.[3], [4] 

a. Roulette Wheel Selection Methods: 

Many selection techniques employ a “roulette wheel” 
mechanism to probabilistically select individuals based on 
some measure of their performance. A real-valued interval, 
Sum, is determined as either the sum of the individuals’ 
expected selection probabilities or the sum of the raw fitness 
values over all the individuals in the current population 
 

 
Figure: 1 

b. Crossover:- 

The basic operator for producing new chromosomes in 
the GA is that of crossover. Crossover: 
a) Crossover point(s) is determined stochastically. 
b) The Crossover Operator is the most important feature 

in a GA. [6] 
Single Point Crossover Example:- 
    Parent 1         1 0 0     1 0 0 1 0 1 0 
    Parent 2         0 0 1     0 1 1 0 1 1 1 
    Child 1          1 0 0     0 1 1 0 1 1 1 
    Child 2          0 0 1     1 0 0 1 0 1 0 
Double Point Crossover Example:- 
     Parent 1        1 1 0 1 0 0     1 0 0 1     0 1 1  
     Parent 2        0 1 0 1 1 0     0 0 1 0     1 0 1 
     Child 1        1 1 0 1 0 0     0 0 1 0     0 1 1 
     Child 2        0 1 0 1 1 0     1 0 0 1     1 0 1 

c. Mutation:- 

In natural evolution, mutation is a random process where 
one allele of a gene is replaced by another to produce a new 
genetic structure. In GAs, mutation is randomly applied with 
low probability, typically in the range 0.001 and 0.01, and 
modifies elements in the chromosomes. 
a) The Mutation operator guarantees the entire state-space 

will be searched, given enough time. 
b) Restores lost information or adds information to the 

population. 
c) Performed on a child after crossover. 
d) Performed infrequently (For example, 0.005 

probability of altering a gene in a chromosome). 
   Child 1      1 1 0 1 0 0 0 0 1 0 0 1 1 
  After mutation       1 1 0 1 1 0 0 0 1 0 0 1 1 

d. Termination of the GA:- 

The following are the termination criteria. A solution is 
found that satisfies minimum criteria.  
a) Fixed number of generations is reached.  
b) Allocated budget (computation time/money) is 

reached. 
c) The highest-ranking solution’s fitness is reached or has 

reached a plateau such that successive iteration no 
longer produces better result.  

d) Manual setting of inspection criteria.  
 Combination of two or more criteria can also be used. [5] 

III. BENCHMARKING 

Within this theory, a benchmark is defined as a 
standardized test or set of tests used for comparing 
alternatives. A benchmark has three components, a 
Motivating Comparison, a Task Sample, and Performance 
Measures. 

A. Benefits of Benchmarking:- 
Benchmarking can have a strong positive effect on the 

scientific maturity of a research community. The benefits of 
benchmarking include a stronger consensus on the 
community’s research goals, greater collaboration between 
laboratories, more rigorous examination of research results, 
and faster technical progress. 

B. Dangers of Benchmarking:- 
Any discussion of benchmarking must include 

consideration of the costs and risks. There is a significant 
cost to developing and maintaining the benchmark, so there 
is a danger in committing to a benchmark too early. Tychy 
wrote:  “Constructing a benchmark is usually intense work, 
but several laboratories can share the burden. Once defined, 
a benchmark can be executed repeatedly at moderate cost. In 
practice, it is necessary to evolve benchmarks to prevent 
over fitting”. 

C. Optimization techniques:- 
The parameters that best fit the experimental curve were 

determined by minimizing the difference between the 
experimental and the simulated data. The parameters that 
characterized the system were involved in non – linear partial 
differential equations. As an example to show how the 
techniques were applied, the experimental data used were the 
ketone concentration from Daly and Yin’s paper. If Yi (Xi) 
represents the experimental ketone concentration values and 
Si (Xi) are the simulated ones obtained by solving the partial 
differential equations, the function to be minimized was  

 
F=∑i (Si (Xi) - Yi (Xi))

The parameters were selected by the optimization 
algorithm in such a manner that the function kept decreasing. 
The search of the best parameters was terminated when the 
function F fell below an acceptable value. There were 
numerous techniques available to solve the problem. We 
show two techniques we employed in determination of the 
best rate constants. 

 2 
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a. Direct Search Method for Optimization: 
The technique was very simple. To explain the technique 

of optimization, we pick the simple example of Daly and 
Yin’s model [7]. This model was considered because it 
employed two reaction rate equations and thus two rate 
constants. This made it convenient to explain the techniques 
employed for the optimization of our models. The reaction 
system in Daly and Yin’s model [7] was given as follows: 

R* + O2 →RO2*   (k1

RO
) 

2* + R*→RCO + 2R*  (k2
We started with a guess value of the rate constant 

parameters. The direct search technique followed a simple 
step procedure.  

) 

a) It increased one of the parameters, say k1, by a pre – 
set incremental value given by ∆k1. The simulated 
ketone concentration values were evaluated at this 
new rate constant and then we evaluated the 
function F. We stored this value as F1 
corresponding to F (k1 + ∆k1, k2

b) Similarly the technique then decreased the value of 
the first rate constant by the same incremental value 
∆k

). 

1. The function was evaluated at this new rate 
constant and stored in a value F2 corresponding to F 
(k1 - ∆k1, k2

c) Next, the technique selected the function that has 
smaller of the two values (F

). 

1 or F2). It retained the 
rate constants that gave the minimum function as 
the new set of refined rate constants. For example, if 
F2 < F1, then the new rate constants are k1 = k1 - 
∆k1 and k2 = k2

d) It checked whether the function F = F
. 

2

e) Similarly as in step 1 and 2, the technique evaluated 
F

 had dropped 
below the termination criteria. If it did, then the 
technique stopped and the rate constants were 
returned as the best rate constants. If not then the 
technique proceeded to step 5. 

3 = F (k1, k2 + ∆k2) and F4 = F (k1, k2 - ∆k2), 
where ∆k2 was an incremental value in F2

f) Given the next two function values, the technique 
then compares the values and selects one which is 
lower and updates the rate constants. It then 
checked whether the function had dropped below 
the termination criteria. If it did, then the technique 
stopped and the rate constants were reported as the 
best rate constants. If not then the procedure was 
repeated from step 1. 

. 

g) The Direct Search technique begins as shown with 
an initial guess and then proceeds by picking the 
rate constants that minimize the function F. The 
technique is very well suited for optimization of two 
parameters. 

b. Sequential Programming: 
The nature of the solution technique was sequential in 

nature, which meant, we needed to solve for each increment 
and decrement. This sequential problem was written in 
Fortran 77 to apply the technique to minimize the function 
for Daly and Yin’s model.  

c. Parallel Computation 
Evaluation of the each function value corresponding to 

each increment and decrement of the rate constants 
(parameters) is an independent process with respect to each 
other. This means, F (k1, k2), F1 (k1 + ∆k1, k2), F2 (k1 - ∆k1, 
k2), F3 (k1, k2 + ∆k2) and F4 (k1, k2 - ∆k2

Hence, if we had to optimize a two parameter function 
such as one for Daly and Yin’s model [7], F(x

) can be evaluated 
independently by different processors without affecting each 
other and then brought together to compare the function 
value for one set of rate constants was now utilized for 
evaluating five function values simultaneously, thereby 
effectively reducing the time of computation. 

1, x2

Evaluate  

), then we 
carried out the following optimization procedure: 

F1 = F (k1 + ∆k1, k2

F
) 

2 = F (k1 - ∆k1, k2

F
) 

3 = F (k1, k2 + ∆k2

F
)  

4 = F (k1, k2 - ∆k2
The four functions were computed by each processor 

simultaneously. After each function was evaluated, the 
values were sent to the root processor that compared the 
values of all the functions and kept one with the minimum 
value. The root processor employed MPI_REDUCE and 
MPI_MINLOC to find the minimum function. It checked for 
the termination criteria and if not met then the corresponding 
rate constants were broadcasted to the four processors and 
the process continued until the function F fell below 
termination criteria. [8] 

) 

IV. TEST FUNCTIONS  

We use six popular benchmark functions for studying the 
performance of GAs and GA operators. They are Rastrigin’s 
function, Rosenbrock Function, Sphere Function, Ackley 
Function, Generalized Rastrigin and Branin Function. 
These functions and the fitness functions are described 
below: 

A. Rastrigin’s Function:- 
Rastrigin’s function is based on the function of De Jong 

with the addition of cosine modulation in order to produce 
frequent local minima. Thus, the test function is highly 
multimodal. However, the location of the minima is 
regularly distributed. 
Function has the following definition: [13], [9], [10] 
 F(x) =10n+ i

2 – 10 cos (2πxi
Test area is usually restricted to hypercube -5.12<=x

)]. 

I

Global minimum f(x) = 0 is obtainable for x 

 
<=5.12, i=1… n.   

I

B. Rosenbrock’s Valley:- 

 = 0, I = 1…n. 

Rosenbrock’s valley is a classic optimization problem, 
also known as banana function or the second function of De 
Jong. The global optimum lies inside a long, narrow, 
parabolic shaped flat valley. To find the valley is trivial, 
however convergence to the global optimum is difficult and 
hence this problem has been frequently used to test the 
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performance of optimization algorithms. Function has the 
following definition [9], [13] 
 F(x) = 100(xi+1-x2

i) 2 + (1-xi) 2
Test area is usually restricted to hypercube -2.48<=x

]. 
i

Its global minimum equal f(x) = 0 is obtainable for x

2.48, 
i=1… n. 

i,

C. The Sphere Function:- 

 i=1… 
n. 

The Sphere function is defined as follows: [13], [9] 
F(x) = 2

Where D is the dimension and x = (x1, x2… x D) is a D-
dimensional row vector (i.e., a 1×D matrix). The Sphere 
function is very simple and is mainly used for 
demonstration. In this test suite this function serves as 
separable part when using a naturally no separable function 
to form some partially no separable functions. 

i 

D. Ackley  Function:- 
Ackley’s is a widely used multimodal test function. It 

has the following definition: [9], [10] 
F(x) = -a.exp (-b.2i   ) – exp (1/n (cxi

It is recommended to set a = 20, b = 0.2, c = 2π Test area 
is usually restricted to hypercube -32.768 <=x

)) +a+ exp (1) 

i  <= 32.768, i 
= 1… n. Its global minimum f(x) = 0 is obtainable for xi

E. Generalized Rastrigin Function:- 

 = 0, 
i = 1… n. 

The Generalized Rastrigin Function (Equation 1) is a 
typical example of non-linear multimodal function. It was 
first proposed by Rastrigin as a 2-dimensional function and 
has been generalized by Miihlenbein et al in. This function 
is a fairly difficult problem due to its large search space and 
its large number of local minima. [9] 

F(x) = A. n +  2i – A. cos (ω. xi
A=10, ω=2.π, x

) 
i 

The Rastrigin function has a complexity of O (n1n (n)), 
where n is the dimension of the problem. The surface of the 
function is determined by the external variables A and ω, 
which control the amplitude and frequency modulation 
respectively. 

ϵ [-5.12, 5.12] 

F. Branins’s Function:- 
The Branin function is a global optimization test 

function having only two variables. The function has three 
equal-sized global optima, and has the following definition: 
[9], [10] 
F(x1, x2) = a(x2 – bx2

1 + cx1 + d) 2 + e (1 – f) cos (x1
It is recommended to set the following values of 

parameters: a = 1, b = 5.1/4π

) + e. 

2

c = 5/π, d = 6, e =10, f=1/8 π. Three global optima equal 
f (x

,  

1, x2) = 0.397887 are located as follows:  (x1, x2

V. RESULT AND CONCLUSION 

) = (-π, 
12.275), (π, 2.275), (9.42478, 2.475). 

Table1, Table 2, Table 3 shows fitness with 2 variables, 
10 variables and 20 variables when Population Type is 
changing while other options remain default which are 
shown as:- 

Fitness scaling function=Rank, Selection 
function=Stochastic uniform, Mutation function=Gaussian, 
Crossover function=Scattered 

Table 1: Fitness with 2 variable when population type changes 

 
Table 1 show the results for fitness when we vary the 

population type. The table shows the result for two 
variables. The results show that when we change the 
population type from Double Vector to Bit String, there is 
change in fitness (best fitness, mean fitness) and the fitness 
is decrease. Remember that we are minimizing the 
benchmarks functions, so lower the fitness value, better is 
the performance. The table shows when we choose Bit 
String as population type, the performance of genetic 
algorithm is much better than double Vector.   

Table 2: Fitness with 10 variable when population type changes 

 
Functions 

Population Type 

Double Vector Bit String 
Best 

Fitness 
Mean 

Fitness 
Best 

Fitness 
Mean 

Fitness 
Rastrigin’s 

function 16.8745 55.0668 0 0.05 

Rosenbrock 
Function 39.4568 465.619 9 9 

Sphere 
Function 0.19307 1.22630 0 0.05 

Ackley 
Function 0.76575 1.94870 -8.8818e-

16 0.06128 

Generalized 
Rastrigin 15.1837 52.0701 2 2 

Branin 
Function 0.39813 0.97380 0 0.05 

 
Table 2 shows the result for best fitness and mean fitness 

value when we varies the population type and use the 
different benchmarks functions with ten variables. The 
fitness value is increased as compared to fitness value when 
we use the function with two variables. As a comparative 
study when we compare the two of population type using 
function with ten variables the result shows that the 
performance of bit string population type is better than 
double vector. 

 
Functions 

Population Type 

Double Vector Bit String 

Best 
Fitness 

Mean 
Fitness 

Best 
Fitness 

Mean 
Fitness 

Rastrigin’s 
function 0.04066 3.78650 0 0 

Rosenbrock 
Function 0.01149 18.8125 0 5.0000 

Sphere 
Function 0.00275 0.34290 0 0 

Ackley 
Function 0.01972 1.17570 8.8818e-

16 8.8818e-16 

Generalized 
Rastrigin 0.02989 8.42150 0 0 

Branin 
Function 0.39799 0.95491 0 0 
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Table 3: Fitness with 20 variable when population type changes 

 
Functions 

Population Type 

Double Vector Bit String 
Best 

Fitness 
Mean 

Fitness 
Best 

Fitness 
Mean 

Fitness 
Rastrigin’s 

function 27.4594 98.786 1 1.15 

Rosenbrock 
Function 145.9792 1014.52 

 105 105 

Sphere 
Function 1.37 3.6269 1 1.15 

Ackley 
Function 1.8748 2.6855 1.2257 1.2257 

Generalized 
Rastrigin 42.7229 114.3473 1 1.15 

Branin 
Function 9.718 17.4735 4.2813 4.2813 

 
Table 3 shows the results for different benchmarks 

functions with twenty variables when we change the 
population type. The results confirm the conclusion of table 
1 and table 2. Like, table 1 and table 2, the result of table 3 
shows that performance of genetic algorithm is much better 
when we use the bit string as population type as compare to 
double vector. 

Table for fitness when Scaling Function is changing 
while other options remain default which is shown as:- 
Population type=Double vector, Selection 
function=Stochastic uniform,  
Mutation function=Gaussian, Crossover function=Scattered 

 
Table 4: Fitness when scaling function changes 

Function 

Selection Function 

Stochastic Remainder Uniform Roulette Wheel Tournament 

Best Mean Best Mean Best Mean Best Mean Best Mean 

Rastrigin’s function 
Rosenbrock Function 

Sphere Function 
Ackley Function 

Generalized Rastrigin 
Branin Function 

0.0122 
0.0586 
0.0002 
0.0311 
1.0062 
0.3979 

6.5048 
68.258 
0.2378 
1.5726 
10.139 
2.3684 

0.0105 
0.0061 
0.0003 
0.0766 
0.0097 
0.3994 

5.2067 
24.265 
0.2564 
1.7593 
11.752 
1.2960 

0.0825 
0.0849 
0.0014 
0.2349 
0.1039 
0.4044 

14.195 
143.70 
0.6107 
2.9226 
13.816 
2.3745 

0.0008 
0.5238 
0.0002 
0.1223 
1.0073 
0.3991 

8.9790 
25.273 
0.3090 
1.0676 
11.743 
0.8085 

1.0245 
0.4904 
0.0110 
0.2763 
1.3382 
0.4149 

6.2878 
32.758 
0.0567 
0.0799 
5.0775 
1.2595 

Table 5: Fitness when selection function changes 

Function 
Scaling Function 

Rank Proportion Top Shift Linear 
Best Mean Best Mean Best Mean Best Mean 

Rastrigin’s function 
Rosenbrock Function 

Sphere Function 
Ackley Function 

Generalized Rastrigin 
Branin Function 

0.0351 
0.0151 
0.0006 
0.0040 
0.0666 
0.3984 

6.3410 
42.474 
0.3179 
1.3805 
5.3002 
0.6950 

0.0171 
0.0066 
0.0003 
0.0942 
0.0974 
0.3983 

6.3242 
25.532 
0.2083 
1.0969 
5.1373 
0.9330 

0.2162 
0.3895 
0.0018 
0.9159 
0.0513 
0.4085 

4.0440 
9.4210 
0.1147 
1.3704 
3.3444 
0.7495 

0.1479 
0.0355 
0.0010 
0.09123 
0.0220 
0.4000 

1.5511 
30.445 
0.2313 
0.8008 
4.3985 
1.5352 

 
Table 4 shows the performance of six benchmarks 

function in the form of mean fitness and best fitness. The 
fitness shown is evaluated using benchmarks function with 
four variables. The performance shows the comparison 
between all four types of scaling function (i.e. Rank, 
Proportion, Top and Shift Linear. The results show that 
performance of proportion using scaling function is much 
better than performance of Rank scaling function followed 
by top scaling function. 

Table for fitness when Selection function is changing 
while other options remain default which are shown as: - 
Population type=Double vector, Scaling function=Rank,  
Mutation function=Gaussian, Crossover function=Scattered 
The table 5 shows the results when selection function is 
changing (i.e. stochastic, Remainder, Uniform, Roulette 
Wheel, Tournament). The table shows the comparison 
between performances of genetic algorithm by using 
different types of scaling function in the genetic algorithm. 
The table shows that when is used Remainder as a scaling 
function the best fitness and mean fitness is comes better 

than Roulette wheel when it is used as a scaling function 
followed by the performance of  Stochastic Function.  
Table for fitness when Mutation function is changing while 
other options remain default as:- 
Population type=Double vector, Scaling function=Rank, 
Selection function= Stochastic uniform, Crossover 
function=Scattered 

Table 6 shows the comparison in the performance of 
genetic algorithm when we change the mutation function. 
The mutation function is change due to comparative study of 
performance evaluation by using the different benchmarks 
function with four variables. The results from tables 6 show 
that when we used Gaussian as mutation function the 
performance of genetic algorithm is improved than other 
two functions. The performance of Gaussian is superior than 
performance of Adaptive Feasible followed by Uniform 
mutation function. 

Table for fitness when Crossover function is changing 
while other options remain default which is shown as:- 
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Population type=Double vector, Scaling function=Rank, 
Selection function=Stochastic uniform, Mutation 
Function=Gaussian 

Table 7 shows the best fitness and mean fitness of the all 
six benchmarks functions. The results shows that when we 

use two points crossover function the results are always 
superior to other types of crossover function. After two 
points crossover function the performance of single point 
crossover is much better followed by scattered crossover 
function. 

 
Table 6: Fitness when mutation function changes 

Function 
Mutation Function 

Gaussian Uniform Adaptive Feasible 
Best Mean Best Mean Best Mean 

Rastrigin’s function 
Rosenbrock Function 

Sphere Function 
Ackley Function 

Generalized Rastrigin 
Branin Function 

0.2285 
0.0060 
0.0011 
0.0612 
0.1090 
0.4042 

9.6641 
69.693 
0.2050 
1.1228 
5.4176 
0.9490 

0.4066 
0.1577 
0.0018 
0.2212 
1.7482 
30.646 

0.4066 
0.1577 
0.0146 
0.2212 
1.7482 
30.646 

0 
0.0060 

1.7946e-015 
6.5582e-008 
5.2047e-013 

0.4058 

0 
5.4151 

1.1542e-013 
3.6219e-007 
3.4807e-012 

0.4442 

 

Table 7: Fitness when crossover function changes 

Function 

Crossover Function 

Scattered Single Point Two Points Intermediate Heuristic Arithmetic 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 

Rastrigin’s Function 
Rosenbrock Function 

Sphere Function 
Ackley Function 

Generalized Rastrigin 
Branin Function 

0.1121 
0.0103 
0.0005 
0.0324 
0.0977 
0.3997 

6.9208 
21.646 
0.0848 
1.2293 
8.9253 
1.3886 

0.0028 
0.1497 
0.0003 
0.0361 
0.1455 
0.3991 

5.6924 
47.808 
0.2586 
1.7253 
5.8766 
0.7614 

0.0766 
0.0023 
0.0001 
0.0305 
0.2650 
0.3991 

6.4230 
24.716 
0.1360 
1.1409 
5.3562 
2.2225 

0.9950 
0.0058 
5.5e-06 
0.0002 
0.9949 
0.3980 

7.5540 
42.109 
0.1425 
1.3888 
4.9667 
1.0070 

0.9949 
0.0005 
6.4e-10 
8.2e-05 
0.9949 
0.3978 

5.8189 
5.8141 
0.1731 
0.8012 
5.0541 
0.7386 

0.9949 
0.0016 
4.9e-08 
0.0006 
0.0037 
0.3978 

8.6786 
32.281 
0.1481 
1.1908 
8.4358 
0.5975 
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