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Abstract: Day to day growth of objectives required selection on basis of features. A spatial preference query ranks objects based on the qualities of 
features in their spatial neighbourhood. For example, consider a real estate agency office that holds a database with available flats for lease. A 
customer may want to rank the flats with respect to the appropriateness of their location, defined after aggregating the qualities of other features (e.g., 
restaurants, cafes, hospital, market, etc.) within a distance range from them. In this paper, we formally define spatial preference queries and propose 
appropriate indexing techniques and search algorithms for them. Our methods are experimentally valuated for a wide range of problem settings. 
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I. INTRODUCTION  

A query to a web search engine usually consists of a list of 
keywords, to which the search engine responds with the best 
or “top” k pages for the query. This top-k query model is 
prevalent over multimedia collections in general, but also over 
“structured” data for applications where users do not expect 
exact answers to their queries, but instead a rank of the objects 
that best match the queries. A top-k query in this context is 
then simply an assignment of target values to the attributes of 
a relation. To answer a top-k query, a database system 
identifies the objects that best match the user specification, 
using a given scoring function .Example 1. Consider a relation 
with information about restaurants in the New York City area. 
Each tuple (or object) in this relation has a number of  
attributes, including Address, Rating, and Price, which 
indicate, respectively, the restaurant’s location, the overall 
food rating for the restaurant represented by a grade between 1 
and 30, and the average price for a diner. A user who lives at 
2590 Broadway and is interested in spending around $25 for a 
top quality restaurant might then ask a top-10 query 
fAddress=“2590 Broadway”, Price=$25, Rating=30g. The 
result to this query is a list of the 10 restaurants that match the 
user’s specification the closest, for some definition of 
proximity. 

Processing top-k queries efficiently is challenging for a 
number of reasons. One critical such reason is that, in many 
web applications, the relation attributes might not be available 
other than through external web-accessible form interfaces. 
For instance, in our example above, the Rating attribute might 
be available through the Zagat-Review website,1 which, given 
an individual restaurant name, returns its food rating as a 
number between 1 and 30 (random access). This site might 
also return a list of all restaurants ordered by their food rating 
(sorted access). Similarly, the Price attribute might be 
available through the New York Time’s NYT-Review  

 

 
website. 2 Finally, the scoring associated returns the distance 
(in miles) between the restaurant and the user addresses. 

To process a top-k query over web-accessible databases, 
we then have to interact with sources that export different 
interfaces and access capabilities. In our restaurant example, a 
possible query processing strategy is to start with the Zagat-
Review source, which supports sorted access, to identify a set 
of candidate restaurants to explore further. This source returns 
a rank of restaurants in decreasing order of food rating. To 
compute the final score for each restaurant and identify the 
top-10 matches for our query, we then obtain the proximity 
between each restaurant and the user-specified address by 
querying MapQuest, and check the average dinner price for 
each restaurant individually at the NYT-Review source.  

Hence, we interact with three autonomous sources and 
repeatedly query them for a potentially large set of candidate 
restaurants. Our query scenario is related to a (centralized) 
multimedia query scenario where attributes are reached 
through several independent multimedia “subsystems,” each 
producing scores that are combined to compute a top-k query 
answer. While multimedia systems might support sorted and 
random attribute access, there are important differences 
between processing top-k queries over multimedia systems 
and over web sources. First, web sources might only support 
random access (e.g., MapQuest returns the distance between 
two given addresses). Second, attribute access for centralized 
multimedia systems might be faster than for web sources, 
because accessing web sources requires going over the 
Internet. Finally, and importantly, unlike in multimedia 
systems where attribute access requires “local” processing, 
applications accessing web sources can take full advantage of 
the intrinsic parallel nature of the web and issue probes to 
several web sources simultaneously, possibly issuing several 
concurrent probes to each individual source as well. 

In this article, we present algorithms to efficiently process 
top-k queries over web sources that support just random 
access and, optionally, sorted access as well. We first 
introduce an efficient sequential top-k query processing 
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algorithm that interleaves sorted and random accesses during 
query processing and schedules random accesses at a fine-
granularity per-object level. Then, we use our sequential 
technique as the basis to define a parallel query processing 
algorithm that exploits the inherently parallel nature of web 
sources to minimize query response time. As we will see, 
making the algorithms parallel results in drastic reductions in 
query processing time.  

II. BACKGROUND AND RELATED WORK 

Object ranking is a popular retrieval task in various 
applications. In relational databases, we often want to rank 
tuples using an aggregate score function on their attribute 
values [1]. For example, consider a database of a real estate 
agency, containing information about flats available for rent.  
potential customer may want to view the top-10 flats with the 
largest sizes and lowest prices. The score of each flat in this 
case is expressed by the sum of two individual scores: size and 
price, after they have been scaled to the same range (e.g., 
between 0 and 1, where 1 indicates the highest preference; 
highest possible size and lowest possible price). Another 
popular object ranking application is document ranking based 
on the relevance of the keywords (terms) they contain to a user 
query (also expressed by a set of terms).This problem has been 
the primary research in information retrieval (IR) for over two 
decades [2]. The ranking function in this problem is again an 
aggregation of the relevance of the query terms with the 
document, often enriched with some global ranking scores of 
the documents according to their popularity [3]. 

In spatial databases, ranking is often associated to nearest 
neighbor (NN) retrieval. Given a query location, we are often 
interested in retrieving the set of nearest objects to it that 
qualify a condition (e.g., restaurants). Assuming that the set of 
interesting objects is indexed by a hierarchical spatial access 
method (e.g., the R-tree [4]), we can use distance bounds 
while traversing the index to derive the answer in a branch-
and-bound fashion [5]. Tao et al. [6] noted that top-k queries 
can be modeled as (weighted) nearest neighbor queries, in the 
multi-dimensional space defined by the involved attribute 
domains, where the query point is formed by taking the 
maximum value of each dimension. 

Motivated by this observation, they adapted the algorithm 
of [7] for this problem. Nevertheless, it is not always possible 
to use multidimensional indexes for top-k retrieval. First, such 
indexes usually break-down in high dimensional spaces [8, 3]. 
Second, top-k queries may involve an arbitrary set of 
attributes (e.g., size and price) from a set of possible ones 
(e.g., size, price, distance to the beach, number of bedrooms, 
floor, etc.) and indexes may not be available for all possible 
attribute combinations (i.e., they are too expensive to create 
and maintain). Third, information for different rankings to be 
combined (i.e., for different attributes) could appear in 
different databases (in a distributed database scenario) and 
unified indexes may not exist for them. A stream of research 
[8, 1, 5, 7] for top-k queries has focused on the efficient 
merging of object rankings that may arrive from different 
(distributed) sources. The motivation of these methods is to 
minimize the number of accesses to the input rankings until 

the objects with the top-k aggregate scores have been 
identified. To achieve this, upper and lower bounds for the 
objects seen so far are maintained while traversing the sorted 
lists. 

In the next paragraphs, we first review the R-tree, which is 
the most popular spatial access method and the NN search 
algorithm of [9] and survey recent research of feature based 
spatial queries. 

A. Spatial Query Evaluation on R-trees: 
The most popular spatial access method is the R-tree [9], 

which indexes minimum bounding rectangles (MBRs) of 
objects. Figure 2 shows a collection R = {p1, . . . , p8} of 
spatial objects (e.g., points) and an R-tree structure that 
indexes them. R-trees can efficiently process main spatial 
query types, including spatial range queries, nearest neighbor 
queries, and spatial joins. Given a spatial region W, a spatial 
range query retrieves from R the objects that intersect W. For 
instance, consider a range query that asks for all objects within 
distance 3 from q, corresponding to the shaded area in Figure 
2. Starting from the root of the tree, the query is processed by 
recursively following entries, having MBRs that intersect the 
query region. For instance, e1 does not intersect the query 
region, thus the sub-tree pointed by e1 cannot contain any 
query result. In contrast, e2 is followed by the search 
algorithm and the points in the corresponding node are 
examined recursively to find the query result p7. 

A nearest neighbor (NN) query takes as input a query 
object q and returns the closest object in D to q. For instance, 
the nearest neighbor of q in Figure 2 is p7. Its generalization is 
the k-NN query, which returns the k closest objects to q, given 
a positive integer k. NN (and k-NN) queries can be efficiently 
processed using the bestfirst (BF) algorithm of [4], provided 
that D is indexed by an R-tree. A min-heap H which organizes 
R-tree entries based on the (minimum) distance of their MBRs 
to q is initialized with the root entries. In order to find the NN 
of q in Figure 2, BF first inserts to H entries e1, e2, e3, and 
their distances to q. Then the nearest entry e2 is retrieved from 
H and objects p1; p7; p8 are inserted to H. The next nearest 
entry in H is p7, which is the nearest neighbor of q. In terms of 
I/O, the BF algorithm is shown to be no worse than any NN 
algorithm on the same R-tree [4]. The aggregate R-tree (a R-
tree) [10] is a variant of the R-tree, where each non-leaf entry 
augments an aggregate measure for some attribute value 
(measure) of all points in its subtree. As an example, the tree 
shown in Figure 2 can be upgraded to a MAX a R-tree over 
the point set, if entries e1; e2; e3 contain the maximum 
measure values of sets fp2; p3g; fp1; p8; p7g; fp4; p5; p6g, 
respectively. Assume that the measure values of p4; p5; p6 are 
0:2; 0:1; 0:4, respectively. In this case, the aggregate measure 
augmented in e3 would be maxf0:2; 0:1; 0:4g = 0:4. In this 
paper, we employ MAX a R-trees for indexing the feature 
datasets (e.g., restaurants), in order to accelerate the 
processing of top-k spatial preference queries. 

Given a feature dataset F and a multi-dimensional region 
R, the range top-k query selects the tuples (from F) within the 
region R and returns only those with the k highest qualities. 
Hong et al. [11] indexed the dataset by a MAX aR-tree and 
developed an efficient tree traversal algorithm to answer the 
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query. Instead of finding the best k qualities from F in a 
specified region, our (rangescore) query considers multiple 
spatial regions based on the points from the object dataset D, 
and attempts to find out the best k regions (based on scores 
derived from multiple feature datasets Fc). 

III. PROBLEM FORMULATION 

Given an object dataset O and a set of c feature datasets 
{Fi | i € [1, c]}, the top-k spatial preference query returns the k 
data objects {p1,p2,p3…pk} from O with the highest score. The 
score of a data object p € O is defined by the scores of feature 
objects t € Fi in its spatial neighbourhood. Each feature object 
t is associated with a non-spatial score w(t) that indicates the 
goodness (quality) of t and its domain of values is the range 
[0, 1]. 
The range (rng) score of p , given a radius r : 

 
The nearest neighbour (nn) score of p: 

 

IV. MAPPING TO DISTANCE SCORE SPACE 

Top-k spatial preference queries return a ranked set of 
spatial data objects. The main difference to traditional top-k 
queries is that the score of each data object p € O is obtained 
by the feature objects in its spatial neighbourhood. Thus, 
determining the partial score of a data object p based on the 
feature set Fi requires that the pairs of objects (p, t) with t € Fi 
need to be examined. Consequently, the search space that 
needs to be explored to determine the partial score is the 
Cartesian product between O and Fi. As the total number of 
pairs with respect to all feature datasets is significantly larger 
than the cardinality of dataset O processing top-k spatial 
preference queries is particularly challenging. 

In this section, we formally define the search space of the 
top-k spatial preference queries by defining a mapping of the 
data objects O and any feature dataset Fi to a distance-score 
space. Then, we prove that only a subset of the pairs (p, t), 
where p € O and t € Fi, are sufficient to answer all top-k spatial 
preference queries. This drastically reduces the search space 
for any given query, thereby saving computational costs 
significantly. In addition, we prove that this subset of pairs is 
the minimal subset of pairs necessary. 

 
Figure.1. Mapping to the distance score space. 

In a pre processing step, the subset of pairs is computed 
and stored using a multi-dimensional index. As a result, we 
avoid computing pairs of the Cartesian product on-the-fly 
during query processing, leading to an efficient algorithm for 
processing top-k spatial preference queries. ing 

V. QUERY PROCESSING 

In this section, we present the Skyline Feature Algorithm 
(SFA) for processing top-k spatial preference queries. First, we 
present an algorithm that exploits the distance-score space and 
returns the data objects in descending order of their partial 
scores. Then, we present the algorithmic details of SFA, which 
produces the result of the top-k spatial preference query by 
coordinating access to the partial scores of data objects. For 
ease of presentation, in the following, we refer to a pair (p, t), 
where p € O and t € Fi, as a data point indexed by .Access 
to Partial Scores. During query processing, the data points in 

 are  retrieved sorted in descending order of their partial 
scores. Furthermore, only node entries of the R-tree  that 
satisfy the spatial constraint are processed. First, we present in 
details our algorithm for retrieving data points sorted based on 
the range score (Flowchart). Then, we describe the necessary 
modifications for supporting the influence and nearest 
neighbour scores.  

NextObject takes as input the radius r that defines the range 
constraint and a heap H that contains node entries and data 
points in descending order of partial score  ( ). Initially, the 
heap H contains the root of  .  Each time, the entry e at the 
top of the heap H, i.e., with maximum partial score, is 
retrieved (lines 3, 10). As long as e is not a data point (line 4), 
NextObject inserts in the heap H (line 7) the children entries 
of e whose distance is smaller or equal to the radius r (line 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.2. Flowchart for query processing 

When the next entry is a data point, it is returned as the 
data point with the highest partial score ( ) in . 

VI. EXPERIMENTAL EVALUATION 

This section, we compare the efficiency of the proposed 
algorithms using real and synthetic datasets. Each dataset is 
indexed by a R-tree with 4K bytes page size. We used an LRU 
memory buffer whose default size is set to 0.5% of the sum of 
tree sizes (for the object and feature trees used). Our 
algorithms were implemented in C++ and experiments were 
run on a Pentium IV 2.3GHz PC with 512 MB of RAM. In all 
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experiments, we measure only the I/O cost (i.e., number of age 
faults) of the algorithms as their 

A. Experimental Setting: 
We used both real and synthetic data for the experiments. 

For each synthetic dataset, the coordinates of points are 
random values uniformly and independently generated for 
different dimensions. By default, an object dataset contains 
200K points and a feature dataset contains 100K points. The 
real datasets are described in Table 1. All of them are 
geographical datasets of China, available at the Digital Chart 
of the World. 

Table 1: Rane of Parameter Values 

Parameter Values 
Buffer size 0.1,0.2,0.5,1,2,5,10 
Object data size 100,200,400,800,1600 
Feautre data size 50,100,200,400,800 
Quality skewness 1,2,4,8,16,32,64 
Number of results,k 1,2,4,8,16,32,64 
Number of features,m 1,2,3,4,5 
Query range 10,20,50,100,200 

     
 
 
 
 
 
 
 
 

Figure 3: Effect of buffer size, range scores. 

Figure 3 compares the cost of the algorithms with respect 
to the object data size |D|. Since the cost of FJ is dominated by 
the cost of joining feature datasets, it is insensitive to |D|. On 
the other hand, the cost of the other methods (SP, GP, BB) 
increases with |D|, as score computations need to be performed 
for more objects in D. 

VII. CONCLUSION 

In this paper, we studied a top-k spatial preference query, 
which provides a novel type of ranking for spatial objects 
based on qualities of features in their neighbourhood. We 
presented several algorithms for processing top-k spatial 
preference queries. First, we introduced a baseline algorithm 
SP that computes the scores of every object by performing 
spatial queries on feature datasets. SP is optimized by an 
incremental computation technique that reduces the number of 
component score computations for the objects. Next, we 
presented the GP, a variant of SP that reduces I/O cost by 
computing scores of objects in the same leaf node 
concurrently. Based on GP, we developed algorithm BB, 
which prunes non-leaf entries in the object tree that cannot 
lead to better results. For this, we developed techniques for 

deriving upper bound scores for non-leaf entries in the object 
tree by accessing feature trees. Finally, we propose algorithm 
FJ, which performs a multi-way join on feature trees to obtain 
combinations of feature points that commonly affect a spatial 
region and then search for the objects (in the object tree) 
affected by these combinations.  

Our experimental results show that BB outperforms SP and 
GP, since SP and GP examine every object in the object tree, 
whereas BB applies pruning techniques to reduce the number 
of objects to be examined (and thus their score computations). 
FJ is more efficient than BB for two or less feature sets, 
because FJ effectively discovers combinations of features that 
may lead to results with high scores. BB  and FJ mainly access 
object data and feature data, respectively. Thus, BB is the best 
method when the object dataset is small whereas FJ is the best 
algorithm when there are few and small feature datasets. Apart 
from the problem variants discussed in Section 5, in the future, 
we plan to design a cost model for BB and FJ so that the query 
optimizer is able to decide the best query algorithm (either BB 
or FJ) for a particular problem input. Another interesting 
research direction is to investigate efficient processing of top-k 
spatial preference queries on non indexed data 
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