
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 13

ISSN No. 0976-5697

Using Index Table to Query Optimization: B-Tree Index, Bitmap Index and Function-
Based Index

Chanchai Supaartagorn
Department of Mathematics Statistics and Computer

Faculty of Science, Ubon Ratchathani University
Ubonratchathani, Thailand
scchansu@mail2.ubu.ac.th

Abstract: Query optimization is the component of a database management system that attempts to determine the most efficient way to execute a
query. One of the techniques to optimize the query is to use an indexing table. This article proposes the concept of a B-Tree index, a Bitmap
index and a Function-based index. Our comparative study of 3 techniques show the results are as follows: the B-Tree index is efficient for high-
cardinality attributes. This index is not suitable for complex queries. The Bitmap index is only efficient for low-cardinality attributes. It is useful
in processing complex queries. This index improves complex query performance by applying a Boolean operator. The Function-based index
allows the creation of index on expression and internal function.

Keywords: Query optimization; Indexing table; B-Tree index; Bitmap index; Function-based index

I. INTRODUCTION

A database is a set of tables containing data where there
are connections between the data stored in one table and data
stored in other tables. Nowadays, a database plays an
important role for every organization. It is a tool for decision
making and planning to achieve its objectives or goals.

With the rapid expansion of the internet, data is growing
at an exponential rate. Businesses are building larger
databases to cope with this enormous data growth rate [1]. In
addition, over the past decade, two clear trends have
occurred: a) the database systems have been deployed in new
areas, such as electronic commerce, with a new set of
database requirements, and b) the databases have become
increasingly complex with support for very large numbers of
concurrent users [2]. The large amount of data, more
complexity and answers are expected quickly are the critical
problems when accessing a database. Modern day database
workloads include: On-line Transaction Processing Systems,
Enterprise Resource Planning, Customer Relationship
Management, On-line Analytical Processing and Data
Analysis over Data-warehouses. The queries generated by
these workloads are increasingly complex and the databases
are larger than ever [3]. There are many techniques to speed
up query processing or to improve the query optimization,
for example, index table, SQL tuning, database server tuning,
etc. This article explores the index table technique; reviews
the B-tree index, Bitmap index and Function-based index.

II. INDEX TABLE CONCEPTS

Index table is a data structure that improves the speed of
data retrieval operations on a database table. The index is
stored in a file that contains the key and the address to
access the record directly. Comparable to the book, the
index is the index page to collect a glossary of the book by
alphabetic order. Readers can search data easily and quickly.
However, there are both in time and in space to store the
index table.

A. B-Tree Index:
Indexes are stored on disk in the form of a data structure

known as B-tree. A B-tree order m is a tree with the
following structural properties [4]:

a. The root is either a leaf or has between 2 and m
children.

b. All nonleaf nodes (except the root) have between
m/2 and m children.

c. All leaves are at the same depth.
B-tree follows the same structure as a binary search tree,

in that each key in a node has all key values less than the key
as its left children, and all key values more than the key as its
right children [5]. In addition, leaf nodes store the ROWID
values that represent the address of data. The B-tree in Figure
1 is an example of B-tree index.

Figure 1. B-tree index [6].

If we need to search the value 66, the process starts from
the root node. The value 66 is less than 122, then down to the
tree on the left. The value 66 is greater than 65, then down to
the tree on the right that it is the leaf node. This leaf node
stores the ROWID of the value 66, then it retrieves the record
of value 66.

B. Bitmap Index:
A bitmap index on an indexed attribute consists of one

vector of bits per attribute value, where the size of each

Chanchai Supaartagorn, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,13-16

© 2010, IJARCS All Rights Reserved 14

bitmap is equal to the cardinality of the indexed relation. The
bitmaps are encoded such that, the ith record has a value of v
in the indexed attribute if and only if the ith bit in the bitmap
associated with the attribute value v is set to 1, and the ith bit
in each of the other bitmaps is set to 0. This is called a Value-
List index [7]. An example of a Value-List index for table T
is shown in Figure 2, where each column in Figure 2(b)
represents a bitmap Sv associated with an attribute value v.

Figure 2. Example of a Value-List Index.

C. Function-based Index:
Function-based index allows the creation of index on

expression and internal function. Traditionally, performing a
function on an indexed column in the Where clause of a
query would not be used. It performs the full-table scan.
There are many DBMS that can use function-based index, for
example, Oracle 8i or higher can use function-based index to
counter this problem. It is assumed that the following index
is built in a customer table:

Create index customer_idxl on customer(cust_name);
and the following SQL statement is executed:
 Select * From customer Where cust_name = ‘John’;

Since the execution plan of this statement is established
as the range scan of the index customer_idxl, its result set is
searched via the index. However, if another SQL statement is
executed as follows:
 Select * From customer Where trim(cust_name) = ‘John’;

This statement cannot take advantage of the index
customer_idxl. The inefficient execution plan of the second
SQL statement is optimized by the following function-based
index:
 Create index customer_fbil on customer(trim(cust_name));

The result set of this SQL statement is searched via the
index customer_fbil [8]. By using function-based indexes, a
database designer can create a matching index that exactly
matches the predicate within the SQL Where clause. This
ensures that the query is retrieved with a minimal amount of
disk I/O and the fastest possible speed [6].

III. PERFORMANCE EXPERIMENTS

The experiments are run on a PC AMD Athlon(tm) II x2
270 Processor 3.40 GHZ and 2 GB RAM, running Microsoft
Windows 7 Service Pack 1. Oracle Database 11g as the

DBMS. We create an employee table for this experiment.
The schema of an employee table is defined as follows:

Create table employee (
empno number(10),
ename varchar2(20),
sal number(10),
gender varchar2(1),
primary key(empno));

A. Compare between without index and B-tree index:
Our synthetic dataset used on the implementation is

100,000 tuples. The SQL code is as follows:
Select * From employee Where empno=100000;
The empno column (Cardinality=100,000) was created as

B-tree index. Figure 3 and 4 show the execution plan of
without index and B-tree index respectively.

Figure 3. Execution plan of SQL code (without index)

Figure 4. Execution plan of SQL code (B-tree index)

From Figure 3 and 4, using B-tree index in empno
column shows better performance for querying than without
index are as follows:

a. Without index Disk access time = 1.40 ms,
Consistent gets = 11,257 and Physical reads =
13,605

b. B-tree index Disk access time = 0.30 ms, Consistent
gets = 117 and Physical reads = 506

Chanchai Supaartagorn, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 13-16

© 2010, IJARCS All Rights Reserved 15

Moreover, when implementing with 200,000, 1,000,000 and
2,000,000 tuples, disk access time is shown in Figure 5.

Figure 5. Performance comparison of without index and B-tree index

The results of this experiment are according to the
research of Hyunja Lee and Junho Shim [9]. They propose
vertical schema as a primary table structure for the triple
information in RDBMS and a pivot table index created from
the basic vertical table. The number of tuples of the vertical
directly affects performance. The results, when implementing
with 100,000 tuples, index outperforms by more than 3
times, while with 2,000,000 tuples, it outperforms by more
than 40 times.

B. Compare size of index table between B-tree index and
Bitmap index:

Our synthetic dataset used on the implementation is
100,000 tuples. The gender column (Cardinality=2) was
created as B-tree index and Bitmap index. Figure 6 and 7
show the size of B-tree index (GENDER_IDX) and Bitmap
index (GENDER_BMX) respectively.

Figure 6. Size of B-tree index table (GENDER_IDX)

Figure 7. Size of Bitmap index table (GENDER_BMX)

From Figure 6 and 7, using Bitmap index in gender
column shows better performance for querying than B-tree
index in gender column. Moreover, when implementing with
200,000, 1,000,000 and 2,000,000 tuples, size of index table
is shown in Figure 8.

Figure 8. Size of index table of B-tree index and Bitmap index

From Figure 8, Bitmap index is efficient for low-
cardinality attributes. On the other hand, B-tree index is
efficient for high-cardinality attributes. The results of this
experiment are according to the research of Ali Hamadou and
Kehua Yang [10]. They present an efficient bitmap indexing
technique based on Word-Aligned Hybrid for data
warehouses. They can observe that when the cardinality of
indexed attribute grows, the size of the bitmap index grows
exponentially.

C. Experiment of Function-based index:
We experimented with the SQL code is as follows:

 Select * From employee Where UPPER(ename)=’JOHN’;
If we create a regular index on the ename column, we

see that the index is not used. The result is shown in Figure
9.

Figure 9. Execution plan of SQL code (regular index)

Then we replace the regular index with a function-based
index on the ename column is as follows:
 Create Index ename_idx On employee(UPPER(ename));

We see that the index is used after run the SQL code.
The result is shown in Figure 10.

Chanchai Supaartagorn, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,13-16

© 2010, IJARCS All Rights Reserved 16

Figure 10. Execution plan of SQL code (function-based index)

From Figure 9 and 10, using Function-based index shows
better performance for querying than regular index are as
follows:

a. Regular index Disk access time = 0.50 ms, Consistent
gets = 679 and Physical reads = 584

b. Function-based index Disk access time = 0.36 ms,
Consistent gets = 118 and Physical reads = 505

IV. CONCLUSION

Index table is the technique used to speed up query
processing. However, there are both in time and in space to
store the index table. In this article, we propose and advise
the use of B-Tree index, Bitmap index and Function-based
index.

B-tree index is stored on disk in the form of a data
structure known as B-tree.

a. B-tree index is efficient for high-cardinality
attributes, for example, employee code attribute,
student code attribute, etc.

b. B-tree index is not suitable for complex queries, for
example, query with a Boolean operators, because it
must create composite key.

c. B-tree index is useful in On-line Transaction
Processing Systems. The system is characterized by
a large number of short on-line transactions (Insert,
Delete, Update).

Bitmap index consists of C (the number of distinct values
of the indexed attribute) bitmap vectors each of which is
created to represent each distinct value of indexed attribute
[11].

a. Bitmap index is efficient for low-cardinality
attributes, for example, gender attribute, department
code attribute, etc.

b. Bitmap index improves complex query performance
by applying low-cost Boolean operation such as
AND, OR and NOT in the selection predicate on
multiple indices, thereby reducing the search space
before going to the primary source data [11].

c. Bitmap index is useful for various database
applications such as data warehousing. The requests
for information from data warehouse are usually
complex and ad-hoc queries.

Function-based index can define an expression or an SQL
function based on the columns of a target table as its column.

Accordingly, it encourages various kinds of search
conditions to be supported by their relevant indexes [8]. A
database designer can create a matching index that exactly
matches the predicate within the SQL Where clause.

V. REFERENCES

[1] B. Dageville, K.Dias, “Oracle’s Self-Tuning Architecture
and Solutions”, IEEE Data Engineering Bulletin, vol. 29,
no. 3, pp. 24-31, March 2006.

[2] Oracle Corporation, “The Self-Managing Database: Guide
Application & SQL Tuning”, Oracle White Paper, 2003
[updated 2003 Nov; cited 2011 Jan], Available from:
http://www.oracle.com/technetwork/database/focus-
areas/manageability/twp-manage-automatic-sql-tuning-
132307.pdf

[3] Surajit Chaudhuri, “Query Optimizers: Time to Rethink the
Contact?”, In 35th SIGMOD International Conference on
Management of Data Providence, 29 June – 2 July 2009,
pp.961-968.

[4] Mark Allen Weiss, “Data Structures and Algorithm
Analysis in C++”, Addison-Wesley, CA, 2007, pp.165.

[5] Ovais.tariq, “Understading B+tree Indexes and how they
Impact Performance”, [Internet], 2011, [updated 18 July
2011 ; cited 2012 March], Available from:
http://www.ovaistariq.net/733/understanding-btree-
indexes-and-how-they-impact-performance/

[6] Burleson Consulting, “Turbocharge SQL with advanced
Oracle indexing” [Internet], 2010, [updated 2010 Apr 8;
cited 2012 Feb 15], Available from: http://www.dba-
oracle.com/art_9i_indexing.htm

[7] C.Y. Chan and Y.E. loannidis, “Bitmap Index Design and
Evaluation”, Proceeding of the 1998 ACM SIGMOD
international conference on Management of data, pp. 355-
366.

[8] Hyunho Lee and Wonsuk Lee, “Query Optimization for
Web BBS by Analytic Function and Function-based Index
in Oracle DBMS*”, In Sixth International Conference on
Advanced Language Processing and Web Information
Technology, 22-24 August 2007, Luoyang, Henan, China,
pp.606-611.

[9] Hyunja Lee and Junho Shim, “Pivoted Table Index for
Querying Product-Property-Value Information” In 3rd

International Conference on Ubiquitous Information
Management and Communication, 15-16 January 2009,
Suwon: S.Korea, pp. 58-62.

[10] Ali Hamadou and Kehua Yang, “An Efficient Bitmap
Indexing Strategy based on Word-Aligned Hybrid for Data
Warehouses”, In International Conference on Computer
Science and Software Engineering, 12-14 December 2008,
Wuhan, Hubei, China, pp. 486-490.

[11] Janya Sainui, Sirirut Vanichayobon and Niwan
Wattanakitrungroj, “Optimizing Encoded Bitmap Index
using Frequent Itemsets Mining”, In International
Conference on Computer and Electrical Engineering, 21-22
December 2008, Phuket, Thailand, pp. 511-515.

	INTRODUCTION
	INDEX TABLE CONCEPTS
	B-Tree Index:
	Bitmap Index:
	Function-based Index:

	PERFORMANCE EXPERIMENTS
	Compare between without index and B-tree index:
	Compare size of index table between B-tree index and Bitmap index:
	Experiment of Function-based index:

	CONCLUSION
	REFERENCES

