
��������	�
����	��������������

������������������������������������ ����!����"���������������

�##��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved ���

ISSN No. 0976-5697

Integrated Model-based Test Case Generation

Yujian Fu*
Department of Computer Science

School of Engineering and Technology

Alabama A&M University

Normal, AL 35762 USA

yujian.fu@aamu.edu

Shal Li
Department of CETL

School of Education

Alabama A&M University

Normal, AL 35762 USA

Sha.li@aamu.edu

Sudip Bhattacharjee
Department of Civil Engineering

School of Engineering and Technology

Alabama A&M University

Normal, AL 35762 USA

Sudip.bhattacharjee@aamu.edu

Zhijiang Dong
Department of Computer Science

Middle Tennessee State University

Murfreesboro, TN 37132 USA

zdong@mtsu.edu

Abstract: Model-based test case generation provides a solid foundation for the software quality assurance and gains more and more attention to

the industries. It is important to perform software testing as early as possible to detect faults, reduce software development time and cost. Many

researchers have considered using UML diagrams to generate test cases. Few work on the test case generation using combination of sequence

diagram and statechart diagrams is reported in literatures. In this paper, we present an integrated approach to generating test cases from sequence

diagrams using UML2.x syntax. The approach combines UML2 sequence diagrams and statecharts hierarchically and generate test paths based

on message flow graph. We also define various coverage criteria to generate test paths. We have applied it to a case study to investigate its fault

detection capability. The results show that the proposed approach effectively detects all the seeded faults when complying with the most

demanding adequacy criterion and still achieves reasonably good results for less expensive adequacy criteria. As a result, this work provides a

solid foundation for further research on automatic test case generation, coverage criteria analysis of sequence diagram based object oriented

testing.

Keywords: model-base testing; sequence diagram; statechart diagram; test case; test criteria

I. INTRODUCTION

There is an increasing need for effective testing of
software intensive system for quality assurance. In the
addition, the growing application areas of web applications
and e-commerce is growing in size, become more complex
and require more reliable than most traditional applications.
Model-based test case generation provides a solid foundation
for the software quality assurance and gains more acceptance
to the software practitioners. It is important to performance
software testing as early as possible to detect faults, reduce
software development time and cost. Many researchers have
considered using UML diagrams to generate test cases. Few
work on the test case generation using combination of
sequence diagram and state chart diagrams is reported in
literatures. In this paper, we present an integrated approach to
generating test cases from the combination of sequence
diagrams and state chart diagrams using UML2.x syntax.

The Unified Modeling Language (UML) has emerged as

the de facto standard for analysis and design of different

kinds of systems. UML provides a variety of diagramming

notations for capturing design information from different

perspectives. In recent years, researchers have realized the

potential of UML models as a source of information in

software testing [1, 7, 8, 9, 12, 15, 18, 24, 26, 29, 37, 32, 38,

34, 39, 17]. Many UML design artifacts have been used in

different ways to perform different kinds of testing. For

instance, UML statecharts have been used to perform unit

testing, and interaction diagrams (collaboration and

sequence diagrams) have been used to test class interactions.

More and more software developers use UML and

associated visual modeling tools as a basis to design and

implement their applications. In addition, UML sequence

diagram is widely used for specifying the dynamic

behaviors of classes and contains necessary information

about object communications in terms of object life lines

that is more propitious to object-oriented software testing.

Therefore, in the research reported in this paper, UML

sequence diagram are used as a basis to generate message

flow graph (MFG) hierarchically. Firstly, we discuss an

approach to generated hierarchical MFG based on sequence

and state chart diagram of corresponding objects. After that,

a verification method is provided for the coverage criteria.

The remainder of the paper is organized as follows.

Section 3 presents a brief survey of the related works in the

areas of state-based testing and UML-based test path

generation. A description of classification with respect to

UML2 diagrams is given in Section 2. Section 4 presents an

approach to generate a hierarchical message flow graph

based test cases. This approach can also derive independent

testing path. A case study of a web-based information

system is illustrated in Section 5. Conclusive remarks and

future work are, finally, indicated in Section 6.

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

II. BACKGROUND

In this section, we discuss on UML 2.0 sequence

diagrams with the new enriched features – fragments (Fig.

1).A sequence diagram precisely specifies the set of objects

and the sequences of message exchanges that are involved in

various scenarios. UML 2.x sequence diagram provides a

mechanism known as combined fragments also known as

interaction segments. A combined fragment represents the

control structures of program by enclosing one or more

processing sequences in a frame which are executed under

specific named circumstance called fragment operators.

There is a facility for providing 12 different types of

fragment operators. We briefly discuss only those

interaction operators which are used in this work.

Combined fragment loop: A loop fragment indicates that the

messages within the operand are to be repeated a number of

times. The interaction constraint of a loop operand may

include a lower and an upper limit specifying iterations of

the loop as well as a Boolean expression. The loop fragment

describes the test to be performed before the first execution

of the messages in the loop operand indicating a pre-test

form of loop. Since it is impractical to include all message

paths of a loop fragment, we consider a predicate node

coverage criterion (defined in Section 4.2) to generate a test

set based on selection of similar paths.
Combined fragment alt and opt: The fragments alt and

opt denote a choice of behavior which is controlled by an
interaction constraint. The alt fragment indicates if the alt
condition is satisfied, the program goes to the alt fragment.
While the opt indicates an optional path only if the opt
condition is met. The difference is alt provides an exclusive
or choice, while opt provide another branch. We denote this
choice of behavior as selection and associate with predicate
node coverage criterion. The chosen operand has a constraint
evaluated to true.

III. RELATED WORK

Traditional testing strategies for procedural programs,
such as data flow analysis and control flow analysis cannot
be directly applied to OO programs [22]. Extensions of these
techniques for OO programs have been proposed by Buy et
al. [9] and Martena et al. [25]. A structural test case
generation strategy by Buy et al. [8] generates test cases
through symbolic execution and automates deduction for the

data flow analysis of a class. Kung et al. [20] proposed an
idea to extract state models from the source code, whereas
others suggest test generations from pre-existing state-
models [12, 29, 13, 33]. In the sections below, we will
discuss more specific UML-based testing technique.

An approach was proposed by Tse and Xu [32] to
deriving test cases from Object Test Models (OTM). State
space partitions of the attributes of a class are used with the
OTM to generate a test tree. The actual test cases are derived
from the test tree. Nori and Sreenivas [26] have proposed a
specification-based testing technique that splits the
specifications of a class into structural and behavioral
components. Structural aspects define the attributes and
method specifications of a class, whereas state machine is
used to defined the behavioral component that describes the
sequence of method invocation. In the work of [12, 30], an
idea of converting test generation into an AI planning
problem was proposed. UML statecharts are processed by
planning tools and used to produce AI planning
specifications. The test cases are generated based on the
processed statecharts. Another example of statecharts based
test case generation technique was proposed by Kim et al.
[18]. These statecharts are transformed to Extended Finite
State Machines (EFSMs) to generate test cases and then use
traditional control and data flow analysis on the generated
test cases.

Several works have been done based on state-chart and
finite state machine. In the work of [28], Li et al. presented
an approach to testing specific properties of reactive systems.
Kim et al. [22] used statecharts to generate test sequences for
Java-based concurrent systems. Kansomkeat and Rivepiboon
[21] have converted UML statecharts into an intermediate
model known as Testing Flow Graph (TFG). This graph
reduces complexities of statecharts and produces a simple
flow graph. Test cases are finally generated by traversing the
TFG using state and transition coverage criteria. The
proposed methodology was evaluated using mutation testing.
Results of an experiment carried out to validate the
application of Round Trip Test Strategy [6] on UML
statecharts are presented in Briand et al. [8]. Authors also
propose improvements on the strategy based on the analysis
of these results. Swain et al. has proposed a method of
statecharts and activity model based testing technique by
constructing an intermediate model named state-activity
diagram (SAD) [40]. Besides, some recent work [13] was
proposed using formalization on the statechart diagram to
perform model-based testing. In the work of [3], a semantic
model is proposed using the labeled transition system. The
formalization of model based testing represents a new trend
of state based testing.

Although many works had been done on the OO testing
of sequence diagram and statecharts diagram, this work is
different from the above unit level testing in two aspects.
First, this work presents a hierarchical synthesized approach
to sequence diagram testing using a message flow graph
(MFG). The proposed MFG is generated from the statechart
that supports message generation in the sequence diagram.
Secondly, the hierarchical structure provides a novel graphic
based testing technique for OO program validation.

In addition, several works have been done to generate

test cases by the combination of UML diagrams. In the work

of [36], Pilskalns et al. have proposed a methodology to

generate test cases from use case diagram and sequence

diagrams. Object Method Directed Acyclic Graph

(OMDAG), an intermediate form of UML diagrams, was

developed to generated test cases. Authors presented an

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

approach to convert use case diagram and sequence diagram

into OMDAG, which is used to generate integration tests.

Basanieri and Bertolino [5] have presented a User

Interaction Testing (UIT) model to perform integration

testing. A UIT is generated from use cases and UML

sequence diagrams. Abdurazik et al. have discussed a static

checking of source code and measuring adequacy of a test

suite based on collaboration diagrams [1]. The approach

generates the test cases by applying traditional control and

data flow analysis on collaboration diagrams. TEst

Sequence generator (TESTOR) [35] is an approach used to

generate integration tests using UML statecharts and

collaboration diagrams for component based systems. The

behavior of each component is specified in the form of

UML statecharts, while the test directives are specified in

the form of UML collaboration diagrams. The SeDiTec [14]

approach is used for testing interactions between the classes

involved in a sequence diagram. Badri et al. [4] have used

use cases and collaboration diagrams to generate integration

test cases. Another approach for UML based integration

testing is proposed by Le Traon and Jeron et al. [41]. This

approach uses UML class diagram and generates an

intermediate model known as TD Graph (TDG). This graph

has three types of dependencies: Class to Class, Class to

Method, and Method to Method dependency. This

information was further used to determine the ordering of

classes. Briand et al. [10] have discussed how to determine

class test orders for integration testing. An approach was

proposed in the work of [10] to using UML class diagrams

and finding a class test order which minimizes the number

of stubs required for integration testing.

IV. AN UML-BASED INTEGRATED APPROACH TO TEST

CASE GENERATION

The run-time behavior of an object-oriented system is
modeled by well-defined sequences of messages passed
among collaborating objects. In the context of UML, this is
usually modeled as interaction diagrams (sequence and/or
collaboration diagrams). In many cases, the states of the
objects sending and receiving a message at the time of
message passing strongly influence their behavior in
following aspects:

• An object receiving a message can provide

different functionalities in different states.

• Certain functionalities may even be variable or

unavailable if the receiving object is not in the

correct state.

• The functionality of providing object may also

depend on the states of other objects including the

sending object of a message.

In this work, a graph based testing technique is proposed,

which is on the idea that the communication between objects

should ideally be exercised (represented by sequence

diagram) for all possible states of the objects involved

(statecharts diagram). This is of particular importance in the

context of OO software as many classes exhibit an

interaction state-dependent behavior. Such testing objective

is implemented by generating a graph-based testing

approach and testing path on message flow graph (MFG) on

the defined criteria. The proposed technique can be applied

during the integration test phase, right after the completion

of class testing. It consists of three steps:

1. Message Flow Graph (MFG) Generation: We

investigate the sequence diagram of the (sub)system,

and generate corresponding MFG following the MFG

generation algorithm (will be discussed in the

following section).

2. Hierarchical Testing Path Generation: Based on the

MFG of sequence diagram, for each object that we

concern, we refer the state-chart diagram and

generate a MFG for some node of MFG.

3. Coverage Criteria: We test the sequence diagram

against the coverage criteria that we defined.

In the following sub-sections, we describe the proposed
testing technique in greater detail with the help of a simple
example.

A. Definitions

First, we introduce message flow graph generation. As

we see, one of the basic communications among objects is

message passing. In sequence diagram, we represent all

communications as messages. Based on the sequence

diagram and each object’s behavior (state-chart diagram),

we can build a message flow graph (MFG).

In this work, we refer message to be as object,

expression, primary variable, and other specific terms

defined in UML2. For instance, a message can be Students =

new Student() which indicates an object is instantiated. An

arithmetic expression z = x+y, a variable double salary, or a

stereo type << create >> can be a message. Therefore, in

this work, term refers to any legal statement that can be

allowed to used in sequence diagram and state-chart

diagram in UML2.

In the next, we first define Message Flow Graph (MFG)

that would be used in the description of our methodology.

Definition 1 (Message Flow Graph (MFG)) Message Flow

Graph (MFG) is defined as a directed graph with (N, E, L,

V), where

• N is a set of nodes, which represent a set of

messages that connect objects in the sequence

diagram, denoted by circles.

• E is a set of edges, which represent flow direction

between objects, and are denoted by arrows.

• L is a label function that maps each node and edge

to a set of terms (alphabets (constants and

variables) and expressions on alphabets), and

• I is a set of initial nodes that indicate the starting of

the program.
Each node represents a message, which can be a data

(parameter or argument), a method call, or a memory, a plain
text. Each edge represents the dependency relation between
two nodes, and denoted by (N1, N2), where N1 and N2 are two
nodes. The direction of the edge N1, N2 is from node N1 to
node N2. The direction shows the dependency of a given
node on others. For example, given a MFG G in Fig. 2, edge
(N1, N2) < G, while edge (N0, N2) � G.

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

Figure 2. An example of MFG.

Next step, we can define dependency path as follows.

Definition 2 (Dependency Path (DP)) Given a MFG G =<

N, E, L, I >, a dependency path (DPi) in G from node ni to

node nj is defined as a sequence of connected acyclic nodes

from node ni to node nj in G. For any node nk � G, and nk ∉

DPi, there does not exist a dependency path Dpi’ such that

nk � DPi’ and DPi � DPi’ .

In Fig. 1, N0-N1-N5-N7-N8 is a DP. To generate test cases,

our purpose is to find the enough independent dependency

path (DP) from a completed MFG.

Definition 3 (Independent Dependency Path (IDP)) Given a

MFG G =< N, E, L, I >, two dependency paths (Dpi, DPj �

G) are independent from each other iff there is at least one

node (ni) in one DP (DPi) that is not covered in another DP

(DPj), i.e. ni � DPi � ni ∉ DPj, where ni � G,Dpi, DPj � G.

To identify IDP, a key issue is to find the predicate node,

since predicate node usually is the one that split the program

to branches. Here we define predicate node as follows.

Definition 4 (Predicate Node) Any boolean condition that

needs to be evaluated can be represented by a predicate

node. A predicate node is associated with more than one

edges that have logic relation.

Graphically, a predicate node is denoted by a box, and
anyregular node as a circle graphically. In Fig. 1, node N2 is a
predicate node, and others are regular nodes. Predicate nodes
take the program to multiple paths and act as the key nodes
of program branches. Predicate nodes are usually by more
than one dependency path. For example, in Fig 1, N0-N2-N3-
N5-N7-N8 and N0-N2-N4-N6 are two IDPs regarding to
predicate node N2.

B. Generation of MFGs

This is a systematic approach to generate test cases based

on UML2 sequence diagrams. Given any sequence diagram

SD in UML2, we have following two big steps in

pseudocode form. Subsequently this method is explained

using an example.

1. First, for any message that labeled in SD, we

generate a node by following life line of each

object. Each node has affiliation of its owner

(object), and we use dot notation to denote the

owner relation.

Figure 3. A hierarchical MFG of Example of Fig. 2.

2. For message mi that involves internal state

transitions (such as method invocation, object

creation, and more actions), we generate a subset of

MFG for the node (mi).

Therefore, each node may be hierarchically represented

by a set of nodes and edges that form a MFG. By traversing

this MFG, we can tell if the message mi causes the object’s

state transition. In addition, we can tell if message mi+1 is the

one after message mi of object execution. This approach can

connect black-box testing on the inter-class level with white

box testing on the intra-class level. The advantages can be

not only we can tell if a message is passed properly when an

error is detected, but also can we tell internally what causes

the message not passed properly internally of the object.

For example, in Fig. 2, assume node N6 involve a series

of state transitions, then we can generate a subset of MFG

GN6 for it (Fig. 3).

Definition 5 (MFG of Sequence Diagram (SD)) Let

sequence diagram SD be defined as SD, < O, M, Ix >, where

O be the set of object, M be the message set of a class

instance; Ix be the set of index of all messages in SD. Let

MFG G be the message flow graph of sequence diagram

(SD), where GS D =< N, E, L, I > and

• N is the set of all the observable messages mi of set

M, where mi � M;

• E is the set of message communication sequences,

e.g., there is message mi � M and mi+1 � M, the

correspond nodes ni; ni+1 � N form an edge < ni;

ni+1 >.

• L is the set of any message identifiers or pseudo

code.

• I is the set of initial nodes ninit, where init � Ix, and

�i � Ix, init � i.

It is worth to note that MFG is generated upon the

message passing through objects. The hierarchical subset

MFG is generated upon the state-chart diagram, then the

potential question is how to identify the messages in state-

chart diagram. To solve this problem, we extend the

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

message used in the MFG to including states. Therefore, we

can extend the above two-step generation algorithm to the

state-chart diagram by following steps:

1. Generate a node in the subset MFG for each state in the

state-chart diagram.

2. Generate a predicate node for each evaluation condition

defined in the label of a transition.

3. Generate an edge for each transition between two states.

4. Generate a label for each label of a transition.

C. Generation of Predicate Nodes

Any fragment in sequence diagram (of UML2) can

generate a predicate node whose condition is evaluated to be

a boolean value. The fragment with the condition is formed

a predicate node. Each predicate node can cause more than

one execution branches. Corresponding to fragment of

sequence diagram of UML2, therefore, we can have three

types of predicate node:

1. Alternative predicate node: for ALT fragment, we have

an alternative predicate node which introduces the program

to two different path depending on the condition

satisfaction.

2. Loop predicate node: for LOOP fragment, we have an

iteration predicate node with regarding to condition. The

predicate node takes the program to a certain path when the

condition is met. Otherwise, the predicate node takes the

program to a node that outside the iteration.

3. Optional predicate node: for OPT fragment, there is a

condition defined. If the condition is evaluated to be true,

then execute this optional part; otherwise, skip the optional

fragment. A predicate node of MFG is shown in Fig. 3.

In addition, we have predicate nodes for state-chart

diagram. The predicate node is generated whenever there is

guard condition labeled for a transition or a state action.

Similarly, the predicate node indicates different

execution path inside the object depending on the evaluation

of the condition.

D. Testing Criteria

Given the UML-based message and state transition

description, the test criteria that includes sequence diagram

and statechart diagram contains following rules:

1. All nodes coverage: Each message of sequence

diagram and each state in the state-chart diagram

have to be tested at least once.

2. All edges coverage: Each observable message

passing between two objects of sequence diagram

has to be tested at least once. In the subnet of MFG,

Each transition in each state-chart diagram has to

be tested at least once.

3. All edges coverage: Each observable message

passing between two objects of sequence diagram

has to be tested at least once. In the subnet of MFG,

Each transition in each state-chart diagram has to

be tested at least once.

4. All independent dependency path coverage: Each

IDP of the generated MFG has to be tested at least

once.

Figure 4. Predicate node generation of optional fragment.

E. Automatic Testing Path Generation

As the discussion above, atomic generating independent

message dependency path is the essential element of

integrating testing. As compound message dependency path

is related to sequence diagram and statechart diagram, the

generation of message dependency path concerns the parse

of both sequence and statechart diagrams. In this work, we

define both sequence and statechart diagrams in XML

format so that it’ll be easily to be read and analyzed.

In order to solve the generation problem precisely, we

make two assumptions as follows.

• UML Statechart diagram here is deterministic,

consistent, and self-contained. There is no sub state,

nested state and concurrent state. Only message

event might be taken account of.

• Message dependency path here is based on life line

order and mapping relationship of the message in

sequence diagram and the actions in state-chart

diagram.

Let M be the message set of class instance; Gm be the set

of guard conditions with respect to message m (m � M); p be

independent MDP with respect to message m.

Generating atomic message dependency path from UML

sequence and state-chart diagram comprises the following

steps:

• Extract information from UML sequence and

statechart diagram, and creating message connecting

table.

• Identify message dependency path from sequence

diagram and message response table.

• Generate a hierarchical MFG based on the message

connecting table and diagrams.

• Generate a set of independent message dependency

paths from MFG.

For any sequence diagram, it can be generated a message

flow graph (MFG) in the top level if assume there is no

internal investigation of any objects. However, if we need to

traverse the internal states for some message of some object,

the MFG will be hierarchical.

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

Let sequence diagram S D be defined as S D ,<O, M, I >,

where O be the set of object, M be the message set of a class

instance; I be the set of index of all messages in SD. Let G

be the MFG of S D, where G =< N, E, L, I >.

Let G1 be top level MFG, then the number of node in G1

is |M|. Let G2 be next level MFG of all objects oi � O, and

G2 = �iGoi . For a MFG that have m IDPs in the G1, if there

is one node i has next level MFG G2, where G2 has n IDPs,

then total IDP of the MFG G is m + n.

For example, in Fig. 2, there are 5 IDPs considering the

hierarchy representation of node N6.

V. CASE STUDY

In order to validate the effectiveness of our proposed

approach, we implemented the web based car rental system

(CRS) example using the Java language, and generated test

cases by seeding faults to the diagram. This strategy is well

established for assessing test techniques and has shown to

yield useful results [2].

A. Experimental Set Up

We will consider four different criteria that influence

the message flow graph coverage: all nodes, all edges, all

IDPs and all predicate nodes criterion. This setup option

determines the complexity of the path generation. The

number of paths generated is only dependent on the chosen

criteria. Later in the generation, some paths may be

determined to be infeasible due to the data inputs and guard

conditions.

Figure 6. Generated MFG of the sequence diagram in Fig. 5.

B. Result and Discussion

The sequence diagram of administrator of online car
rental system is shown in Fig. 3. Following above steps, we
can generate a G1 level MFG which is shown in Fig. 4.

For our example presented in Figure 4, there are two
coverage criterions will yield the same number of results: For
both all nodes and all IDPs criteria, three paths are generated.
This is because of two reasons – a) our example is too
simple, it does not show hierarchical invocation of methods
in other objects, and b) this sequence diagram has logic
errors. However, the criterion of predicate node will produce
fewer paths: only one path is generated to cover the only
predicate node.

Test cases can be generated from each sequence diagram
to verify the described functionalities. In the example of
online car rental system for administrator, the top level and
second level test paths can be tested in isolation. We can test
the top level first, in which case, we assume the hierarchical
nodes temporarily valid in the second level. There are 52 test
cases generate for two levels. It is also extremely important
to verify the internal execution sequences of each message.
That is, to specify one or more sequences that convey among
objects and how many combinations of functionalities can
archive the communication. Those combinations can be
represented as testing paths, which explicitly represent a set
of state transition performed in a particular order of a (more)
object(s).

All errors are identified for the embedded 17 faulty. We
have fixed 16 seeded errors in the example. The only one that
is not fixed is because it’s too straightforward – it can be
fixed by switch the order of messages.

C. Analysis

Test cases can be generated from each sequence diagram

to verify the described functionalities. In the example of

online car rental system for administrator, the top level and

second level test paths can be tested in isolation. We can test

the top level first, in which case, we assume the hierarchical

nodes temporarily valid in the second level. It is also

extremely important to verify the internal execution

sequences of each message. That is, to specify one or more

sequences that convey among objects and how many

combinations of functionalities can archive the

communication. Those combinations can be represented as

testing paths, which explicitly represent a set of state

transition performed in a particular order of a (more)

object(s).

All errors are identified and fixed in the example. It is

very efficient to use the hierarchical testing approach and

perform the test separately. According to our experiment, it

is much faster to test sequence diagram isolate than test it

integrated.

Table I. Generated Test Path

Criteria G1 Test Path G2 Test Path Total Test Path

All nodes 3 15 18

All edges 4 14 18

All IDPs 3 10 13

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new strategy for class

integration testing that is based on a hierarchical approach that

combines information from sequence diagram and statechart

diagrams and converts into the form of a direct flow graph

based on message communication (MFG). The motivation is

to exercise class interactions in the context of multiple state

combinations in order to detect program faults. Therefore, it

takes into account the messages of all objects involved in a

communication to exercise class interactions in the context of

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

integration testing. For instance, if the functionality provided

by an object depends on the message of other objects, then the

proposed technique can effectively detect faults occurring due

to invalid object messages.

We ran a carefully designed case study using a prototype

tool and generated 13 faulty versions of the system under test

using 8 carefully selected seeding faults. The empirical results

show that the proposed approach effectively detects various

kinds of faults communicated among objects. In particular, the

all IDP criterion successfully detected all of the seeded faults

and is particularly effective at detecting faults related to the

messages of interacting classes.

A limitation is that the case study presented in this paper is

still in limited size and may not be representative of an

industrial system. Industrial case studies are required to

carefully analyze the cost-benefit of the proposed integration

testing strategy in a realistic context.

VII. ACKNOWLEDGMENT

The authors would like to thank all reviewers for their kind
comments and valuable suggestions.

VIII. REFERENCES

[1] A. Abdurazik and J. Offutt. Using UML collaboration
diagrams for static checking and test generation. Pages
383 – 395. Springer, 2000.

[2] J. H. Andrews. Is mutation an appropriate tool for testing
experiments. In In ICSE 05: Proceedings of the 27th
international conference on Software engineering, pages
402–411. ACM Press, 2005

[3] H. R. Asaadi, R. Khosravi, M. Mousavi, and N. Noroozi.
Towards Model-Based Testing of Electronic Funds
Transfer Systems, May 2010.

[4] M. Badri, L. Badri, and M. Naha. A use case driven
testing process: towards a formal approach based on uml
collaboration diagrams. In the 3rd International Workshop
on Formal Approaches To Testing of Software FATES
2003, volume 2931 of Lecture Notes in Computer
Science, pages 223–235, Berlin, Heidelberg, Feb 2003.
Springer-Verlag.

[5] F. Basanieri and A. Bertolino. A practical approach to
UML-based derivation of integration tests. In 4th

International Software Quality Week Europe, November
2000.

[6] R. V. Binder. Testing Object-Oriented Systems-Models,
Patterns, and Tools. Addison-Wesley Professional,
Novmember 1999

[7] K. Bogdanov. Automated Testing of Harels statecharts.
PhD thesis, University of Sheffield, 2000.

[8] L. C. Briand, M. Di Penta, and Y. Labiche. Assessing and
improving state-based class testing: A series of
experiments. IEEE Transaction on Software Engineering,
30(11):770–793, 2004.

[9] L. C. Briand and Y. Labiche. A uml-based approach to
system testing. In UML’01: Proceedings of the 4th
International Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools,
pages 194–208, London, UK, 2001. Springer-Verlag.

[10] L. C. Briand, Y. Labiche, and Y. Wang. An investigation
of graph-based class integration test order strategies. IEEE
Transaction on Software Engineering, 29(7):594–607,
2003.

[11] U. Buy, A. Orso, and M. Pezz. Automated testing of
classes. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 39–48, New York,
NY, USA, 2000. ACM Press.

[12] U. Buy, A. Orso, and M. Pezze. Automated testing of
classes. SIGSOFT Softw. Eng. Notes, 25(5):39–48, 2000.

[13] V. A. de Santiago Junior, M. Cristia, and N. L.
Vijaykumar. Model based test case generation using
statecharts and Z: A comparison and a combined
approach. Technical Report INPE-16677-RPQ-850, 2010.

[14] F. Fraikin and T. Leonhardt. Seditec ” testing based on
sequence diagrams. In ASE ’02: Proceedings of the 17th
IEEE international conference on Automated software
engineering, page 261, Washington, DC, USA, 2002.
IEEE Computer Society.

[15] P. Fr¨ohlich and J. Link. Automated test case generation
from dynamic models. In ECOOP ’00: Proceedings of the
14th European Conference on Object-Oriented
Programming, pages 472–492, London, UK, 2000.
Springer-Verlag.

[16] L. Gallagher, J. Offutt, and A. Cincotta. Integration
testing of object-oriented components using finite state
machines: Research articles. Softw. Test. Verif. Reliab.,
16(4):215–266, 2006.

[17] A. Hartman and K. Nagin. The agedis tools for model
based testing. SIGSOFT Softw. Eng. Notes, 29(4):129–
132, 2004.

[18] J. Hartmann, C. Imoberdorf, and M. Meisinger. Uml-
based integration testing. In ISSTA’00: Proceedings of the
2000 ACM SIGSOFT international symposium on
Software testing and analysis, pages 60–70, New York,
NY, USA, 2000. ACM.

[19] P. C. Jorgensen. Software Testing: A Craftsman’s
Approach, Third Edition. AUERBACH, Feburuary 2008.

[20] P. C. Jorgensen and C. Erickson. Object-oriented
integration testing. Commun. ACM, 37(9):30–38, 1994.

[21] S. Kansomkeat and W. Rivepiboon. Automated-
generating test case using uml statechart diagrams. In
SAICSIT ’03: Proceedings of the 2003 annual research
conference of the South African institute of computer
scientists and information technologists on Enablement
through technology, pages 296–300, , Republic of South
Africa, 2003. South African Institute for Computer
Scientists and Information Technologists.

[22] S.-K. Kim, L.Wildman, and R. Duke. A uml approach to
the generation of test sequences for java-based concurrent
systems. In ASWEC ’05: Proceedings of the 2005
Australian conference on Software Engineering, pages

Figure 5. Sequence diagram of administrator in the online

Yujian Fu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 318-325

© 2010, IJARCS All Rights Reserved ���

100–109,Washington, DC, USA, 2005. IEEE Computer
Society.

[23] Y. Kim, H. Hong, D. Bae, and S. Cha. Test cases
generation from uml state diagrams. Software, IEE
Proceedings, 146(4):187–192, 1999.

[24] Y. Kim, H. S. Hong, S. Cho, D. H. Bae, and S. D. Cha.
Test cases generation from uml state diagrams. In In IEE
Proceedings: Software, pages 187–192, 1999.

[25] D. C. Kung, P. Hsia, Y. Toyoshima, C. Chen, and J. Gao.
Object-oriented software testing: Some research and
development. In HASE ’98: The 3rd IEEE International
Symposium on High-Assurance Systems Engineering,
pages 158–165, Washington, DC, USA, 1998. IEEE
Computer Society.

[26] D. C. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima,
and C. Chen. On object state testing. In in Proceedings of
Computer Software and Applications Conference, pages
222–227. IEEE Computer Society Press, 1994.

[27] S. Li, J. Wang, and Z.-C. Qi. Property-oriented test
generation from uml statecharts. In ASE ’04: Proceedings
of the 19th IEEE international conference on Automated
software engineering, pages 122–131, Washington, DC,
USA, 2004. IEEE Computer Society.

[28] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L.
Xuandong, and Z. Guoliang. Generating test cases from
uml activity diagram based on gray-box method. In
APSEC ’04: Proceedings of the 11th Asia-Pacific
Software Engineering Conference, pages 284–291,
Washington, DC, USA, 2004. IEEE Computer Society.

[29] G. A. D. Lucca, A. R. Fasolino, and U. de Carlini.
Recovering use case models from object-oriented code: A
thread-based approach. In Reverse Engineering, Working
Conference on, page 108, Los Alamitos, CA, USA, 2000.
IEEE Computer Society.

[30] V. Martena, A. Orso, and M. Pezz´e. Interclass testing of
object oriented software. In ICECCS ’02: Proceedings of
the Eighth International Conference on Engineering of
Complex Computer Systems, page 135, Washington, DC,
USA, 2002. IEEE Computer Society.

[31] A. V. Nori and A. Sreenivas. A technique for model-based
testing of classes. In Proceedings of the Second
International Workshop on Software Engineering Tools
and Techniques, 2001.

[32] J. Offutt and A. Abdurazik. Generating tests from uml
specifications. In R. France and B. Rumpe, editors,
UML’99 -The Unified Modeling Language. Beyond the
Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings, volume
1723, pages 416–429. Springer, 1999.

[33] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann.
Generating test data from state-based specifications.
Software Testing, Verification and Reliability, 13(1):25–
53, March 2003.

[34] P. Pelliccione, H. Muccini, A. Bucchiarone, and F.
Facchini. Testor: deriving test sequences from model-
based specifications. In the Eighth International SIGSOFT
Symposium on Component-based Software Engineering
(CBSE 2005), volume 3489 of Lecture Notes in Computer
Science, page 267C282, Berlin / Heidelberg, 2005.
Springer.

[35] O. Pilskalns, A. Andrews, S. Ghosh, and R. France.
Rigorous testing by merging structural and behavioral uml
representations. In Sixth International Conference on the
Unified Modeling Language (UML 2003), volume
2863/2003, pages 234–248, Berlin/Heidelberg, 2003.
Springer.

[36] H. Reza, K. Ogaard, and A. Malge. A model based testing
technique to test web applications using statecharts. In
ITNG ’08: Proceedings of the Fifth International
Conference on Information Technology: New
Generations, pages 183–188, Washington, DC, USA,
2008. IEEE Computer Society.

[37] M. Riebisch, I. Philippow, and M. G¨otze. Uml-based
statistical test case generation. In NODe ’02: Revised
Papers from the International Conference NetObjectDays
on Objects, Components, Architectures, Services, and
Applications for a Networked World, pages 394–411,
London, UK, 2003. Springer-Verlag.

[38] M. Scheetz, A. v. Mayrhauser, R. France, E. Dahlman,
and A. E. Howe. Generating test cases from an oo model
with an ai planning system. In ISSRE ’99: Proceedings of
the 10th International Symposium on Software Reliability
Engineering, page 250, Washington, DC, USA, 1999.
IEEE Computer Society.

[39] S. K. Swain, D. P. Mohapatra, and R. Mall. Test case
generation based on state and activity models. Journal of
Object and Technology, 9(5):1–27, 2010.

[40] Y. L. Traon, T. Jeron, J. Jezequel, and P. Morel. Efficient
objectoriented integration and regression testing. IEEE
Transactions on Reliability, 49(1):12–25, March 2000.

[41] T. Tse and Z. Xu. Class-level object-oriented state testing:
A formal approach. Technical Report HKU CSIS
Technical Report TR-95-05, Department of Computer
Science, The University of Hong Kong, 1995.

[42] Q. ul-ann Farooq, M. Z. Z. Iqbal, Z. I. Malik, and M.
Riebisch. A model-based regression testing approach for
evolving software systems with flexible tool support.
Engineering of Computer-Based Systems, IEEE
International Conference on the, 0:41–49, 2010.

[43] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J.
Kazmeier. Automation of gui testing using a model-driven
approach. In AST ’06: Proceedings of the 2006
international workshop on Automation of software test,
pages 9–14, New York, NY, USA, 2006. ACM.

