
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 87

ISSN No. 0976-5697

Performance Evaluation of a New Proposed Variant of Fittest Job First Dynamic
Round Robin (VFJFDRR) Scheduling Algorithm with Intelligent Time Slice

Rakesh Mohanty*, Suchitra Panigrahi
Department of Computer Science and Engineering

Veer Surendra Sai University of Technology
Burla, Odisha, India

rakesh.iitmphd@gmail.com, panigrahisuchitra@gmail.com

Abstract—Round Robin (RR) is one of the most suitable and efficient scheduling algorithms for time-sharing systems. Recently many variants
of RR scheduling algorithm have been developed and studied in the literature with the use of dynamic time quantum. In this paper, a new
variant of Fittest Job First Dynamic Round Robin (FJFDRR) algorithm is proposed which we call as VFJFDRR in short. In this algorithm, the
processes are arranged in the ready queue according to our calculated fit factor and are assigned dynamic time quantum using the intelligent time
slice method. We have evaluated the performance and compared the results of our proposed VFJFDRR algorithm with the FJFDRR algorithm
using three different cases of the input data set. Experimental results show that VFJFDRR performs better than FJFDRR in terms of average
waiting time and average turnaround time when the processes are arranged in decreasing and random order of burst time. However VFJFDRR
provides greater average waiting time and average turnaround time than FJFDRR when the processes are arranged in increasing order of burst
time. In all the three cases, the number of context switches is increased for VFJFDRR making the algorithm more suitable for fair sharing.

Keywords: Operating System, Scheduling, Round Robin, Dynamic Time Quantum, Intelligent Time Slice.

I. INTRODUCTION

Operating system (OS) is an interface between an end
user and system software. Recently emerging OS use the
concepts of multi-tasking, multi-processing and multi-
programming in order to achieve efficiency and improved
system performance. Multi-tasking allows a user to perform
more than one task at a time. Multiprocessing is the
coordinated execution of programs by more than one
processor. Multi-programming is the technique of
executing several programs simultaneously in a single
processor system. Scheduling refers to the way the
processes are assigned to the processor. A scheduling
algorithm is used for determining the sequence in which the
processes will be dispatched to the processor so as to keep it
busy. Design of efficient scheduling algorithms for OS with
multi-tasking, multi-programming and multiprocessing
environments is a major challenging research issue. Though
many sophisticated scheduling algorithms have been
designed, there is a scope for improvement for existing
algorithms in the literature with a new strategy. In this
paper our objective is to develop a new improved variant of
a recently developed scheduling algorithm. In the next
section we introduce some basic terminologies related to
scheduling and operating system.

A. Basic Terminologies:
Prior to allocation to a processor the processes are put in

a queue called ready queue. The time at which a process
enters the ready queue is its arrival time. The amount of
time a process spends waiting in the ready queue is called
the waiting time. The time interval between the submission
of a request by a process and the first response received is
the response time. The processor time required to complete
execution of a process is known as burst time. Turnaround
time is the time duration from submission the submission of
a process to its completion. Throughput is the number of
processes that are completed per unit time. Processor

Utilization is a term used to describe how much the
processor is busy or utilised. The number of times the
processor switches from one process to another is called as
the number of context switches.

The main goal of scheduling is to maximize processor
utilization, throughput and minimization of response time,
waiting time and turnaround time.

B. Well-Known Scheduling Algorithms:
The scheduling algorithms can be classified into two

types such as non-preemptive and pre-emptive. A
scheduling algorithm is non-preemptive, if once a process
has been given the processor; the processor can not be taken
away from that process. In case of pre-emptive algorithms,
the processor can be taken away from the currently running
process on the arrival of a higher priority process in the
ready queue. First Come First Serve (FCFS), Shortest Job
First (SJF) and Priority Scheduling algorithms are non-pre-
emptive, where as Round Robin (RR) and Shortest
Remaining Time Next (SRTN) are few widely used pre-
emptive algorithms. We present below these algorithms.

FCFS is a simple and basic algorithm which arranges
processes in order of their arrival time in the ready queue. In
this algorithm, if a process with shorter burst time arrives
after a process with longer burst time, then waiting time for
the shorter process will increase. So to favor the processes
with shorter burst time, SJF algorithm is used. Here the
process having shortest burst time is executed first. The
Priority algorithm schedules the processes in the increasing
order of priority number assigned to each of the processes.
In SRTN, the scheduler always dispatches that process in
the ready queue which has the shortest expected remaining
time to completion. In RR algorithm, a time slice is assigned
to each process and each process is assigned the processor
for that amount of time slice in each round till its
completion in a circular manner. RR is most suitable for
time sharing systems as it improves the responsiveness of
the system.

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,87-92

© 2010, IJARCS All Rights Reserved 88

Existing non-preemptive algorithms use only one of the
basic parameters such as arrival time or user priority or
burst time. Preemptive RR algorithm uses static time slice.
These limitations of existing RR algorithm motivate us to
design a new algorithm which uses more than one basic
parameters and dynamic time quantum concept to improve
the performance metrics of scheduling algorithms.

C. Related Work:
Various scheduling algorithms have been proposed in

the literature along with comprehensive studies in [1] and
[2]. Recently, many real time scheduling algorithms have
been developed with dynamic time quantum. Best Job First
(BJF) proposed in [3] combined the basic parameters of
scheduling algorithms which includes burst time, user
priority and arrival time of processes. Yaashuwanth. and et
al.[4] have proposed an algorithm for real time systems to
overcome the limitations of both Rate monotonic and
Deadline monotonic algorithm by adding a Priority
component. The static time quantum which is a limitation of
RR was replaced with dynamic time quantum by Matarneh
[5]. In FJFDRR [6] algorithm, dynamic time quantum has
been calculated taking the median of the remaining burst
time. The processes are scheduled giving importance to
user priority and shortest burst time priority rather than
using single parameter. Work done in paper [7], [8] and [9]
have contributed a great deal towards soft real time systems.
Dynamic time quantum is computed in the similar manner
in [10] as in [6] but the processes are scheduled according to
increasing order of shortest burst time only.

D. Our Contribution:
In this paper, the processes are arranged in the ready

queue in a similar manner as in [6], but we are calculating
dynamic time quantum using intelligent time slice to
develop a variant of the FJFDRR algorithm. Intelligent time
slice is calculated in the similar manner as in [7]. In our
work, we have made a study of scheduling algorithms with
a special focus on RR algorithm with dynamic time slice.
We have proposed a new variant of FJFDRR algorithm,
which we call as VFJFDRR. The pseudo code, flowchart
and illustration of VFJFDRR have been presented. Using
the performance metrics such as average turnaround time,
average waiting time and number of context switches, we
have evaluated the performance of FJFDRR and VFJFDRR.
Our experiments involve three cases of data sets and
computation of waiting time, turnaround time and number
of context switches using Gantt chart.

E. Organization of the Paper:
In section II, the pseudo code, flowchart and illustration

of our proposed algorithm is presented. Section III shows
the results of experimental analysis of our algorithm and its
comparison with FJFDRR. Conclusions and directions for
future work are given in section IV.

II. OUR PROPOSED VFJFDRR ALORITHM

In our proposed algorithm the processes are arranged in
the ready queue according to the newly calculated Fit factor
f and dynamic time slice is assigned to processes using
intelligent time slice method.

A. Uniqueness of our Approach:

Generally with every process three factors are associated
which are user priority, burst time and arrival time. Above
factors play an important role in deciding the sequence in
which the processes will be executed. Out of all these
factors user priority plays the most significant role than
burst time. Assigning different weights to these factors
according to their importance we calculate the Fit factor f.
Generally in RR algorithm, processes are taken from the
ready queue in FCFS manner for execution. But in our
algorithm, f is calculated for each process. The process
having the lowest f value will be scheduled first. The
criteria which will decide the early execution of the
processes are higher user priority and shorter burst time.

As user priority has higher importance than burst time,
so it is given a weight age of 60% and burst time is given
40%, weight age. We assume all the processes have same
arrival time i.e. arrival time=0. Let User Priority, User
Priority Weight, Shorter Burst time Priority, Burst time
Priority Weight of the processes be denoted as PU, WUP ,
PSBT and WBTP

 respectively. Then Fit Factor f can be
calculated as

 The performance of RR solely depends on the choice of

time quantum. Our proposed algorithm makes use of
dynamic intelligent time slice which allocates time quantum
to each process independently based on the shortness
component (SC), priority component (PC) and the context
switch avoidance component (CSC). We formulate some
relationships among the above parameters, which are being
used in our proposed algorithm. PC for a process is given
as 1 whose priority number is 1 and for the rest of the
processes it is given as 0. Let Pi be the process id of ith

process, where i = 1, 2, 3 ...n. Let SCpi be the shortness
component and TB i be the burst time of process Pi

Then SC
.

pi can be calculated as follows:

Let PCpi be the priority component of process Pi and Tq0 be
the original time slice for all processes. Let T be a
temporary variable such that T = SCpi + PCpi + Tq0. Then
Context Switch Avoidance Component for process Pi

 can
be computed as

Let TIS(Pi) be the intelligent time slice for process Pi
 T

, then
IS(Pi) = T + CSCpi

In the first round processes having SC value 1 are
assigned full ITS as the time slice and for others, half the
value of ITS is assigned. For successive rounds, the
processes having SC value 1 are assigned a time quantum
equal to double the value of time quantum in the previous
round. For other processes, time slice is computed as the
sum of time quantum and half the time quantum of previous
round which can be used for current cycle.

.

B. Our Proposed Algorithm:
In our algorithm, all the processes are scheduled using

the newly calculated Fit factor f. The process having the
least f value will be scheduled first. Here intelligent time
Slice method for dynamically assigning time slices to
processes is used. We have used the following notations in
our pseudo code for the VFJFDRR algorithm.

f = PU* WUP + PSBT * WBTP ------ (1)

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 87-92

© 2010, IJARCS All Rights Reserved 89

Let n number of processes in the ready queue.
 f (Pi) fit factor for Pi

 TBi burst time of Pi

 Tq (Pi) time quantum of Pi

 TRB(Pi) remaining burst time of P

i

The pseudo code and flow chart of our proposed

VFJFDRR algorithm are presented in Fig. 1 and Fig. 2
respectively.

Figure. 1 Pseudo code for VFJFDRR

Figure. 2 Flow Chart for VFJFDRR

C. Illustration:
Given the burst time of five processes as 1, 35, 12, 9 and

98 with user priority 5, 2, 4, 3 and 1 respectively. Then the
fit factor f for each process is calculated as 3.4, 2.8, 3.6, 2.6
and 2.6 for P1 through P5 respectively using equation 1.
After computing f, we arrange the processes in the ready
queue according to increasing order of fit factor. Next,
Intelligent time slice (ITS) component is calculated for each
individual process depending on the shortness component
(SC), priority component (PC) and context switch avoidance
component (CSC). SC was calculated to be 0, 0, 1, 1, and 0.
The PC was calculated to be 0, 0, 0, 0, and 1. Original time
slice (OTS) was arbitrarily chosen as 12. Next OTS, PC
and SC were added and their result subtracted from burst
time. If the value comes to be less than OTS then it is
assigned as the CSC component. Here the values are -11, 0,
-1, -4, and 0. To calculate the ITS, all OTS, PC, SC and
CSC are added together. In the First round, processes
whose SC value is 1, i.e., for P3 and P4, are given the ITS
value as their time quantum and for processes with SC value
as zero, i.e., P1, P2, P5 are given half the value of ITS as
their time quantum. In successive rounds processes P3 and
P4 are given double their time quantum in the previous
cycle and processes P1, P2 and P5 are assigned time

1. For i= 1, 2, 3 ….n, Calculate f (Pi).

2. Sort Pi for i=1,2,3, …n in ascending order

 such that Pi < P j iff f (Pi)< f (Pj) for i != j

3. while(ready queue != null)

 for i=1 to n do

 if (i ==1) then

 if(SCPi==0)then

 Tq (Pi) =0.5 *TIS(Pi) ;

 Else

 Tq (Pi) = TIS(Pi);

 End if

 Else

 If(SCPi==0)then

 Tq (Pi) = Tq (Pi-1) + 0.5* Tq (Pi-1) ;

 else

 Tq (Pi) = 2 * Tq (Pi-1) ;

End if

 TRB(Pi) = TB(Pi) – Tq(Pi);

 If (TRB(Pi) <= 2) then

 Tq(Pi)= TRB(Pi);

End if

End of for

End of while

4. Average waiting time, average turnaround time and number of

context switches are calculated.

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,87-92

© 2010, IJARCS All Rights Reserved 90

quantum equal to the sum of their previous time quantum
and half the value of the previous time quantum.
Remaining burst time for each processes is calculated and
the time quantum is dynamically assigned to the remaining
burst time based on some condition. Gantt Chart is prepared
to determine the waiting time, turn around time and number
of context switching for each process. Average waiting
time, average turn around time is computed from the Gantt
Chart.

III. PERFORMANCE EVALUATION & RESULTS

A. Assumptions:
In a uni-processor environment, all the experiments are

performed and all the processes are independent. Time slice
is assumed to be not more than the maximum burst time.
The attributes like burst time, number of processes and the
user-priorities of all the processes are known before
submitting the processes to the processor. All processes are
processor bound. No processes are I/O bound.

B. Experimental Frame work:
Our experiment consists of several input and output

parameters. The input parameters consists of the number of
processes, burst time, Original time slice (OTS), and user-
priority. The output parameters consist of average waiting
time, average turnaround time and number of context
switches.

C. Data Set:
We have performed three experiments for evaluating

performance of VFJFDRR and FJFDRR. For the
experiments, we have considered three cases of data set.
They are processes with burst time in decreasing, random
order and increasing order respectively.

D. Performance Metrics:
The significance of our performance metrics are as

follows:
a. Turnaround time (TAT): For the better performance of

the algorithm, average turn-around time should be less.
b. Waiting time (WT): For the better performance of the

algorithm, average waiting time should be less.
c. Number of Context switches (CS): For reducing the

overheads of the operating system CS should be less
while to attain fair sharing among the processes, CS
should be high.

E. Experiments Performed:
In order to evaluate the performance of our proposed

VFJFDRR algorithm and FJFDRR algorithm, we have taken
a set of five processes in three different cases. Although for
simplicity we have taken five processes, the algorithm
works effectively for large number of processes. In each
case, we have compared the experimental results of
VFJFDRR algorithm with the FJFDRR algorithm presented
in [3].

Case 1: We assume five processes P1, P2, P3, P4 and P5
are arriving at same with decreasing burst time 82, 43, 27,
15 and 9 respectively. The priorities assigned are 3, 1, 4, 2
and 5. The table-I, table-II and table-III show the output
using algorithm FJFDRR and VFJFDRR. Table-IV shows
the comparison between the two algorithms. Figure-3 and

Figure-4 shows Gantt chart for algorithms FJFDRR and
VFJFDRR respectively.

PROCESS

Table-1 Computation of Fit Factor-Case 1

BT S.P P F
P1 82 5 3 3.8
P2 43 4 1 2.2
P3 27 3 4 3.6
P4 15 2 2 2.0
P5 9 1 5 3.4

PROCESS

Table-2 Computation of ITS-Case 1

BT P OTS PC SC CSC ITS
P1 82 3 15 0 0 0 15
P2 43 1 15 1 1 0 17
P3 27 4 15 0 1 11 27
P4 15 2 15 0 1 -1 15
P5 9 5 15 0 1 -7 9

PROCESS

Table-3 VFJFDRR-Case 1

SC ITS ROUNDS
1 2ST 3ND 4RD 5TH TH

P1 0 15 8 12 18 27 17
P2 1 17 17 26 0 0 0
P3 1 27 27 0 0 0 0
P4 1 15 15 0 0 0 0

P5 1 9 9 0 0 0 0

ALGORITHM

Table-4 Comparison between FJFDRR and VFJFDRR

WT TATAVG CS AVG

FJFDRR 53.0 88.2 8
VFJFDRR 45.2 80.4 10

Figure. 3: Gantt chart for FJFDRR (Case-1)

Figure. 4: Gantt chart for VFJFDRR (Case-1)

Case 2: We assume five processes P1, P2, P3, P4 and P5
are arriving at same with random burst time 1, 35, 12, 9 and
8 respectively. The priorities assigned are 5, 2, 4, 3 and 1.
The table-V, table-VI and table-VII show the output using
algorithm FJFDRR and VFJFDRR. Table-VIII shows the
comparison between the two algorithms. Figure-5 and
Figure-6 shows Gantt chart for algorithms FJFDRR and
VFJFDRR respectively.

PROCESS

Table-5 Computation of Fit Factor -Case 2

BT S.P P f

P1 1 1 5 3.4
P2 35 4 2 2.8
P3 12 3 4 3.6
P4 9 2 3 2.6
P5 98 5 1 2.6

PROCESS

Table-6 Computation of ITS-Case 2
BT P OTS PC SC CSC ITS

P1 1 5 12 0 0 -11 1
P2 35 2 12 0 0 0 12
P3 12 4 12 0 1 -1 12
P4 9 3 12 0 1 -4 9
P5 98 1 12 1 0 0 13

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 87-92

© 2010, IJARCS All Rights Reserved 91

PROCESS

Table-7 VFJFDRR-Case 2

SC ITS ROUNDS
1 2ST 3ND 4RD 5TH TH

P1 0 1 1 0 0 0 0
P2 0 12 6 9 20 0 0
P3 1 12 12 0 0 0 0
P4 1 9 9 0 0 0 0
P5 0 13 7 11 17 26 37

ALGORITHM

Table-8 Comparison between FJFDRR and VFJFDRR
WT TATAVG CS AVG

FJFDRR 47.2 78.2 8
VFJFDRR 33.2 64.2 11

Figure. 5: Gantt chart for FJFDRR (Case-2)

Figure. 6: Gantt chart for VFJFDRR (Case-2)

Case 3: We assume five processes P1, P2, P3, P4 and P5
are arriving at same with increasing burst time 9, 15, 27, 43
and 82 respectively. The priorities assigned are 5, 2, 4, 3
and 1. The table-IX, table-X and table-XI show the output
using algorithm FJFDRR and VFJFDRR. Table-XII shows
the comparison between the two algorithms. Figure-7 and
Figure-8 shows Gantt chart for algorithms FJFDRR and
VFJFDRR respectively.

Figure-9, figure-10 and figure-11 show the graph of
average waiting time, average turnaround time and context
switch respectively for FJFDRR and VFJFDRR.

PROCESS

Table-9 FJFDRR-Case 3
BT S.P P f

P1 9 1 5 3.4
P2 15 2 2 2.0
P3 27 3 4 3.6
P4 43 4 3 2.2
P5 82 5 1 3.8

PROCESS

Table-10 Computation of ITS-Case 3

BT P OTS PC SC CSC ITS
P1 9 5 15 0 0 -6 9
P2 15 2 15 0 0 0 15
P3 27 4 15 0 0 12 27
P4 43 1 15 1 0 0 16
P5 82 3 15 0 0 0 15

PROCESS

Table-11 VFJFDRR-Case 3

SC ITS ROUNDS
1 2ST 3ND 4RD 5TH TH

P1 0 9 5 4 0 0 0
P2 0 15 8 7 0 0 0
P3 0 27 14 13 0 0 0
P4 0 16 8 12 18 5 0
P5 0 15 8 12 18 27 17

ALGORITHM

Table-12 Comparison between FJFDRR and VFJFDRR

WT TATAVG CS AVG

FJFDRR 53.0 88.2 8

VFJFDRR 65.4 100.6 15

Figure. 7: Gantt chart for FJFDRR (Case-3)

Figure. 8: Gantt chart for VFJFDRR (Case-3)

0

10

20

30

40

50

60

70

Case 1 Case 2 Case 3

FJFDRR

VFJFDRR

Figure. 9: Graph for Avg. WT

0

20

40

60

80

100

120

Case 1 Case 2 Case 3

FJFDRR

VFJFDRR

Figure. 10: Graph for Avg. TAT

0

2

4

6

8

10

12

14

16

Case 1 Case 2 Case 3

FJFDRR

VFJFDRR

Figure. 11: Graph for context switch (CS)

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,87-92

© 2010, IJARCS All Rights Reserved 92

IV. CONCLUSIONS

From our experimental tabular and graphical results, we
have observed that VFJFDRR algorithm is performing
better than FJFDRR proposed in paper [6] in terms of
average waiting time and average turnaround time when the
processes are arranged in decreasing and random order of
their burst time. However, when the processes are arranged
according to increasing order of burst time FJFDRR gives
better results as compared to VFJFDRR algorithm. We also
observe that in VFJFDRR, the number of context switches
increases thereby increasing the fair sharing among the
processes. Developing a new and realistic variant of
FJFDRR algorithm using arrival time and deadline can be a
challenging work for future.

REFERENCES

[1] E.O. Oyetunji and et al. “Performance Assessment of some
Processor Scheduling Algorithms” Research Journal of
Information and Technology, 1(1):22-26, 2009.

[2] A Pant “A Comparison between FCFS and Mixed
Scheduling” International Journal of Computer Science
and Technology (IJCST), 2(2):076-079, 2011.

[3] Mohammed A. F. Al-Husain, “Best-Job-First Processor
Scheduling Algorithm”, Information Technology Journal 6
(2):288-293, 2007.

[4] Yaashuwanth and et al.”A New Scheduling Algorithm for
Real Time System”. International Journal of Computer
Science and Information Security (IJCSIS), 6(2): 061-066,
2009.

[5] Rami J. Matarneh, “Self-Adjustment Time Quantum in
Round Robin Algorithm Depending on Burst Time of the
Now Running Processes”, American Journal of Applied
Sciences, 6 (10):1831-1837, 2009.

[6] Rakesh Mohanty and et al.”Design and Performance
Evaluation of a New Proposed Fittest Job First Dynamic
Round Robin Scheduling Algorithm” International Journal
of Computer Information Systems, 2(2): 054-060, 2011.

[7] Rakesh Mohanty and et al.”Priority Based Dynamic Round
Robin Algorithm with Intelligent Time Slice for Soft Real
Time Systems”. International Journal of Advanced
Computer Science and Applications (IJACSA), 2(2): 46-
50, 2011.

[8] Yaashuwanth and et al.” Intelligent Time Slice for Round
Robin in Real Time Operating Systems” International
Journal of Research and Reviews in Applied Sciences,
2(2): 126-131, 2010.

[9] H.S Behera and et al.” A New Dynamic Round Robin and
SRTN Algorithm with Variable Original Time Slice and
Intelligent Time Slice for Soft Real Time Systems”
International Journal of Computer Applications, 16(9),
2011.

[10] Rakesh Mohanty and et al.”Design and Performance
Evaluation of a New Proposed Shortest Remaining Burst
Round Robin (SRBRR) Scheduling Algorithm”.
Proceedings of International Symposium on Computer
Engineering & Technology (ISCET), 2010.

	F
	1TTable-2 Computation of ITS-Case 1
	1TTable-6 Computation of ITS-Case 2

