
Volume 1, No. 2, July‐August 2010

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserves 23

ISSN No. 0976-5697

Improving Distributed Denial of Service (DDOS) Attack Detection Performance using
Priority Queuing

Y. Rebahi, J. J. Pallares, D. Vingarzan, F. Gouveia,T. Magedanz, Andreea Ancuta Onofrei
Fraunhofer Fokus Institute, Kaiserin Augusta Allee 31, 10589 Berlin, Germany

{yacine.rebahi, jordi.jaen.pallares, dragos.vingarzan, fabricio.gouveia, thomas.magedanz, Andreea.ancuta.onofrei
}@fokus.fraunhofer.de

Abstract: Distributed Denial of Service (DDoS) attacks are a major threat for the deployment of SIP-based VoIP networks. Various solutions
have been suggested to mitigate the impact of these attacks, each bringing its advantages and disadvantages. Classifying the SIP-based VoIP
traffic into different queues according to the suspiciousness of the traffic, can be an efficient solution if it is correctly implemented. Unfortu-
nately, adding queues to the SIP servers affects severely its performance. The current paper suggests a mechanism called “virtual queuing” that
implements a priority queue on a SIP server while keeping its performance at its best.

Keywords: DDoS attacks, Prioritization, Queuing, Scheduling Algorithm.

I. INTRODUCTION

In Voice over IP (VoIP) environments, DoS attacks tar-
get the VoIP components, for instance, servers, registrars, and
clients. If no appropriate detection and prevention mecha-
nisms are in place, these attacks can lead to the instability of
the VoIP network and the disruption of the related services.
DoS attacks can be carried out under different forms and
launched either by one source or different sources. In the
second case, they are called Distributed DoS (DDoS) attacks.

In the literature, different countermeasures were sug-
gested, each with its pros and cons, and will be discussed later
on in this paper. However, there is a solution that looks prom-
ising and in which, traffic is classified into two or more cate-
gories, one for legitimate traffic, and another one for suspi-
cious traffic. This classification is based on appropriate filters.
The “good” traffic has always priority and is processed before
the suspicious one. This concept has been discussed in fight-
ing flooding attacks in IP networks, however, it was not ex-
plicitly investigated in the case of VoIP networks.

Prioritization is usually achieved through some physical
queues in which, messages are classified and stored according
to their importance. Unfortunately, adding such queues to the
VoIP components will increase their load as more processing
is needed. This will certainly yield to a degradation of the
performance of these components and to a potential requests
dropping, which is not acceptable in the case of emergency
services if we take the latter as an example. In addition, an
overload situation will worsen if retransmission messages to
non-received in time requests are added to the overall load of
the VoIP server.

The focus of this paper is not on how the filters are built
as this has already been discussed in the literature. Please
refer to the “related work” section for more details. However,

we will stress the discussion on how to implement the queu-
ing mechanism in order to keep the performance of the VoIP
components at an acceptable level while preventing conges-
tion and avoiding non-useful retransmission.

The rest of the paper is organized as follows: Section 2
presents some background information about the Session
Initiation Protocol (SIP), its retransmission mechanisms, and
the related DoS attack mitigation mechanisms. Section 3
motivates the proposed solution and section 4 describes in
details its implementation. Section 5 presents the experiments
and testing scenarios carried out, and finally section 5 con-
cludes the paper.

II. BACKGROUND

A. The Session Initiation Protocol (SIP)
SIP is an application-layer control protocol that allows

users to create, modify, and terminate sessions with one or
more participants. It can be used to create two-party, multi-
party, or multicast sessions that include Internet telephone
calls, multimedia distribution, and multimedia conferences.
The Session Initiation Protocol (SIP) protocol was published
by the IETF in 1996, but the first recognized standard was
disclosed later in 1999. SIP was revised over the years and re-
published in 2002 as RFC 3261, which is the currently recog-
nized standard for SIP.

The SIP standard can run over the reliable transport pro-
tocol (TCP) or the unreliable transport protocol (UDP). When
UDP is used, the messages INVITE, 200OK and BYE are
retransmitted if no appropriate responses are received in a
predefined time interval. The SIP protocol considers two
types of retransmission, which different from each other in
the way the requests are resent and confirmed. The first type
is related to the INVITE transaction, and the second one deals
with the other non-INVITE transaction types.

SIP (RFC 3261) defines the timer T1 (default value for
T1 is 500ms) for the retransmission, in which the SIP client
retransmits an INVITE request at a time interval that starts at
T1 seconds. This interval is doubled after each retransmis-

Y. Rebahi et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 23-27

sion. The retransmission stops if a provisional response is
received or the time from the first transmission is greater than
64* T1. This means, if no response is received after 32 sec-
onds, the SIP client stops the retransmission. As for the re-
transmission of non-INVITE transactions (200OK, BYE),
RFC 3261 defines another timer T2. The retransmission, in
this case, works as follows: A second packet is sent T1 sec-
onds after the first transmission, the next is sent 2*T1 seconds
after the second, the subsequent packet 4*T1 seconds after,
and so on until the time interval matches T2. Then, the subse-
quent retransmissions are carried out every T2 seconds. If
after 32 seconds, no answer is received, the SIP client stops
the retransmission.

B. DoS attacks in SIP
DoS attacks are a common security threat in the Internet

trying to utilise the target’s available resources with the aim
of rendering the offered service unavailable [1]. These re-
sources might be bandwidth, CPU or memory. Such threats
can also occur in SIP environments; however, some appropri-
ate application-layer attacks will be used.

In previous papers, the vulnerabilities that allow dedi-
cated SIP attacks to occur have been listed [1], [2], [3]. Basi-
cally these are missing or wrongly applied sender authentica-
tion for packets, software errors in SIP implementations or
poorly designed implementations that allow resource deple-
tion to occur.

When talking about a DoS attack, one generally means
flooding attacks that overwhelm the victim’s resources. In our
case, flooding can be achieved with different SIP messages
(INVITE, REGISTER, etc.) and the attack can be launched
from a single source or from multiple sources. In the latter,
the attacker employs a large number of (usually unaware)
computers with different IP addresses to generate a higher-
bandwidth stream of messages than would be possible from
one single machine.

C. Related work

DoS handling strategies have been discussed in the litera-
ture in various forms. As there are both multiple and different
types of DoS attacks, there is no unique solution that is able to
cover all types of attacks. Different approaches have therefore
been proposed. Initial approaches for DoS protection have
been simple rate-limiting algorithms that allow a limited
number of requests per time interval from each sending IP
address [4]. These mechanisms are effective for single source
DoS attacks but fail for highly distributed DDoS attacks.
Other researchers have proposed mechanisms to detect De-
nial-of-Service attacks using state-machine specifications
[5],[6]. These mechanisms are helpful against single-source
DoS attacks and can also detect DDoS attacks, but they lack
the possibility of mitigating DDoS attacks. Other researchers
have developed lightweight statistical algorithms to detect
DDoS attacks, e.g. by using the Hellinger Distance calcula-
tion [7] or calculating cumulative sums [8]. These algorithms
can successfully detect DoS and DDoS attacks on SIP prox-
ies, but do not allow any prevention mechanisms.

To our knowledge, using priority queuing in the context
of fighting VoIP DDoS attacks has not been investigated yet.
However, in the context of IP networks, some work has al-
ready been achieved in [9], [10], and [11]. In these papers,
classifiers, queuing algorithms and intrusion filters are com-
bined in order to deal with the DDoS attacks.

The usage of priority queuing in the context of VoIP DoS
attack detection is feasible, however, it is worth to mention
that queuing also adds an overhead to the SIP servers as a
two-phase processing is needed. As a consequence, it is very
important to find a trade-off between implementing priority
queues and keeping the servers performance at the desirable
level. This is, in fact, the focus of this paper.

III. THE VIRTUAL QUEUING MODEL

Summing up, the main objectives of the virtual queuing
mechanism are:

• Prioritize legitimate calls upon suspicious calls;
• Consider virtual queues, where not the entire SIP

messages are stored in these queues according to their priori-
ties, but only some information related to the SIP messages
and their eventual retransmission is considered. Such infor-
mation involves: the headers fields “From”, “To”, estimated
duration of the request, and the time when the SIP server is
available to process the SIP message under consideration;

• Control the load in the system avoiding unnecessary
retransmissions.

When a SIP request hits the SIP server, the latter will first
parse the message's SIP header and matches the correspond-
ing information against some appropriate filters to determine
whether the request is legitimate or suspicious. Once this is
done, the next step is to schedule the incoming call in the
queue to determine when this call will be served. The algo-
rithm to place the calls in the queue is depicted in the figure 1
below:

Figure. 1. Algorithm to place incoming calls in the virtual

queue

Now, we still have to deal with avoiding unnecessary re-

transmissions to reduce the SIP traffic. This corresponds in
the above algorithm to the “if necessary notify caller” box.

According to the normal flow in a SIP call, the proxy re-
ceiving the INVITE request will respond with a provisional
1xx response, usually a 100 (Trying), to prevent the caller to
resend the SIP INVITE over the time. Upon reception of the
provisional response, the caller will set up a timer that will
trigger an error when it expires, as mentioned in section A.
After this time, the caller takes the session as terminated. On
the other hand, if there is no provisional response, the caller
will resend the call issuing unnecessary traffic.

According to this, the value of the Timer C represents the
maximum re-scheduling time inside the virtual queue. In
order not to have the caller dismiss the current session there
are two main alternatives:

© 2010, IJARCS All Rights Reserves 24

Y. Rebahi et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 23-27

• Use of the Retry-After header together with re-
sponses such as 480 (Temporarily Unavailable), 486 (Busy
here), 503 (Server Busy) or 600 (Busy everywhere) providing
the estimated number of seconds where it is foreseen that the
call will be able to be processed by the queue;

• Issuing a 182 (queued) response. This response may
include the estimated number of seconds that will be spent in
the queue. After this time, the call will be processed. The
server may issue more than one 182 responses to update the
caller about the status in the queue.

The differences between both approaches is that 182
queuing is stateful (the call information will remain in mem-
ory) and will issue less traffic from caller to proxy, since the
caller will be updated with the current status of the call peri-
odically, whereas the Retry-After queuing is stateless (the call
is dismissed) and will issue more signaling between caller and
proxy: at least one more INVITE and a provisional response.

If after a caller dismisses one call, tries to re-send it later
in a different session, then the call will have lost the grace
priority of having already been waiting in the queue once: the
call will have a new SIP Call-ID and will be treated as new.
For this reason an internal call identifier needs to be defined
to be able to map between past calls that have been queued
and new calls from the same user. The proposed queue ID is
based on a hash function as shown below:

queueID = md5sum { RESPONSE/REQUEST : SIP
method : From : To }

This will ensure that the re-issue of the call after a Retry-
After will be treated with priority compared to other calls that
have never been in the queue.

Another issue is how to estimate the waiting time inside
the queue. This is done by keeping statistics of the real dura-
tion of the calls inside the queue. Each call is time stamped
when it arrives and when it leaves and the duration is used to
estimate the duration of the next call. This involves having a
long term estimation that it is used as a reference each time
the system is started and a short term estimation (last 100
calls or last minute: depending on the server load this might
be configurable) which is used to weight the current condi-
tions of the system provided that in a congestion or overload
situation, call processing will take more time than in a normal
situation and the system needs to adapt the estimation to the
current conditions.

A. Implementation
Currently, the virtual queue has been implemented as a

standalone test module and will be later on integrated with a
SIP proxy such as the SIP Express Router (SER) [12].

Our virtual queuing mechanism implements the follow-
ing functionalities,

a) Queue Update:Each incoming call triggers the
queue update procedure. It first checks whether there are calls
in the queue whose scheduled time is less than the current
time. These are what in figure 2 is shown as “Abandoned or
processed calls”, left from the “now” reference point. All
processed calls - these are the calls where the out time value
(see Table 1) has been set - are used to update the estimation
of the next call delay time duration statistic and deleted from
the queue.

On the other hand, abandoned calls with scheduled time
less than Tmin are deleted from the queue. These are mostly
calls that received a Retry-after response and did not call back
in time or that haven't been processed due to other reasons

such as internal call routing problems or misconfiguration. LC
simply refers to Legitimate Calls, and SC to Suspicious Calls.

LC SCLC SC

Now

t
SC

Abandonned or
processed calls

SC… …

t1 t2 t3

t0

t-1t-2

Queued waiting calls

tmaxtmin

Retry after
header

 Figure. 2. Virtual Queue.
The update procedure guarantees that the queue will not

contain outdated information and will not grow indefinitely.
On the other hand, the time information for the processed
finished calls is used to update the statistics to estimate the
next call delay.

b) Placement: After this first step, the call is processed
and inserted in the queue. The queue itself has been imple-
mented as a double linked list and the information about each
call that is kept in the queue is summarized in the following
table:

Table I. Call information stored in the virtual queue.
Field Rationale

Queue identifier Unique identifier for a call. See details in Section 3.
Type of call Stores the type of SIP method.
Priority Indicates the type of priority.
Rescheduled Indicates whether the call has been already rescheduled or not.
Arrival time Stores the time when the call arrived to the queue.
Scheduled time Stores the estimated scheduling time for the call.
Out time Stores the time when the call did leave the queue.

Let us look the proposed placement algorithm at figure 1

in more detail: a new legitimate call that arrives to the queue
will get a queue identifier that will be used to reassess that the
call is not in the queue and hence it is not a retransmission.
Then according to the type of call and SIP method, the incom-
ing call will be assigned a time duration estimation tlegit based
in the current time statistics. As shown in figure 3, suspicious
calls (SC) will always be added in the rear of the queue and
legitimate calls (LC) will always be placed at the end of the
“legitimate calls subqueue”. This algorithm can be easily
formulated in a more general way and extended to more than
2 types of priority. In the placement algorithm, there is the
special case where we want to add a legitimate call and there
are some suspicious calls already in the queue each of them
with an associated scheduled time ti.

LC SC

1 3

LC

2

SC

4

Now

t

LC SC

1 4

LC

2

SC

3

Now

t

LC

5Arrival of
new EC

LC

5

Rescheduling of the SC

Allocation of
new LC

Figure. 3. Virtual queue scheduling algorithm.

© 2010, IJARCS All Rights Reserves 25

Y. Rebahi et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 23-27

Some of these suspicious calls will need to be resched-
uled since their place in the queue will now be occupied by
the new legitimate call. This rescheduling is also shown in
figure 3. In this case, and based on the time estimation for the
new incoming legitimate call, suspicious calls are moved to
the end of the queue as necessary to leave enough place in the
queue for the new prioritized call.

c) Queue Update: After a call is placed in the queue,
the scheduled time ti is calculated as an addition of the sched-
uled time of the previous call in the queue and the duration of
the processing time tcall. The processing time initial value is
set depending on the SIP method and the call nature. For
instance, for an INVITE message, the processing time initial
value is set to vinit = 15 ms if the call is legitimate and to vinit =
22 ms if the call is not legitimate. The processing time is not a
constant value: once a call has been successfully processed,
the processing time value estimated is adjusted accordingly
using some statistics as discussed in section 0 . As we are
limited in space, the statistics algorithm will be provided in an
upcoming paper.

If the scheduled time is greater than Tmax, in order to
avoid retransmissions the call information is left in the queue
and the SIP client is informed with a 503 or a 182 response as
depicted in Figure 4. As mentioned in section III, in this case
the queuing algorithm issues a 503 “Retry after” or a 182
“Queued” response message with the estimated delay value in
seconds.

d) Call Delay Estimation: To calculate the statistics
for the call delay estimation, we use the time information
described in the table 1. When the call enters the queue, both
fields arrival time and scheduled time are filled according to
the current time and the current estimation of the call duration
from the statistics for each type of SIP method and legitimate
or suspicious call. After the call has been successfully proc-
essed, the out time field of the call information is filled in.

The call statistics are updated with each queue update:
the call time is then arrival time minus out time and the pre-
diction error is for each call the difference between output
time of the previous call and the scheduled time of the current
call.

There are also different types of statistics to be gathered:
first, a long term prediction using historical values such as
weekdays, weekend, day or night that may be used at initiali-
zation time. On the other hand, statistics of the calls in the last
3 minutes or even the last 5 seconds will be more helpful to
predict call delay in server overload situations.

IV. PERFORMANCE

Again the main focus of this paper is to develop an effi-
cient queuing mechanism that can allow the classification of
the VoIP traffic into legitimate and suspicious, and give prior-
ity to the legitimate traffic in terms of processing while keep-
ing the performance of the SIP server at an acceptable level
especially in case of congestion. The implementation of the
filters is out of the scope of this paper, and to distinguish
between legitimate calls and malicious calls in our simulation,
we wrote a test program that generates random calls at a cer-
tain rate in order to have them processed by the virtual queue.

To test the performance of the queuing algorithm, the lat-
ter was stressed with various amounts of requests with differ-
ent legitimacy probabilities and a fixed processing time for
each type of call between 10 ms and 75 ms. According to our

experiment, the processing time does not really vary if there is
no severe congestion, that is why we assigned to it a fixed
value. In fact, we started with an amount of 1000 requests,
and then increased it gradually until we reached the amount of
10000 requests. Going beyond 10000 requests is possible but
does not really change anything in the behavior of the queu-
ing algorithm. For this reason, we have just considered results
related to the cases of 1000 and 10000 requests.

The results are show in the figures 4, 5, 6 and 7 below.
The horizontal axis represents the time in seconds and the
vertical axis the number of calls generated:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0,
00

6,
74

16
,2
1

26
,3
9

36
,1
1

46
,1
2

55
,0
9

64
,9
7

75
,0
4

85
,0
0

94
,2
5

10
3,
49

11
2,
24

12
0,
57

13
0,
03

14
0,
21

14
9,
25

15
9,
00

16
9,
49

17
8,
70

18
7,
19

19
6,
91

20
6,
29

21
5,
47

22
4,
37

23
3,
49

24
2,
28

25
2,
72

26
1,
81

27
1,
36

28
1,
55

29
1,
37

30
0,
69

31
0,
38

31
8,
77

32
7,
87

33
7,
19

34
6,
47

35
5,
40

36
4,
31

M nodes in queue

N nodes in queue

total rescheduled

total processed

Time Elapsed (Seconds)
Figure. 4: Results for 10000 calls at 25% legitimate rate.

The call per second rate used in the testing is around 25

call/s, which makes 1500 calls per minute. This amount is
likely to be well within the capacity of most SIP servers.
Using a value of 25% legitimate rate (so 75% is malicious
traffic) for the calls is enough to simulate a severe DDoS
attack situation.

As we see in all the graphics, the number of legitimate
calls stays always close to zero whereas the number of suspi-
cious calls in the queue oscillates around 100 calls. As the
time of testing advances, the number of rescheduled calls
increases as a product of the queuing algorithm.

0

100

200

300

400

500

600

700

800

900

1000

0
,0
0

0
,2
9

0
,8
9

1
,7
8

2
,8
5

4
,0
5

5
,3
4

6
,6
3

8
,0
3

9
,4
2

1
0
,7
6

1
2
,0
7

1
3
,4
7

1
4
,9
0

1
6
,2
1

1
7
,7
1

1
9
,2
9

2
0
,7
1

2
2
,2
1

2
3
,4
1

2
4
,8
4

2
6
,1
0

2
7
,4
1

2
8
,8
1

3
0
,1
6

3
1
,4
3

3
2
,8
1

3
4
,1
2

M nodes in queue

N nodes in queue

total rescheduled

total processed

Time Elapsed (Seconds)Time Elapsed (Seconds)

Figure. 5: Results for 1000 calls at 25% legitimate rate.

Figure 6 depicts the testing results for the scenario where

1000 call requests with only 5% legitimate probability are
used:

© 2010, IJARCS All Rights Reserves 26

Y. Rebahi et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 23-27

In this case, only legitimate calls are served, since the call
arriving rate is too high. If we take an average processing
time for one call equal to 35 ms, during the time one call is
being processed, already around 24 new calls will be entering
the queue. From these 24 calls, we will have 6 legitimate calls
and 18 suspicious calls (at a 25% legitimate rate). This im-
plies that under these circumstances, the SIP server will only
be processing legitimate calls, since they are prioritized and
inserted at the beginning of the queue whereas the suspicious
calls in the queue will just keep being added to the end and/or
being rescheduled.

0

100

200

300

400

500

600

700

800

900

1000

0,
00

0,
10

0,
28

0,
51

0,
78

1,
09

1,
55

1,
99

2,
49

3,
06

3,
81

4,
50

5,
26

5,
99

6,
68

7,
32

8,
05

8,
79

9,
55

10
,2
7

11
,0
5

11
,7
8

12
,4
9

13
,2
6

13
,9
3

14
,6
4

15
,3
9

16
,1
5

16
,9
6

17
,7
4

18
,5
6

19
,3
9

20
,1
8

20
,9
8

21
,7
6

22
,5
6

23
,4
2

24
,1
8

24
,9
2

25
,6
7

26
,5
0

27
,2
6

28
,0
5

28
,7
7

M nodes in queue

N nodes in queue

total rescheduled

total processed

Time Elapsed (Seconds)
V. CONCLUSION

Figure.6: Results for 1000 calls at 5% legitimate rate. In this paper, we have described the concept of virtual
queuing that gives priority to legitimate calls over suspicious
ones, minimizes the time for legitimate calls establishment,
and regulates overload situations while it avoids the dropping
of legitimate calls.

Comparing Figure 6 with the previous ones, we see that

provided we have less legitimate calls, the rescheduled nodes
are not growing as fast as before, and the queue is getting
filled with suspicious calls. The number of legitimate calls in
the queue stays close to zero, and the total number of entries
in the queue stabilizes around 100 calls as in the 25% legiti-
mate calls case. The queue throughput (processed calls) is
similar in both cases.

VI. REFERENCES

[1] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet
Denial of Service: Attack and Defense Mechanisms. Prentice
Hall, 2005.

0

100

200

300

400

500

600

700

800

0.
00

02
75

0.
02

21
40

0.
06

55
35

0.
09

78
42

0.
14

73
77

0.
19

25
33

0.
23

81
20

0.
27

68
30

0.
31

13
52

0.
35

57
58

0.
39

52
92

0.
44

44
75

0.
48

92
05

0.
54

12
09

0.
58

83
37

0.
61

69
03

0.
65

76
12

0.
69

83
15

0.
73

27
14

0.
76

82
09

0.
80

96
51

0.
86

43
38

0.
90

53
34

0.
95

81
59

1.
00

2.
64

0
1.
03

2.
34

3
1.
06

9.
97

3
1.
11

3.
71

7
1.
15

7.
87

8
1.
20

9.
39

6
1.
25

4.
73

8
1.
30

0.
90

5
1.
34

6.
59

0
1.
38

5.
35

3
1.
41

6.
90

2
1.
46

1.
63

3

M nodes in queue

N nodes in queue

total rescheduled

total processed

total retry after

[2] S. Vuong and Y. Bai. A Survey of VoIP Intrusions and Intru-
sion Detection Systems. In 6th International Conference on Ad-
vanced Communication Technology (ICACT 2004), Phoenix
Park, South Korea, February 2004.

[3] D. Sisalem, J. Kuthan, and S. Ehlert. Denial of Service Attacks
Targeting a SIP VoIP Infrastructure - Attack Scenarios and Pre-
vention Mechanisms. IEEE Network – Special

[4] B. Iancu. SER PIKE Excessive Traffic Monitoring Module,
2003.

[5] E. Y. Chen. Detecting DoS Attacks on SIP Systems. In 1st
IEEE Workshop on VoIP Man-agement and Security, Vancou-
ver, Canada, April 2006.

[6] S. Ehlert, G. Zhang, D. Geneiatakis,G. Kambourakis, T.
Dagiuklas, J. Markl, and D. Sisalem. Two Layer Denial of Ser-
vice Prevention on SIP VoIP Infrastructures. Computer
Communications, 31(10):2443-2456, June 2008.

[7] H. Sengar, H. Wang, D. Wijesekera, and S. Jajodia. Detecting
VoIP Floods using the Hellinger Distance. IEEE Transactions
on Parallel and Distributed Systems, 19(6):794-805, June 2008.

Figure. 7: Results for 1000 calls at 25% emergency rate.

In the realization shown in Figure 7, 1000 calls are sent at

a very high rate in order to emulate a flood of SIP messages:
the legitimate rate is 25% and the average call rate during the
test is 672 calls per second which represents a severe overload
for the SIP server. As we see in the graphic, the queue starts
filling very fast. After the second 1.27, the scheduled time of
the incoming or rescheduled calls exceeds Tmax, so the queue
starts answering the requests with 503 Retry-after responses.
At this time, we have in the queue a total of 815 calls (189
legitimate and 626 malicious calls). The number of calls in
the queue continues increasing, but this is only the reference
to the calls that are kept in the queue (see Table 1). The rest of
the server resources are still available for the calls that will be
processed in time. 503 Retry-after responses close the transac-
tion at the server side and at the same time avoid retransmis-
sions from the client side. The reference to the call that it is
kept in the queue makes it possible for the retransmitted calls
to get a slot for processing after the transmission time speci-
fied in the 503 response.

[8] Y. Rebahi. Change-Point Detection for Voice over IP Denial of
Service Attacks. In 15. ITG/GI - Fachtagung Kommunikation in
Verteilten Systemen (KiVS 2007), Bern, Switzer-land,February
2007.

[9] Q. Huang, et Al, “Analysis of a New Form of Distributed De-
nial of Service Attack“ , In the Proc of the 2003 Conference on
Information Science and Systems, the JohnsHopkins Univer-
sity, March 12-14, 2003

[10] W. Lai, et Al, “Using Adaptive Bandwidth Allocation Ap-
proach to Defend DDoS Attacks”, In the International Journal
of Software Engineering and its Applications, vol 2, No 4, Oc-
tober 2008

[11] Lack of Priority, white paper, link:
http://delivery.acm.org/10.1145/1040000/1036502/p64-
gill.pdf?key1=1036502&key2=2899399621&coll=GUIDE&dl=
GUIDE&CFID=84064419&CFTOKEN=89282354

[12] SIP Express Router (SER), link: http://www.iptel.org/ser/

© 2010, IJARCS All Rights Reserves 27

http://www.iptel.org/ser/

	
	I. INTRODUCTION
	II. BACKGROUND
	A. The Session Initiation Protocol (SIP)
	B. DoS attacks in SIP
	C. Related work
	III. THE VIRTUAL QUEUING MODEL
	A. Implementation
	a) Queue Update:Each incoming call triggers the queue update procedure. It first checks whether there are calls in the queue whose scheduled time is less than the current time. These are what in figure 2 is shown as “Abandoned or processed calls”, left from the “now” reference point. All processed calls - these are the calls where the out time value (see Table 1) has been set - are used to update the estimation of the next call delay time duration statistic and deleted from the queue.
	c) Queue Update: After a call is placed in the queue, the scheduled time ti is calculated as an addition of the scheduled time of the previous call in the queue and the duration of the processing time tcall. The processing time initial value is set depending on the SIP method and the call nature. For instance, for an INVITE message, the processing time initial value is set to vinit = 15 ms if the call is legitimate and to vinit = 22 ms if the call is not legitimate. The processing time is not a constant value: once a call has been successfully processed, the processing time value estimated is adjusted accordingly using some statistics as discussed in section 0 . As we are limited in space, the statistics algorithm will be provided in an upcoming paper.
	d) Call Delay Estimation: To calculate the statistics for the call delay estimation, we use the time information described in the table 1. When the call enters the queue, both fields arrival time and scheduled time are filled according to the current time and the current estimation of the call duration from the statistics for each type of SIP method and legitimate or suspicious call. After the call has been successfully processed, the out time field of the call information is filled in.

	IV. PERFORMANCE
	V. CONCLUSION
	VI. REFERENCES

