
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 368

ISSN No. 0976-5697

A Language Independent Approach for Method Level Clone Detection Using
Fingerprinting

S.Mythili*
Asst.Prof. & Head,

Department of Information Technology,
Kongunadu Arts and science College,

Coimbatore-29.
smythili78@gmail.com

Dr.S.Sarala
Asst.Prof. in Information Technology,
School of Computer Science and Engg,

Bharathiar University,
Coimbatore -46.

sriohmau@yahoo.co.in

Abstract--Software Maintenance is an important part of Software Engineering activity. Maintenance of a software becomes very difficult when
the size and complexity of the program increases. To reduce the complexity and size it is very necessary to find the similar code fragments
known as code clones in a software system. Software maintenance is very much dependent on the duplicated code in the code fragment. To
reduce the software maintenance cost it is necessary to find the similar code fragments. The capability and the effectiveness of the similarity
measurement depends on the measurement technique used for the code clone detection.
In this paper we propose language independent method level clone detection based on the Rabin-Karp fingerprint representation. Rabin-Karp is
an effective string matching algorithm for identifying various similar duplications of similar fingerprint fragments in a software system by the
method of hashing.
The specific purpose of this system is to detect duplicated code between the programs written in different programming language. This system
also uses a tool WordNet to identify the lexical similarity which aids code clone detection.

Keywords: software clones, clone detection, similarity matrix, fingerprinting, Rabin-Karp

I. INTRODUCTION

Copying code fragments and then reuse by pasting with
or without minor modifications or adaptations are common
activities in software development. This type of reuse
approach of existing code is called code cloning and the
pasted code fragment is called a clone of the original[1].

The area of clone detection has received wide interest
recently as indicated by numerous efforts in clone detection
tool development . A clone detector must try to find pieces
of code of high similarity in a system’s source text. The
main problem is that it is not known beforehand which code
fragments may be repeated. Thus the detector really should
compare every possible fragment with every other possible
fragment. Such a comparison is prohibitively expensive
from a computational point of view and thus, several
measures are used to reduce the domain of comparison
before performing the actual comparisons. Even after
identifying potentially cloned fragments, further analysis
and tool support [2]may be required to identify the actual
clones.

Although cloning leads to redundant code, not every
redundant code is a clone. There may be cases in which two
code segments that are no copy of each other just happen to
be similar or even identical by accident. Also, there may be
redundant code that is semantically equivalent but has a
completely different implementation .

Code cloning is found to be a more serious problem in
industrial software systems. In presence of clones, the
normal functioning of the system may not be affected, but
without countermeasures by the maintenance team, further
development may become prohibitively difficult .Clones are
believed to have a negative impact on evolution. Code
clones may adversely affect the software system’s quality,
especially their maintainability and comprehensibility.
Software clones appear for a variety of reasons:

a. Code reuse by copy and paste
b. Coding styles
c. Performance enhancement
d. Accidents

During maintenance clones increase the risk of updating
different copies. When one fragment is changed the rest of
the copied fragment needs to be updated.This leads to
software aging.

We distinguish two types of clones namely simple clones
and structural clones.

Simple clones - Contiguous segments of similar code
such as class method or fragments of method
implementation.

Structural Clones-Patterns of inter-related classes
emerging from the design and nalysis[3]..In this paper we
concentrate on simple clones and this work will be further
extended to structural clones.

The remainder of this paper is organized as follows.
Section 2 describes about the General terms and definitions .
Section 3 gives details of the Proposed Work ,Section 4
discusses about the related work , Section 5 presents the
results and experiments and the future work and
conclusion is given in Section 6.

II. GENERAL TERMS AND DEFINITIONS

Still now there is not yet a universal definition of clone.
It is considered to be a fragment that is repeated in the same
project or a program for many times. There are some
common definitions a terms used in code clones they are

A. Code Fragment :
A code fragment(CF) [2] is any sequence of code lines .

It can be of any granularity, e.g., function definition, begin-
end block, or sequence of statements. A CF is identified by
its file name and begin-end line

S. Mythili et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 368-371

© 2010, IJARCS All Rights Reserved 369

B. Code Clone:
A code fragment CF2 is a clone of another code

fragment CF1 if they are similar by some given definition of
similarity, that is, f(CF1) = f(CF2) where f is the similarity
function .Two fragments that are similar to each other form
a clone pair (CF1; CF2), and when many fragments are
similar, they form a clone class or clone group.

C. Clone Types:
The clones are classified as

a) Type I – They are normally called as exact clones.
It is a code clone that is identical to one another
without considering variations in whitepaces and
comments

b) Type II – They are called as Renamed or
Parameterized clones. These clones are structurally
or semenatically similar but differing in the
identifier,literals and their types.

c) Type III - They are called as Gapped Clones .In this
type the statements can be changed, added or
removed in addition to variations in identifiers,
literals, types, layout and comments.

d) Type IV- They are called as semantic clones. Here
the code fragments perform the same computation
but implemented through different syntactic
variants.

D. Fingerprinting Matching Technique:
Fingerprinting techniques mostly rely on the use of

Kgrams because the process of fingerprinting divides the
document into grams of certain length k. Then, the
fingerprints of two documents can be compared in order to
detect plagiarism. It has been observed through the literature
that fingerprints matching approach differs based on what
representation or comparison unit. There are three types of
fingerprint matching technique they are

a) Character Based fingerprinting – It is the most
conventional method and it uses sequence of
characters to calculate fingerprints for the whole
document.

b) Phrase Based fingerprinting - generates fingerprint
using phrase mechanism to measure the resemblance
between two documents.

c) Sentence based fingerprinting – calculates the
fingerprints for each sentence.

A fingerprint of an object Ob is a small string f(Ob) with
the following properties:
a. f is a function of Ob. In particular, if two objects are

equal, then so are their fingerprints.
b. 2). Prob(f(Ob1) = f(Ob2)) << 1 for “random” objects

Ob1 ≠ Ob2.
Fingerprints are used to:

i. Identify Objects
ii. Compare Objects Remotely

iii. Test an Object for Changes
Since fingerprints are smaller, they are very useful and

easy for comparison. These fingerprints are useful in the
area of code cloning during the maintenance phase for
identifying the clones.

In this paper we use the fingerprinting technique to
identify Type I ,Type II and Type III clones .Type IV is not
within the scope of this paper

III. PROPOSED METHOD

The Proposed method consist of the following steps
a. Pre-Processing
b. Find the Lexical meaning using the WordNet tool
c. Converting to a general format
d. Fingerprint generation using Rabin-Karp
e. Comparing the fingerprints
f. Creation of a Similarity Matrix
g. Identifying the code clones

This diagram for the overall process is shown in Fig.1

Figure 1. Clone Detection Process

A. Preprocessing :
In this process the given source code Fig.2 is scanned

line by line for whitespaces and for tabs .Normally
programmers may include many whitespaces and tabs to
improve the readability of the code. By removing these
characters we get the original code without extra formatting
which will be helpful to find clones.

Figure 2. Sample methods taken for processing

B. Finding the Lexical meaning using WordNet:
It is a common practice for the programmers to copy a

code and make it different just by changing the method
names. In order to identify such methods we use the Natural
language processing tool called WordNet.
For example

void add(int,double)
void sum(int,double)

might have the same code but they may be available with
different method names.We use the WordNet tool to identify
such differences and convert them to a common name.Due
to this the above two line will be identified as clones.

S. Mythili et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 368-371

© 2010, IJARCS All Rights Reserved 370

C. Converting to a general format:
Any variable name or a data type found in the source

code is converted into a general format. For example int a is
changed as DAT $p where DAT refers to any datatype and
$p refers to the variable name 1.By doing this any code
which appears to be different just by changing the variable
names and datatypes will be identified as clones.The general
format for the above sorurce code in Fig.2 is shown in Fig.
3.

Figure.3 General Format Conversion

D. Fingerprint generation using Rabin-Karp:
After applying the above steps the transformed source

code is ready for fingerprinting. Here we use the Rabin-
Karp string matching algorithm Fig. 4 for generating the
fingerprinting patterns. The fingerprint pattern generated are
stored in the arrays and they will be ready for the
comparison.

E. Comparing the Fingerprints:
The generated fingerprints of the pattern and the

fingerprints of the source code are compared. If hash value
of the pattern and the m-token sequence are equal then they
are compared character by character to find the similarity.

Figure. 4 Rabin-Karp Algorithm

F. Creation of Matrix:
The result after comparison will generate a matrix of

size m X n The matrix secures a value ‘1’ if the hash
values of the pattern matches with the hash value of the
compared source code. A non-match will secure a value
‘0’.Thus the resultant matrix will be a combination of ‘1’ s
and ‘0’s.

G. Identifying the code clones:
To identify a clone we have to highlight or change the

color of the line source code which has secured a value ‘1’
in the matrix.The identified clones are indicated in Fig.5

Figure 5. Clone detection by comparing (a) with (b)

IV. RELATED WORK

Different techniques have been used for identifying
simple clones They are broadly categorized based on the
program representation and the matching technique. There
are different techniques like text based , tokens based, AST
based, program dependence based and metrics based for
code structures .Some of the techniques that are different
from the normal matching techniques include suffix tree
based token matching and fingerprints matching . In this
paper we have used the fingerprinting technique for clone
detection.

Ducasse,S.Rieger,M., and Demeyer,S has used a
language independent approach for clone detection. In his
paper he has used a parser to detect the clones in a more
significant manner [4]

CCFinder uses a Token based technique which consists
of the transformation of input source text and a token-by-
token comparison. CCFinder is easily configurable to read
input in different programming languages like C, C+, Java
and COBOL. A suffix-tree matching algorithm is used for
the discovery of clones and to reduce the complexity of
token matching algorithm. [5].Some optimization techniques
are applied.

Heejung Kimy, Yungbum Jung, Sunghun Kim,
Kwankeun Yi has developed Mecc Memory Comparision
based clone detector. This proposes a new semantic clone
detection technique by comparing programs abstract
memory states, which are computed by a semantic-based
static analyzer[6].

Clone Detection Using Abstract Syntax Suffix Trees by
Rainer Koschke make use of suffix trees to find clones in
abstract syntax trees. This new approach is able to find
syntactic clones in linear time and space.[7].

Clone Detection Using Abstract Syntax Trees by Ira D.
Baxter presents simple and practical methods for detecting
exact and near miss clones over arbitrary program fragments
in program source code by using abstract syntax trees[8].

Fingerprinting techniques have been used in different
areas of computing research. In software clone detection
research a number of approaches used fingerprinting with
normalized source code or with Abstract Syntax
Trees(ASTs).

Johnson [9] presents a detection mechanism that uses
fingerprints to identify exact repetitions.

Md. Sharif Uddin Chanchal K. Roy Kevin A.Schneider
and Abram Hindle [10] presents a clone detection
method.using simhash..They have used this method for
detecting Type-3 near-miss clones in large scale softwares.

Randy Smith and Susan Horwitz has detected and
measured similarity in code clones by using fingerprinting
tecnnique[11].In their work they have grouped the clones

function Rabin_Karp(code, pattern)
{
 - Let n be the size of the source code
 - Let m the size of the pattern,
 - If n < m return no match is possible
 - If n>m calculate a hash for the pattern, M-tokens
 - If h1!= h2, calculate the hash value for next M- tokens .

- If h1==h2,a Brute Force Comparision is made
}

S. Mythili et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 368-371

© 2010, IJARCS All Rights Reserved 371

into a clone cluster based on a user-defined threshold
value.They have also ordered them according to the
similarity rank.

Minhaz F. Zibran Chanchal K. Roy in their paper”
Towards Flexible Code Clone Detection, Management,and
Refactoring in IDE”[12] has developed an IDE based clone
managenet system to flexibly detect, manage, and refactor
both exact and near-miss code clones.

V. EXPERIMENTS AND RESULTS

We have taken some sample methods written in C
language for out experiments.The system developed to
identify the clones is also developed using the C language
.In our result we have generated a matrix which is a
combination of ‘1’ and ‘0’s.Where the 1’s indicate a match
of a particular line and a ‘0’ indicate a non-match of a line
with the compared soruce code. Finally the lines which has
secured the value ‘1’ has been highlighted. The following
code is used for the hash value generation.
int hashn(char* str, int n)
{
char ch = str[n];
int sum;
str[n] = '\0';
sum = hash(str);
str[n] = ch;
return sum;
}

Figure. 6 Generated Output

The generated output is shown in Fig. 6

VI. CONCLUSION AND FUTURE WORK

 In Contrast with the other techniques used for clone
detection our system uses the Rabin-Karp fingerprinting
technique for identifying method level Type-1,Type-II and
Type-III clones. It generates the fingerprint and compares
the fingerprint. When compared with the other
fingerprinting techniques the Rabin-Karp is the best method
because it makes the brute-force comparison only when the
fingerprints are same. The time taken by the Rabin_Karp
Matcher is Θ(m) preprocessing time. Further this system
also concentrates on the Language Independent feature by a

general format conversion..The output of this system is a
matrix and a set of highlighted lines of code that are
identified as clones. This system is further enhanced to find
the clone pairs and to make improvements to find the
structural clones. It is also necessary for us to concentrate on
ranking algorithms to rank the most similar documents.
Further it can be enhanced to find the semantic level clones.

VII. REFERENCES

[1]. Chanchal Kumar Roy and James R Cordy, “A Survey on
Software Clone Detection Research”, Computer and
Information Science, Vol. 115, No. 541, pp. 115, 2007.

[2]. Chanchal K. Roy, James R. Cordya and Rainer Koschkeb,
“Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach”, Journal
Science of Computer Programming, Vol. 74, No.7, pp.
470-495, May 2009.

[3]. Hamid Abdul Basit and Stan Jarzabek “Detecting High
level similarity patterns in programs”,European Software
Engineering Conference and ACM SIGSOFT symposium
in the Foundations of Software Engineering 2005

[4]. S. Ducasse, M. Rieger, and S. Demeyer. A language
independentapproach for detecting duplicated code. In
Proceedings;IEEE International Conference on Software
Maintenance,1999.

[5]. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System
for large Scale Source Code,” IEEE Trans. Software Eng.,
vol. 28, no. 7,pp. 645-670, July 2002.

[6]. Heejung Kim, Yungbum Jung, Sunghun Kim, Kwankeun
Yi “MeCC : Memory Comparison-based Clone Detector”
(ICSE), 2011 33rd International Conference on Software
Engineering ,PP 301-310.

[7]. Rainer Koschke “Clone detection for Abstract syntax
Suffix tree” 13th Working Conference on Reverse
Engineering-2006.

[8]. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L.
Bier.Clone detection using abstract syntax trees.In
proceedings;International Conference on Software
Maintenance, 1998.

[9]. J. H. Johnson, "Identifying redundancy in source code
usingfingerprints", Proc. CASCON, 1993, pp. 171-183.

[10]. Md. Sharif Uddin Chanchal K. Roy Kevin A. Schneider,
Abram Hindle “On the Effectiveness of Simhash for
DetectingNear-Miss Clones in Large Scale Software
Systems” (WCRE), 2011 18th Working Conference on
Reverse Engineering,pp 13 – 22.

[11]. Randy Smith and Susan Horwitz “Detecting and Measuring
Similarity in Code Clones” Proc of IWSC 2009.

[12]. Minhaz F. Zibran Chanchal K. Roy in their paper”
Towards Flexible Code Clone Detection, Management,and
Refactoring in IDE” Fifteh International workshop on
Software Clones 2011.

