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Abstract: Monte Carlo Markov Chain methods have been used extensively in Bayesian methods of inference. Metropolis-Hastings algorithm is one 
of the most known methods in this regards. In this work we will introduce mathematical bases of this algorithms and show why these algorithms 
work and their outputs are trustable. 
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I. INTRODUCTION  

The Bayesian paradigm is based on specifying a  
probability  model  for  the observed  data, given  a vector of 
unknown (but non-constant) parameters, leading to the 
likelihood function, and a probability model for this  unknown  
vector of parameter which is called prior distribution.   
Inference concerning the model parameter is then based on the 
posterior distribution which is obtained by Bayes’ theorem. In  
most  of the cases,  the posterior  distributions  do  not have  an  
analytical  closed  form [1]. Complex posterior distribution 
leads to problem (like calculating integrals or optimizing a 
function) that does not admit on analytical solution [4].  These 
problems can be solved by finding an adequate approximation 
for their problem at hand by sampling from the posterior 
distribution.   This dilemma leads to the following question:   
How do we sample from the multivariate posterior distribution 
when no closed form is available for this posterior distribution?  
This question has led to an enormous literature on 
computational methods for sampling from a given multivariate 
distribution (posterior distribution) as well as on methods for 
approximating integrals. 

II. BAYESIAN COMPUTATION 

Although the Bayesian recipe for inference is conceptually 
simple, a practical problem with this approach is the difficulty 
associated with exploring and summarizing realistically  

 
complex posterior distributions. In  most  practical  problems,  
the integral  resulting  from those  inference  procedures,  do 
not admit  an analytical  solution and  computational  
techniques are required to approximate them.  
Furthermore, in most models and applications, )(xm , 
marginal distribution of data, does not have a closed form 
and the posterior is represented by an unnormalized 
density, and thus the Bayes factor will not be in closed 
form and should be approximated [5].  The introduction to 
the statistical literature of the techniques known as 
Markov Chain Monte Carlo (MCMC) methods in the late 
1980’s overcomes this problem and greatly simplifies the 
Bayesian analysis of even the most complex models. 

A. The Bayesian Approach to Statistical Inference: 
Let },...,{ 1 nxxD = be an independent and identically 

distributed sample from a density )~|(. θf  , with an unknown 

parameter Θ∈
~~

θ , where Θ~  denotes the parameter space ofθ~ . 
Then the associated likelihood function is 

).~|()~|,...,()|~(
1

1~ θθθ
θ ∏

=

==
n

i
in xfxxfDL  

This quantity is a fundamental entity for the analysis of the 
information provided about θ~ by the sample D in both 
frequentist and Bayesian approaches. 
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In a Bayesian approach, we assume that θ~  is random and 
has a prior distribution denoted by )~(θπ . This approach is 
based upon Bayes’ theorem [Bayes (1763)], which, states that 

∫
Θ

=

~

~)~()|~(

)~()|~()|~(
θθπθ

θπθθπ
dDL

DLD . 

The posterior distribution represents the exhaustive 
summary of our beliefs about the model parameters after 
having observed the data D . The prior is concerned with our 
original beliefs about θ~  before observing the data. Thus, 
Bayes’ theorem allows us to update our prior beliefs on the 
basis of the observed data in order to obtain our posterior 
beliefs, which constitute the basis for our inference.  

It is clear that )|~( Dθπ is proportional to the likelihood 
multiplied by the prior, 

)~()|~()|~( θπθθπ DLD ∝ , 
and thus it involves a contribution form the observed data 
through )|~( DL θ , and a contribution from the prior distribution 

quantified through )~(θπ .  
The quantity 

∫
Θ

=
~

~)~()|~()( θθπθ dDLDm  

is the normalizing constant of )|~( Dθπ  , and is often called the 
marginal distribution of the data or the prior predictive 
distribution. 

B. The Integration Problem: 
We are given a density function ).(π  on some state 

space X , which is possibly unnormalized. We want to estimate 
expectations under π of some functions RXg →: , i.e. 

∫=
X

dxxxgXgE )()()]([ ππ . 

If X  is high-dimensional and if (.)).( gπ is a complicated 
function, the direct (either analytical or numerical) resolution 
of this integral is infeasible. 

The classical Monte Carlo solution to this problem is to 
simulate iid  random variables Nxxx ,...,, 21 ~ ).(π , and then to 
estimate )]([ XgEπ  by 

∑
=

=
N

i
ixg

N
XgE

1

)(1)]([ˆ
π . 

This approximation gives an unbiased estimate of 
)]([ XgEπ  with standard deviation of order )/1( NO . 

Furthermore, if ∞<)]([ 2 XgEπ , then by the classical Central 

Limit Theorem, the error )]([)]([ˆ XgEXgE ππ − enjoys a 
limiting normal distribution. The problem, however, is that if 
π is complex, then it is very difficult to directly simulate iid  
random variables from ).(π . A possible solution is to apply 
other methods like Importance Sampling, which allow 
generating random values from the distribution of interest by 
simulating from an instrumental distribution. 

 

C. Importance Sampling: 
The key idea used in importance sampling is to generate 

random values through an instrumental distribution )(xq , 
called importance distribution, and to correct the resulting 
simulated function by means of the ratio between the true 
density and the instrumental density 

∫∫ == dxxq
xq
xxgdxxxgXgE )(
)(
)()()()()]([ πππ  

)()(1)]()([
1

i

N

i
iq xwxg

N
XwXgE ∑

=

≈= , 

where 

Ni
xq
xxw

i

i
i ,...,2,1,

)(
)()( ==

π  

are called importance weights. The resulting Monte Carlo 
estimator is unbiased and converges to )]([ XgEπ  as ∞→N , 
whatever the choice of the instrumental distribution q  and as 
long as )()( πSuppqSupp ⊃ . Note however that a good choice 
of the distribution q  may reduce the variance of the estimator, 
which is 

]
)(
)()([]

)(
)()([ 2

2

2
2

Xq
XXgE

Xq
XXgE qq

ππ
= . 

Therefore instrumental distributions with tails lighter than 
those of π are not appropriate for importance sampling. 
Moreover if the ratio q/π is unbounded then importance 
weights vary widely giving too much importance to a few 
values ix . 

In order to improve the efficiency of the Monte Carlo 
estimator an alternative is to use the following importance 
sampling estimator 

∑

∑

=

=≈ N

i
i

i

N

i
i

wg
N

xwxg
NXgE

1

1

)(1

)()(1

)]([π  

where  

,
)(
)()(

i

i
i xq

xxw π
=  

 is the importance weight. Note however that the estimator is 
no more unbiased because the quantity at the denominator is a 
random variable. See Robert and Casella (2004) for more 
details. 

Instead the Markov chain Monte Carlo (MCMC) solution is 
to simulate sequences that are neither independent nor 
identically distributed, but converge in distribution to ).(π . 
This can be done by constructing a Markov chain on X  which 
has ).(π  as a stationary distribution. 

D. Markov Chain Monte Carlo Methods: 
Markov Chain Monte Carlo (MCMC) methods date from 

the original work of Metropolis et al [10], who were interested 
in methods for the efficient simulation of the energy levels of 
atoms in a crystalline structure. The original idea was 
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subsequently generalized by Hastings [6],  but its  true potential 
was not fully realized within the statistical literature until  
Gelfand  and  Smith [3] demonstrated its application to the 
estimation  of integrals  commonly  occurring  in the context  
of Bayesian statistical inference. MCMC methods work by 
constructing a Markov Chain [11], which is essentially  a series 
of random variables generated one after the other so that 
conditional  on the past the distribution at any time in the 
sequence depends only upon the proceeding value.  The key to 
MCMC methods is to construct a generation method for the 
chain that has the target distribution (posterior distribution) as a 
stationary distribution.  Thus the working principle of MCMC 
algorithms is as follows: 

For an arbitrary starting value 0x , a chain )( nX  is generated 
using a transition kernel with stationary distribution f , which 
ensures the convergence in distribution of )( nX  to a random 
variable from f . 

Definition 1: A Markov Chain Monte Carlo (MCMC) 
method for the simulation of a distribution f  is any method 
producing an Ergodic Markov chain )( nX  whose stationary 
distribution is f .  

The use of a chain )( nX  produced by a Markov Chain 
Monte Carlo algorithm with stationary distribution f  is 
fundamentally identical to the use of an iid  sample from f  in 
the sense that the ergodic theorem guarantees the (almost sure) 
convergence of the empirical average  

)(1=
1=

i

N

i
N Xh

N ∑η
 

to the quantity )]([ XhE f . A sequence )( nX  produced by a 
Markov Chain Monte Carlo algorithm can thus be employed 
just as an iid  sample [2].  

E. The Gibbs Sampler: 
 The Gibbs sampler may be one of the best known MCMC 

sampling algorithms in the Bayesian computational literature. 
The Gibbs sampler is found on the ideas of Grenander [9], 
while the formal term is introduced by Geman and Geman 
[12]. The primary bibliographical landmark for Gibbs sampling 
in problems of Bayesian inference is Gelfand and Smith [18]. 
A similar idea termed as data augmentation is introduced by 
Tanner and Wong [22]. 

F. The Slice Sampler: 
 The slice sampler is a special type of Markov chain Monte 

Carlo (MCMC) auxiliary variable method [20] , Edwards and 
Sokal [8] , Besag and Green [7],  that has been popularized by 
Neal [16], Fishman [8], and Damien et al [14]. 

G. The Reversible Jump Technique: 
Some statistical inference procedures consist of comparing 

competitive models to fit the data. The parameter spaces of 
these models usually have different dimensions. The simulation 
methods introduced before cannot take into account this extra 
dimension variability and we need more advanced techniques 
that are capable moving between parameter spaces of different 
dimensions to explore the whole parameter space. The standard 

Metropolis-Hastings algorithm described earlier is indeed 
incapable of such movements, whereas the Reversible Jump 
algorithm of Green [19] is an extension of the standard 
Metropolis-Hastings algorithm to allow exactly for this 
possibility. 
 

III. BASIC  IDEAS 

A Markov Chain is composed of a sequence which is 
possibly includes a set of random variables which are said to be 
growing over time [17]. Furthermore, a Markov chain has a 
probability of a transition which is dependent on the particular 
set in which the chain is located. Based on the afore mentioned 
comments on Markov Chain, the most straightforward way and 
mathematically the most lucid method of defining chain is in 
terms of its transition kernel. Moreover, transition kernel is the 
function which determines these transitions [13]. 

A. Fundemental Concepts: 
Definition 2: A transition kernel is naturally a function K  

which is defined on )(χχ B×  in a way that 
(i) ,.)(, xKx χ∈∀  is a probability measure. 
(ii) )(.,),( AKxBA∈∀  is measurable.  

Definition 3: If we suppose K a transition kernel, a 
sequence ,...,...,, 21 nXXX  of random variables can be regarded 
as a Markov Chain, portrayed by )( nX , if for any number of 
t , the conditional distribution of tX  given 021 ,...,, xxx tt −−  is 
like the distribution of tX  given 1−tx ; that is, 

)|(=),...,,,|( 12101 kkkk xAXPxxxxAXP ∈∈ ++  

                                .),(= dxxK kA∫                               

(1)                                                               
Example 1 : )1(AR models provide a simple illustration of 
Markov chains on continuous state-space. If 

RXX nnn ∈+= − θεθ ,1  
with nε ~ ),0( 2σN , and if the nε ’s are independent, nX is 
indeed independent from ,..., 32 −− nn XX conditionally on 1−nX . 
The characteristics of Markov of an )(qAR process can be 
derived by considering the vector ),...,( 1+−qnn XX . In addition, 

),( qpARMA models do not have the characteristics of Markov 
[13]. 

Definition 4: Assume that )(χBA∈ . The initial n  for 
which the chain goes into the set A  is shown by:  

}1;{inf= AXn nA ∈≥τ                     (2) 
 and is called the stopping time at A  with, by agreement 

∞=Aτ  if AX n ∉ .  
 Definition 5: If we refer to ),(=),(1 AxKAxK , the kernel 

for n  transitions is defined by 1)>(n   

 ),(),(=),( 1 dyxKAyKAxK nn −∫χ            (3) 



E. Fayyazi et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 58-66 

© 2010, IJARCS All Rights Reserved    61 

B. Irreducibility, Atoms and small sets: 
The first measure of sensitivity of Markov chain to its first 

condition is the property of irreducibility [15]. It is vital in the 
setup of Markov Chain Monte Carlo algorithms owing to the 
fact that it guarantees the convergence of the generated chain 
through MCMC algorithms.  

Definition 6: Assuming a measureψ , the Markov Chain 

nX  with transition kernel ),( yxK  is ψ -irreducible, if for any 
)(χBA∈  with 0>)(Aψ , there is n  in a way that 

0>),( AxK n  for all χ∈x .  
 Definition 7: The Markov Chain nX  has an atom 

)(χα B∈  if there is an connected nonzero measure ν  in a 
way that  

 )(,)(=);( χαν BAxAAxK ∈∀∈∀  (4) 
If )( nX  is ψ -irreducible, the atom is accessible 
when 0>)(αψ .   

a. Minorizing condition: 
There is a set )(χBC ∈ , a constant 0>ε , and a 

probability measure ν  in a way that  
)(,)(),( χνε BACxAAxK ∈∀∈∀≥ . 

The minimizing condition is said to be a significant 
technique of proving the renewal theory.  

Definition 8: A set C  is small if there is *Nm∈  and a 
nonzero measure mν  in a way that  

 )(,)(),( χν BACxAAxK m
m ∈∀∈∀≥   (5) 

Definition 9: A renewal time (or regeneration time) is a 
stopping rule τ  with the characteristics which ,...),( 1+rr XX  
does not depend on ,...),( 21 −− rr XX .  

Occasionally the behavior of )( nX  might be confined by 
determistic constraints on the moves from nX  to 1+nX . For the 
time being, we organize these constraints and suggest that the 
chains produced by Markov Chain Monte Carlo algorithms do 
not display this behavior [21].  

Definition 10: A ψ -irreducible chain )( nX  has a cycle of 
length d  if there exists a small set C , an related integer M , 
and a probability distribution mν  in a way that d  is the dcg ..  
of   

0>1;{ mm δ∃≥ such that C  is small for }.Mmm νδν ≥    (6)  
The period of )( nX can be therefore described as the largest 

integer d  which proves to be true about (6)  and if 1=d  
then )( nX  is a periodic.  

C. Transience and Recurrence: 
Looking from an algorithmic perspective, a Markov Chain 

is compulsory to possess stability properties to guarantee an 
acceptable approximation of the stimulated model. Moreover, 
irreducibility confirms that every set A  will be accessed by the 
Markov Chain )( nX , though, this property is too weak to 
confirm that the behavior of )( nX  will enter A  often enough. 

Formalizing this stability of the Markov Chain leads to 
different notions of recurrence.  

Definition 11: For any Ax∈ , A set A  is considered 
recurrent if ∞=][ AxE η [13].  

Definition 12: if there is a constant M  such that 
ME Ax <][η  for every Ax∈ then set A  is uniformly transient 

[13].  
 Definition 13: If there exists a covering of χ  by uniformly 

transient sets then set A  is transient which is a countable 
collection of uniformly transient sets iB  in a way that  

.= ii BA ∪  
 Definition 14: A Markov Chain )( nX  is recurrent if:   

i. There exists a measure ψ  such that )( nX  is ψ -
irreducible, and  

ii. for every )(χBA∈  such that 0>)(Aψ , ∞=][ AxE η  for 
every Ax∈ . The chain is transient if it is ψ -irreducible 
and if χ  is transient [13]. 

Theorem 1: Assume that )( nX  is ψ -irreducible Markov 
chain with an accessible atomα .   
i. If α  is recurrent, every set A  of )(χB  in a way that 

0>)(Aψ  is recurrent  
ii. If α  is transient, χ  is transient.  

 The quality of )(i  is the most appropriate in the Markov 
Chain Monte Carlo setup [13].  

A ψ -irreducible chain )( nX  is recurrent if there exists a 
small set C  with 0>)(Cψ  such that 1=)<( ∞cxP τ  for 
every Cx∈ [13].  

a.     Harris Recurrence: 
It is actually possible to build up the stability properties of a 

chain )( nX  by requiring not only an infinite average number 
of visits to every small set but also an infinite number of visits 
for every path of the Markov Chain [13].  

Definition 15: A set A  is Harris recurrent if 
1=)=( ∞AxP η  for all Ax∈ . 

The chain )( nX  is Harris recurrent if there exists a measure 
ψ  such that )( nX  is ψ -irreducible and for every set A  
with 0>)(Aψ , A  is Harris recurrent [13].  

Theorem 2: If )( nX  is a ψ -irreducible Markov Chain with 
a small set C  such that 1=)<( ∞cxP τ  for all χ∈x , then 

)( nX  is a Harris recurrent [13].  

D. Invariant Measures : 
An elevated level of stability for the chain )( nX  is obtained 

if the marginal distribution of nX  depends on n . More 
formally, this is an obligatory occasion for the existence of a 
probability distribution π  in a way that π~1+nX  if π~nX ,  
and Markov Chain Monte Carlo methods are based on the fact 
that this requirement, which defines a particular kind of 
recurrence called positive recurrence, can be met. The Markov 
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Chains constructed from Markov Chain Monte Carlo 
algorithms enjoy this greater stability property.  

Definition 16: A σ -finite measure π  is invariant for the 
transition kernel (.,.)K  (and for the related chain) if  

 )()(),(=)( χππ
χ

BBdxBxKB ∈∀∫  (7) 

When there is an invariant probability measure for a ψ -
irreducible chain, the chain is positive [13].  

a. Stationary Distribution: 
The invariant distribution is also mentioned to as stationary 

if π  is a probability measure, since π:0X  denotes that 
π:nX  for every n; thus, the chain is stationary in distribution 

[8]. 
The relation between positivity and recurrence is specified 

by the following results: which formalizes the intuition that the 
being of an invariant measure avoids the probability mass from 
"fleeing to infinity".  

b. Proposition: 
If the chain )( nX  is positive, it is recurrent.  
Theorem 3: Assume )( nX  be ψ -irreducible with an 

atomα . The chain is positive if and only if ∞<][ αα τE . In this 
case, the interval distribution π  for )( nX  satisfies [13]. 

The chains created by Markov Chain Monte Carlo methods 
are, by core, certain to possess an invariant distribution. 

The Markov chains created from Markov Chain Monte 
Carlo algorithms has positive recurrence things.  

E.  Reversibility and Detailed Balance Condition: 
The stability stuff basic to stationary chains can be linked to 

another stability stuff called Reversibility, which statuses that 
the instructions of time dose no modification in the dynamics 
of the chain [12]. 

Definition 17: A stationary Markov Chain )( nX  is 
reversible if the distribution of 1+nX  conditionally on xX n =2+  
is the same as the distribution of 1+nX  conditioning on 

xX n = [13]. 

a.     Detailed Balance Condition: 
A Markov Chain with transition kernel K  placates the 

detailed balance condition if there is a function f  sufficient  
                    )(),(=)(),( xfyxKyfxyK                     (8) 

Though this state is not necessary for f  to be a stationary 
measure related with the transition kernel K , it offers a 
sufficient state that is frequently easy to check and that can be 
used for greatest MCMC algorithms.  

The detailed balance state express on balance in the flow of 
the Markov chain, specifically that the probability of existence 
in x  and moving to y  is the similar as the probability in y  
and moving back to x .  

F.  Ergodicity and Convergence: 
 Since the Markov chain )( nX  from a sequential view, it is 

natural and important to create the limiting activities of nX ; 

that is to what is the chain converging? the being and 
uniqueness of an invariant distribution π  creates that 
distribution a usual candidate for the limiting distribution, and 
we now try to finding sufficient settings on )( nX  for nX  to be 
asymptotically distributed allowing to π . The next theorems 
and definitions are essential convergence consequences for 
Markov chains and they are at the essential of the incentive for 
Markov chain Monte Carlo algorithms [9].  

Definition 18: For a Harris positive chain )( nX , with 
invariant distribution f , an atom α  is ergodic if [13]  

 0|=)(),(|lim ααα fK n

n
−

∞→
                     (9) 

In the countable situation, the being of an ergodic atom is, 
infact, sufficient to create convergence giving to the total 
variation norm  

 |)()(|sup=|||| 2121 AA
A

TV µµµµ −−           (10) 

a. Geometric Convergence: 
An additional exact report of convergence properties 

includes the study of the speed of convergence of nk  to f . An 
assessment of this is key for Markov Chain Monte Carlo 
algorithms in the sense that it relays to stopping rules for these 
algorithms; minimal convergence speed is also a requirement 
for the application of the Central Limit Theorem [7].  

Definition 19: A chain )( nX  is geometrically h-ergodic, 
with 1≥h  on χ , if )( nX  is Harris positive, with stationary 
distribution f , if )( nX  satisfies ∞<][hπE , and if there exists 

1>hr  such that  

∞−∑
∞

<||,.)(||
1=

h
nn

h
n

fxKr  

For every Xx∈ . The case 1=h  corresponds to the 
geometric ergodicity of )( nX [13].  

Definition 20: An accessible atom α  is geometrically 
ergodic if there exists 1>r  such that  

∞−∑
∞

<|)(),(|
1=

nn

n

rfK ααα  

and α  is a Kendall atom if there exists 1>K  such that 
∞<][ ατ

α kE .  
If α  is a Kendal atom, it is thus geometrically ergodic and 

ensures geometric ergodicity for )( nX [13].  

b. Uniform Ergodicity: 
The stuff of uniform ergodicity is robust than geometric 

ergodicity in the sense that the rate of geometric convergence 
must be unchanging over the entire space. It is used in the 
Central Limit Theorem.  

Definition 21: The chain )( nX  is uniformly ergodic if  [13] 
.0=||,.)(||suplim TV

n

xn
fxK −

∈∞→ χ
                 (11) 

G.  Limit Theorems: 
 Assumed observation nXX ,...,1  of a Markov chain, we at 

this time survey the limiting behavior of the incomplete sums  



E. Fayyazi et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 58-66 

© 2010, IJARCS All Rights Reserved    63 

)(1=)(
1=

i

n

i
n Xh

n
hS ∑  

When n  goes to limitlessness, getting back to the iid  case 
through renewal when )( nX  has an atom. Think over first the 
idea of harmonic functions, which is linked to ergodicity for 
Harris recurrent Markov chains.  

Definition 22: A measurable function h  is harmonic for the 
chain )( nX  if  

).(=]|)([ 1 nnn xhxXh +E  
These functions are invariant for the transition kernel and 

they characterize Harris recurrence as follows [13].  
Theorem 4: For a positive Markov chain, if the only 

restricted harmonic functions are the constant functions, the 
chain is Harris recurrent.  

Proof. Frist, the probability of an infinite number of 
returns, ( ) ( )∞== η

AxPAxQ , , as a function of x, ( )xh , is clearly a 

harmonic function. This is because 
( )[ ] ( )[ ] ( )∞==∞== ηη

AyAXyy PPEXE h
11

 

And thus, ( )AxQ ,  is constant (in x). 
The function ( )AxQ ,  describes a tail event, an occasion 

whose occurrence does not be contingent on 
mXXX ,...,, 21

, for 
any finite m. Such occasions usually follow a 0-1 laws are 
classically recognized in the independence case, and, 
inappropriately, extension lead to cover Markov chains are 
outside our choice. For the sake of our proof, we will just state 
that ( )AxQ ,  conforms a 0-1 law and proceed. 

If  π  is the invariant measure and  0)( >Aπ , the case 
( ) 0, =AxQ  is impossible. To see this, assume that ( ) 0, =AxQ . It 

then surveys that the chain almost surely appointments A only 
a finite number of times and the average  

( )∑
=

N

i
iA XIN 1

1

 
 

Will not converge to )(Aπ , opposing the low of Large 
Numbers. So, for some x, ( ) 1, =AxQ , creating that the chain is a 
Harris chain [13]. 

a. Ergodic Theorem: 
 If )( nX  has a σ -finite invariant measureπ , the following 

two statements are equivalent:   
a) If )(, 1 πLgf ∈  with 0)()( ≠∫ xdxg π  then  

.
)()(

)()(
=

)(
)(

lim
xdxg

xdxf

gS
fS

n

n

n π

π

∫
∫

∞→
  

b) The Markov chain )( nX  is Harris recurrent.  
The law of large numbers for Markov chains which is 

customarily called the Ergodic theorem guarantees the 
convergence of )(hSn  [13]. 

By way of key part of ergodic theorem is that π  does not 
want to be a probability measure and, that there can be similar 
kind of strong stability even if the chain is null recurrent. In the 
format of a Markov Chain Monte Carlo algorithm this effect is 

occasionally entreated to defend the use of improper posterior 
measures.  

b. Central Limit Theorems: 
There is a regular development from the low of large 

numbers to the Central Limit Theorem. We offer alternative 
settings for the Central Limit Theorem to apply in different 
settings. 

(The Discrete Case) 
Theorem 5: If nX  is Harris positive with an atom α  such that  

∞∞ ∑ <]|))(|[(,<][ 2

1=

2
n

n

Xh
ατ

ααα τ EE  

and  

0>]]})[)({[()(= 2

1=

2 hXh n
n

h
π
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ααπγ EE −∑  

the Central Limit Theorem applies; that is  
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h
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Proof. If h denotes ][hEh π− , we get 
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Following from Central Limit Theorem for the independent 
variables )( fSi , while NlN / converges almost surely to 

)(/1)]1([ 0 απα =SE . Since 
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we get 

,0
|)(|
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∞→ N

hS
Nl

N
 

and the reminder goes to 0 almost surely [13]. 
This result indicates that an extension of the Central Limit 

Theorem to the nonatomic case will be more delicate than for 
the Ergodic Theorem [13]. 

(Reversibility)  
Theorem 6: If )( nX  is aperiodic, irreducible, and reversible 

with invariant distribution f  the Central Limit Theorem 
applies when  

∞+ ∑
∞

<)]()([2)]([=<0 0
1=

0
22

kf
k

fg XgXgXg EEγ  

The key fact here is that even however reversibility is a 
very limiting statement in overall, it is frequently easy to levy 
in Markov Chain Monte Carlo algorithms by introducing 
additional simulation steps [13]. 

(Geometric Ergodicity) 
There is so far additional method to the Central Limit 

Theorem for Markov chains, it depend on on geometric 
ergodicity.  
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Theorem 7: If )( nX  is aperiodic, irreducible, positive 
Harris recurrent with invariant distribution f  and 
geometrically ergodic, and if, in addition,  

∞+ <]|)([| 2 εXhfE  
for some 0>ε , then  

)(0,)])([)/(( 2
h

L
f

n XhnhSn γN:E−  
where 2

hY  is defined as in theorem 7 ,[13].  

IV. THE METROPOLIS-HASTINGS ALGORITHM 

In this unit was talking the topic of theoretic validity of the 
Metropolis-Hastings algorithms which are a kind of MCMC 
methods for simulation. The MCMC sampling plan sets up an 
irreducible, aperiodic Markov chain for which the stationary 
distribution equals the posterior distribution of interest [3].  

Definition 23: The Metropolis-Hastings algorithm begins 
with the objective (target) density f . This is the distribution 
from which we are inclined to produce. Really, we request to 
create from target distribution f  indirectly. 

To do so, we would put on supposed instrumental 
distribution, presented by )|( xyq . To create a choice with 
respect to instrumental distribution, some settings are to be in 
use into explanation;   

i. Generation should be simply complete.  
ii. It must be either accessible or 

symmetric ))|(=)|(( xyqyxq .  
The act of a Metropolis-Hastings algorithm rest on on the 

choice of a proposal density q(.). As discoursed in Chib and 
Greenberg [1], the spread of the proposal density q(.) affects 
the behavior of the chain in at least two dimensions : one is the 
“acceptance rate” (the percentage of times a move to a new 
point is made), and the other is the region of the sample space 
that is covered by the chain. If the spread is extremely large, 
some of the generated candidates will have a low probability 
of being accepted. On the other hand, if the spread is chosen to 
be too small, the chain will take longer to explore the support 
of the density. Both these situations are likely to be reflected 
in a high autocorrelation across sample values. In the context 
of the random walk proposal density, Roberts et al [15] show 
that if the target proposal densities are Normal, then the scale 
of the proposal should be tuned so that the acceptance rate is 
approximately 0.45 in one-dimensional problems and 
approximately 0.23 as the dimension of the problem 
approaches infinity, with the optimal acceptance rate being 
around 0.25 in six dimensions. For the independence chain, in 
which we take )(=)|( yqyxq  , it is important to ensure that 

the tails of the proposal density  )(yq dominate those of the 
target density   )|( xyq  as in importance  sampling [3]. 

A. Metropolis-Hastings Algorithm: 
Step1 : Initialization: choose an arbitrary starting value (0)x ; 
Iteration 1)(, ≥tt . 
Step 2 : Generate )|( )(t

t xyqY : . 
Step 3 : Compute  

.
)|(
)|(

)(
)(=

xyq
yxq

xf
yfR  

Step 4 : Compute the acceptance probability 
,1}.{min=),( RyxP   

Step 5 : With probability P ; t
t YX =1)( + ; otherwise )(1)( = tt xX +  

[13].  
Theorem 8: Assume that )( )(tX  be present the Metropolis-

Hastings chain. For each conditional distribution q  whose 
containsξ , the support of f ,   
a. The kernel of the chain satisfies the detailed balance 

condition with f ;  
b. f  is a stationary distribution of the chain.  

 Proof. The transition kernel associated with Metropolis-
Hastings algorithm is  

 )=|(=),( 1 xXAXPAxK tt ∈+  
)=|=,()=|=,(= 11 xXxXAxPxXYXAYP tttt ++ ∈+∈  

dyxyqyxpdyyxpxyq AxYA
)|()),((1),()|(= )( −+ ∈∫∫ I  

density alinstrument is)|(},{= xyqyA
)=|=(=),(, 1 xXyXpyxp tt+  

)())|(),((1)|(),(=),( ydyxyqyxpxyqyxpyxK xδ∫−+⇒  





≠



≠ xy
xy

x
yx
yx

y yx 0
=1

=)(,
0

=1
=)( δδ  

 )()(=)()()(=)( xfyyfxxy xyyx σσσσ ⇒  

 dyxyqyxpxr )|(),(=)( ∫  

 )())((1)|(),(=),( yxrxyqyxpyxK xδ−+⇒  
Show that  

 )()|(),(=)()|(),( yfyxqxypxfxyqyxp  
And  

 )()())((1=)()())((1 yfxyrxfyxr yx δδ −−          
(12) 

Which together establish detailed balance for the 
Metropolis-Hastings chain:  

 
)|(
)|(

)(
)(=),(1=),(

yxq
xyq

yf
xfxypyxp ⇒⇒         (13) 

Replacement in (13)   

 )()|(.
)|(
)|(

)(
)(=)()|(1 yfyxq

yxq
xyq

yf
xfxfxyq×  

 )|()(=)()|( xyqxfxfxyq⇒  
  

 1=),(
)|(
)|(

)(
)(=),( xyp

xyq
yxq

xf
yfyxp ⇒⇒        (14) 

Replacement in (13)   

 )()|(1=)()|(.
)|(
)|(

)(
)( yfyxqxfxyq

xyq
yxq

xf
yf

×  

 )()|(=)|()( yfyxqyxqyf⇒  
Giving to (12)   

)()()()()(=)()()()()( yfxyryfxxfyxrxfy yyxx δδδδ −−  
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Giving to definition )(yxδ  and )(xyδ , the proof of above 
equation is evident [13].  

Note: We have now shown that Metropolis chain is 
reversible and f  distribution (purpose distribution) is the 
stationary distribution of metropolis chain.  
 

B. Measuring the Irreducibility State of Metropolis-
Hastings Chain: 

One can cover the irreducibility quality of Metropolis-
Hastings chain if the instrumental distribution of q  is positive, 
that is to say  

0>)|(),( xyqyx ξξ ×∈∀  
Then the chain is irreducible, since  

0>)|(0>)|(0>)<(, dyxyqdyxyqpyx yx ⇒⇒∞⇒∈∀ ∫τχ

lity)irreducibi ofn (definitio  
The above your head condition conditions that each set of 

ξ  ( f  range) with positive Lebesgue measure, is achievable in 
one level [13].  

C. Measuring the Positive and Recurrent State of 
Metropolis-Hastings Chain: 

In invariant probability measure for a chain we have if there 
is an invariant probability measure for chain, then the chain 
will be positive. Here, since f  is an invariant measure for the 
chain, we can complete that metropolis chain is positive and 
then, Metropolis-Hastings chain is recurrent [13].  

D. Measuring the Aperiodicity Quality of Metropolis-
Hastings Chain: 

One enough state for Metropolis-Hastings chain to be 
aperiodic is that Metropolis-Hastings provides possible events 
such }={ )(1)( tt XX + . In other words, probability of these events 
be not equal to zero. So,  

1<)]|()()|()([ )()()(
t

t
t

t
t

t YXqYfXYqxfp ≤  

1<1]
)|(
)|(

)(
)([ )(

)(

)( ≥⇒ t
t

t
t

t
t

XYq
YXq

Xf
Yfp  

In other words, the propability of accepting formed sample 
be less than1 . Obviously, all created samples of instrumental 
distribution are not accepted, i.e. the chain remains repeated in 
some cases.  
Lemma 1: If the Metropolis-Hastings chain )( )(tX  is f -
irreducible, it is Harris recurrent [13].  
Theorem 9: Assume that the Metropolis-Hastings Markov 
Chain )( )(tX  is f -irreducible   

    • If )(1 fLh∈ , then  

fdxxfxhXh
T

t
T

tT
a.e.)()(=)(1

lim )(

1=
∫∑

∞→
 

    • If, in addition, )( )(tX  is aperiodic, the  

0=||)(,.)(||lim TV
n

n
fdxxK −∫∞→

µ  

For every initial distribution on µ , where ,0)(xK n  denotes 
the kernel for n  transitions.  

Proof. 1 )( )(tX If  is f -irreducible, it is Harris recurrent by 
Lemma 1  and part )(i  then follows from ergodic theorem 
[13].  

In point, above theorem is a convergence effect for 
Metropolis-Hastings Markov Chain.  
Example 2 : Assume (1)AR  models. If  

R∈+ ++ θεθ ,= 11 nnn YY  
And nε  are independent normal variables, the chain is 

irreducible. The situation measure existence the Lebesgue 
measure. We can determine settings for irreducibility. 

In practice, the condition most likely to be adopted is that 
the innovation process ε  has a distribution Γ  with an 
everywhere positive density [13]. 
Example 3 : Assume (1)AR  models. If  

R∈++ θεθ ,=1 nnn YY  
And nε  are independent uniform 1,1][−  variables. It is yet 

not continuously sufficient for irreducibility to have density 
only positive in a region of zero. If 1|| ≤θ  the chain will be 
irreducible under such a density condition; but if 1|>|θ , then 
once we have an initial state larger than 11)|(| −−θ , the chain 
will monotonically go off near infinity and will not be 
irreducible [13].  

 

 
Figure 1.  Trajectories of two AR(1) chains. (Left) 1|>|θ , then the chain is 

not irreducible, (right) 1|| ≤θ , and the chain is irreducible  

Example 4 : To show the result of proposal distribution, we 
use two distributions (4,7)aG  and (5,6)aG  to estimate the 
mean of a gamma distribution with parameters 4.3=α  and 

6.2=β .  
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Figure 2.  Range of 3  sampling for estimating the mean of (4.3,6.2)aG . 

Figure 2 shows tree sampling path from gamma 
distribution. The first graph is genereted by using an iid  
sampler. The two other graphs are genetrated by output of a 
Metropolis-Hastings algorithm with proposal distributions 

(4,7)aG  and (5,6)aG . Since output of the third sampling is 
mostly similar to that of iid  sampling output, Metropolis-
Hastings algorithm is partly biased based on (4,7)aG  proposal 
distribution which can indicates inconvergency of stationary 
distribution [2].   
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