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Abstract: Multi-dimensional arrays are widely used in a lot of scientific studies but still some issues have been encountered regarding efficient 

operations of these multi-dimensional arrays. In this paper, the extended Karnaugh Map representation (EKMR) scheme has been proposed as an 

alternative to the traditional matrix representation (TMR) which caused the multi-dimensional array operation to be inefficient when extended to 

dimensions higher than two. EKMR scheme has managed to successfully optimize the performance of the multi-dimensional array operations to 

the nth dimension of the array. The basic concept EKMR is to transform the multi-dimensional array in to a set of two-dimensional arrays. 

EKMR scheme implies Karnaugh Map which is a technique used to reduce a Boolean expression. It is commonly represented with the help of a 

rectangular map which holds all the possible values of the Boolean expression. Then the efficient data parallel algorithms for multi-dimensional 

matrix multiplication operation using EKMR are presented in this study which outperformed those data parallel algorithms for multi-

dimensional matrix multiplication operation which used the TMR scheme. The study encourages designing data parallel algorithms for multi-

dimensional dense and sparse multi-dimensional arrays for other operations as well using the EKMR scheme since this scheme produces the 

efficient performance for all dimensions and for all operations of the arrays.  
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I. INTRODUCTION 

Multi-dimensional arrays which are also referred as 

tensors or n-ways arrays are usefully applied to a wide range 

of studies or methods such as climate modeling, finite 

element analysis (FEA), molecular dynamic and many more 

but still many issues have been encountered regarding 

efficient operations of these multi-dimensional arrays. Most 

of the proposed methods are successful in case of two-

dimensional arrays which do not show accurate results when 

applied to the extended form of tensors.  This occurred due 

to the traditional matrix representation (TMR) which is an 

array representation scheme that is commonly used to 

represent the multi-dimensional dense or sparse array. 

Dense and sparse are the two categories of the array form 

which are provided through the various data parallel 

programming languages [2] for instance, Vienna Fortran, 

High Performance Fortran, etc. If all or most of the array 

elements are non-zero values then it is called a dense array. 

On the other hand, if most of the elements of the array are 

zero then it is called a sparse array. When an operation is 

applied on a dense array then it is executed on elements of 

the dense array whereas in case of the sparse array, an 

operation is exercised only on the non-zero elements in 

order to optimize the performance [1]. Coming back to the 

flaws of the TMR which is also known as canonical data 

layouts, there are three reasons found for the failure of the 

TMR scheme when applied on a dense array which has three 

or more than three dimensions. First reason is the increase in 

the cost of packing/unpacking of the elements of the dense 

tensor in relation to its dimensions, second is the increase in 

its cost of the index computations with the increase of its 

dimensions.   Third reason is the increase in the rate of 

cache miss for an operation with the increase of the 

dimensions of the dense tensor since more cache lines are 

acquired [5] [6] [7]. Due to these three drawbacks, TMR 

scheme has turned out to be a difficult and less tractable for 

designing efficient data parallel algorithms for tensor 

operations.  

In case of designing the parallel programs for 

operations on sparse tensors, the programming languages 

usually use compressed row storage (CRS) and compressed 

column storage (CCS) as the data compression scheme to 

compress the sparse arrays with respect to the TMR scheme 

due to which operation is only performed over non-zero 

elements of the sparse arrays in order to improve 

performance and reduce memory space. But still parallel 

array operations with respect to CRS or CCS for higher 

dimensional tensors have also failed to produce good 

performance merely, because of the following two reasons. 

First reason is that more of the single dimensional matrices 

are required with the increase of dimensions of the tensors 

in order to store the resultant extra indices of non-zero 

elements which further increase the time and the required 

storage space. The second reason is that with the increase in 

the dimensions of the tensors, the cost of indirect data access 

[4] and the cost of index comparisons increase for parallel 

operations on sparse tensors.   

Thus, this dissertation is aimed towards providing a 

new, effective and efficient array representation scheme and 

data compression scheme for dense and sparse tensors, 

respectively. These new array representation scheme and 

data compression scheme would then be used to design a 

parallel algorithm for multi-dimensional matrix 

multiplication operation. The new array representation 

scheme provided in this dissertation is called the Extended 

Karnaugh Map Representation (EKMR) which is based on 

the concept of representing a multi-dimensional array as a 

set of two-dimensional arrays [14]. This scheme is 

appropriate for both dense and sparse tensors. Thus, it has 

become easier to design an efficient parallel algorithm for 

tensors of higher dimensions with the help of EKMR. The 
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theoretical and experimental analysis proved that the EKMR 

scheme is better than the TMR scheme.  

II. EKMR SCHEME 

“Chun-Yuan Lin” from Institute of Molecular and 

Cellular Biology, National Tsing Hua University, Hsinchu, 

300, Taiwan, “Yeh-Ching Chung” from Department of 

Computer Science, National Tsing Hua University, Hsinchu, 

Taiwan, 300 and “Jen-Shiuh” Liu from Department of 

Information Engineering and Computer Science, Feng Chia 

University, Taichung, Taiwan, 407 proposed the scheme of 

Extended Karnaugh Map Representation which is primarily 

based on the Karnaugh Map. The Karnaugh Map is a 

technique used to reduce a Boolean expression. It is 

commonly represented with the help of a rectangular map 

which holds all the possible values of the Boolean 

expression. The n variables are used to hold memory space 

and 2n possible combinations are represented for an n-input 

Karnaugh Map. If n is less than or equal to 4 then the 

Karnaugh Map can be shown as a two-dimensional array 

and thus, it can be easily represented on a plane. EKMR(1) 

is a single input Karnaugh Map that is a simple one-

dimensional array or a vector. Similarly, EKMR(2),  

EKMR(3) and EKMR(n) are two-dimensional, three-

dimensional and n-dimensional arrays, respectively where n 

is the number of inputs. Thus, for n equals to 1 and 2,   

EKMR(n) and TMR(n) exhibit the same array 

representation. Therefore, we will take in to account 

EKMR(n) where n is greater than 2. 

 

 

 

 

Figure 2.1 (a) 3x4x5 array represented by TMR (b) 4x15 

array represented by EKMR 

Figure 2.1 represents the TMR(3) and EKMR(3) where (a) is a 3x4x5 array 

represented by TMR(3) and (b) is a 4x15 array represented by EKMR(3). 

Practically, a multi-dimensional array requires linear memory storage for 

programming languages supporting multi-dimensional array. Programming 

languages copy the array index space in to the linear memory address. 

Thus, an array A[k][i][j] which is represented by TMR(3), has the memory 

address LRM (k,i,j;3,4,5) (that is the row major data representing function) 

and LCM (k,i,j;3,4,5) (that is the column major data representing function)  

for the array element in the third dimension ‘k’, row dimension ‘i’ and 

column dimension ‘j’ with respect to the starting memory address of a 

3x4x5 size array.  

A 3-input Karnaugh Map represents the TMR(3) array A[k][i][j] as a 2-

dimensional array with respect to EKMR(3). Figure 2.1(b) shows the 

relative EKMR(3) representation of A[k][i][j]. Figure 2.1(b) is a 4x15 size 

2-dimensional array. The EKMR(3) is also given by the row major data 

representing function L’
RM(i’,j’;4,15) which is equivalent to i’x15+j’ or the 

column major data representing function L’
CM(i’,j’;5,12) which is 

equivalent to j’x5+i’.The placement of the elements of the array with 

respect to the direction given by the index ‘k’ is the primary difference 

between the two data representation schemes which are TMR(3) and 

EKMR(3).  

III. PARALLEL ALGORITHM FOR 

MULTIDIMENSIONAL MATRIX 

The design of a parallel algorithm usually has three 

phases which are: data distribution, local computation and 

result collection [9]. Further on, we will analyze the issues 

encountered in these three phases which are concerned with 

the design of the data parallel algorithms of the multi-

dimensional dense matrix operations with respect to the row 

major data layout using Karnaugh Map that is EKMR 

scheme. These data parallel algorithms are not regarded to 

be based on the recursive data layout [10]. The reason 

behind this consideration is the selection of the recursive 

data layout with respect to the TMR scheme tensor 

operation algorithm in order to optimize the performance 

[11].  In our design example, we will only use multiplication 

operation on the matrices although there are other array 

operations as well. Our example is using the distribution of 

one dense array since the distribution of more dense arrays 

for an operation will design a very complicated parallel 

algorithm.    

A. The Data Distribution Phase 

In this section, we will illustrate the row and the column 

which are the distribution methods for dense arrays. A dense 

global array is distributed to the processor in three steps. In 

step number one, the global array is divided in to the local 

dense arrays on the basis of the data partition method. In 

step number two, the elements of the local dense array from 

step number one, are collected in the form of a batch and 

then distributed to the relevant processor in the step number 

three. The cost of the row and the column data distribution 

methods are the same for the first and the third steps [3] so 

we will discuss the cost of packing in the second step in 

order to analyze these data distribution methods. The 

hypothesis is that A[k][i][j] is an n x n x n dense array and P 

are the given processors.  

a)The Row Data Distribution Method: According to the 

definition of EKMR(3), A’ comprises of n rows and each 

row has n2 elements. As per the row distribution method, 

A’[i’][j’] is distributed to the processors by diving A’ in to 

2-dimensional arrays P in the direction i’. The elements of 

the same row are saved in the sequential memory addresses 

in the EKMR(3), so it is not necessary to pack them before 

distribution as shown in figure 3.1(b). Therefore, the row 

size is same for TMR(3) and EKMR(3).  

 

Figure 3.1: Row data distribution method for A and A’ to 4 processors 

(a)TMR(3) (b) EKMR(3). 

Figure 3.1 shows the row data distribution method 

for A and A’ to 4 processors where (a) is based on TMR(3) 

and (b) is based on EKMR(3). 
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Figure 3.2 shows the row data distribution method for A’ to 4 processors 

for EKMR(6). 

The number of non-consecutive data blocks is zero 

for a single processor as well as for multiple processors. For 

the EKMR(4), elements of the partially dense arrays 

allocated to each processor are saved to the sequential 

memory addresses. So, they are packed before distribution 

as shown in figure 3.2. Now A’ is the corresponding 

EKMR(n) of the nn dense array. The data parallel algorithm 

for the EKMR(n) with respect to the row data distribution 

method of the data distribution phase is given below in 

figure 3.3.   

 
Figure 3.3 

 
According to figure 3.2 and figure 3.3, P x nn-4 is 

the number of non-consecutive data blocks on P processors. 

Thus, the number of non-continuous data blocks in the 

EKMR scheme for row data distribution method is less than 

that of TMR scheme. 

b) The Column Data Distribution Method 

 

Figure 3.4  shows column data distribution method for A and A’ to n=4 

processors where (a) represents TMR(3) and (b) represents EKMR(3). 

 

Figure 3.5  shows the column data distribution method for A to 4 

processors according EKMR(6) 

 

 
Figure 3.6 

Figure 3.6  shows the algorithm column data 

distribution method for EKMR(n).  

According to figure 3.4 and figure 3.6, P x nn-2 is 

the number of non-consecutive data blocks on P processors. 

Thus, the number of non-continuous data blocks in the 

EKMR scheme for column data distribution method is less 

than that of TMR scheme. 

B. The Local Computation Phase 

When single dense array is distributed to the processors 

then the next phase is to perform local computation on these 

distributed arrays. Assume A[mn-4] [mn-3]… [m1][l][k][i][j] 

and B[mn-4] [mn-3]… [m1][l][k][i][j] are two dense arrays 

with size nn for the TMR(n) then A’ and B’ are the relative 

EKMR(n) of A(mn-4, mn-3,.. m1)  and B(mn-4, mn-3,.. m1) ; C 

for TMR(n) and C’ for EKMR(n) are the local dense arrays 

in each processor. The parallel algorithm of the 

computational phase for multidimensional matrix 

multiplication operation for EKMR(n) with respect to the 

row distribution method (this algorithm is also similar for 

column data distribution method) is shown is figure 3.7.  
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Figure 3.7 

 

 

C. The Result Collection Phase 

The results generated from the computation phase 

which are dispersed among processors must be gathered to 

produce the final result. Generally, the processor that is used 

for distributing the data is also used for collecting the 

results. Different ways are adopted by the host processor to 

process the interim results for various dense array operations 

by collecting the interim results to produce the final result. 

For matrix multiplication operation (and for other such 

operations), the host processor unpacks the partial or interim 

results, which have been collected from each processor, in to 

relevant memory addresses to get the final result. This phase 

is similar to the data distribution. The result collection phase 

may have different implementations for different dense 

array operations. The data parallel algorithm for the result 

collection phase for multi-dimensional matrix multiplication 

operation for the EKMR(n) with the row distribution 

method (the similar algorithm will be used for the column 

data distribution method) is given below in figure 3.8. 

 
Figure 3.8 

 

IV. PERFORMANCE COMPARISON BETWEEN 

TMR AND EKMR SCHEMES 

 
 

Figure 4.1  shows the time of the data distribution phase of data parallel 

algorithms with respect to the row data distribution method for TMR(4) and 

EKMR(4) on 16 processors. It illustrates that EKMR scheme takes less 

time than TMR scheme for data parallel algorithms in the distribution phase 

of the row distribution method. 

 

 
 

                                              

 
Figure 4.2  (a)Without Compiler Optimization  (b)With Compiler 

Optimization 

 

The figure 4.2 shows the time taken for local 

computation phase of data parallel algorithms with matrix 

multiplication by TMR(3) and EKM(3) schemes for array 

size 200 x 200 x 200 on 16 processors where (a) represents 

without complier optimization option and (b) represents 

with complier optimization option. 
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Figure 4.3  shows time taken by the TMR(3) and EKMR(3) for the result 

collection phase of data parallel algorithms of matrix multiplication of array 

size 200 x 200 x 200 on 16 processors. 

The above performance comparison graphs between 

TMR and EKMR schemes are taken in the context of this 

study that is data parallel algorithms for matrix 

multiplication. The graphs portray that EKMR is a better 

and efficient scheme than the TMR scheme in all phases due 

to the lesser values obtained in the EKMR scheme for the 

following: the number of non-continuous data blocks (with 

various data distribution methods), the packing time, the 

cost of the index computation of array elements, the number 

of cached lines accessed for operations of dense arrays and 

the unpacking time. This efficiency of EKMR in comparison 

to TMR is also true for all operations, all array sizes 

including both dense and sparse arrays [13] and all 

algorithms. 

V. CONCLUSION 

In this paper, we first identified and then discussed the 

issues faced in relation to the efficient operations of the 

multi-dimensional arrays. It was found that the most of the 

proposed methods do not perform well for extended form of 

tensors although these methods show good performance 

when applied to two-dimensional arrays. We discussed the 

flaws of the traditional matrix representation (TMR) and 

then proposed the Extended Karnaugh Map Representation 

(EKMR) as a new scheme which ruled out the drawbacks of 

the TMR scheme. EKMR is based on the Karnaugh Map. 

The basic concept of the EKMR technique is to represent 

the multi-dimensional array in to the form of a set of two-

dimensional arrays. Thus, the extended Karnaugh map 

representation made it easier to design the efficient data 

parallel algorithms for multi-dimensional arrays having 

more than two dimensions.  We analyzed the data parallel 

algorithms for multi-dimensional matrix multiplication 

using the Karnaugh map that is EKMR and concluded that 

EKMR is better than TMR in all aspects. The concepts 

given by O’ Boyle to design the loop re-permutation have 

been applied in this report to design the data parallel 

algorithms for multi-dimensional array multiplication 

operation using the EKMR scheme [16]. This report focused 

on the application of the EKMR on the dense multi-

dimensional array, however we have discussed that EKMR 

is equally effective in case of sparse multi-dimensional 

arrays. 

With the help of the parallel algorithms for multi-

dimensional matrix multiplication operation using the 

Karnaugh map, it was proved that the cost of computing 

index of elements with EKMR scheme is less than that of 

TMR scheme and the number of lines cached which the 

dense array operations have accessed for EKMR scheme is 

less than that of TMR scheme. These were the flaws of the 

TMR scheme which previously caused the inefficient 

performance when the dimensions of the arrays exceeded 

the value of 2. Thanks to the EKMR scheme which 

optimized the performance even to the nth dimension of the 

tensors.     

VI. REFERENCES 

[1] A.J.C. Bik and H.A.G. Wijshoff, “Compilation 

Techniques for Sparse Matrix  Computations,” Proc. 

ACM Int.l Conf. Supercomputing, 1993, pp. 416-424. 

[2] A.J.C. Bik, P.M.W. Knijnenburg, and H.A.G. Wijshoff, 

“Reshaping Access Patterns for Generating Sparse 

Codes,” Proc. Int.l Workshop Languages and Compilers 

for Parallel Computing, 1994, pp. 406-420. 

[3] A.J.C. Bik and H.A.G Wijshoff, “Automatic Data 

Structure Selection and Transformation for Sparse 

Matrix Computations,” IEEE Transactions on Parallel 

and Distributed Systems, vol. 7, no. 2, Feb. 1996, pp. 

109-126. 

[4] G. Bandera, P.P. Trabado, and E.L. Zapata, “Local 

Enumeration Techniques for Sparse Algorithms,” Proc. 

IEEE Int.l Symp. Parallel Processing, 1998, pp.52-56. 

[5] B.B. Fraguela, R. Doallo, E.L. Zapata, “Modeling Set 

Associative Caches Behaviour for  Irregular 

Computations,” Proc. ACM Int.l Conf. Measurement 

and Modeling of Computer Systems, 1998, pp.192-201. 

[6] B.B. Fraguela, R. Doallo, E.L. Zapata, “Cache Misses 

Prediction for High Performance Sparse Algorithms,” 

Proc. Int.l Euro-Par Conf., 1998, pp.224-233. 

[7] B.B. Fraguela, R. Doallo, E.L. Zapata, “Cache 

Probabilistic Modeling for Basic Sparse Algebra 

Kernels Involving Matrices with a Non-Uniform 

Distribution,” Proc. IEEE Euromicro Conf., 1998, pp. 

345-348. 

[8] B.B. Fraguela, R. Doallo, E.L. Zapata, “Automatic 

Analytical Modeling for the Estimation of Cache 

Misses,” Proc. Int.l Conf. Parallel Architectures and 

Compilation Techniques, 1999, pp. 221-231. 

[9] B. Kumar, C.H. Huang, R.W. Johnson, and P. 

Sadayappan, “A Tensor Product Formulation of 

Strassen's Matrix Multiplication Algorithm with 

Memory Reduction,” Proc. Int.l Symp. Parallel 

Processing, 1993, pp. 582-588. 

[10] T.R. Chung, R.G. Chang, and J.K. Lee, “Sampling and 

Analytical Techniques for Data Distribution of Parallel 

Sparse Computation,” Pro. SIAM Conf. Parallel 

Processing for Scientific Computing, 1997. 

[11] S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M. 

Thottethodi, “Recursive Array Layouts and Fast Matrix 

Multiplication,” IEEE Transactions on Parallel and 



Satya Prakash  et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 282-287 

© 2010, IJARCS All Rights Reserved   287 

Distributed Systems, vol. 13, no. 11, Nov. 2002, 

pp.1105-1123. 

[12] G.H. Golub and C.F.V. Loan, Matrix Computations, 

2nd Edition, The John Hopkins University Press, 

Baltimore, Maryland 21218, 1989. 

[13] J.B. White and P. Sadayappan, “On Improving the 

Performance of Sparse Matrix-Vector Multiplication,” 

Proc. Int.l Conf. High-Performance Computing, 1997, 

pp. 711-725. 

[14] C.Y. Lin, J.S. Liu, and Y.C. Chung, “Efficient 

Representation Scheme for Multi-Dimensional Array 

Operations,” IEEE Transactions on Computers, vol. 51, 

no. 3, Mar. 2002, pp. 327-345.  

[15] C.Y. Lin, Y.C. Chung, and J.S. Liu, “Efficient Data 

Parallel Algorithms for Multi-Dimensional Array 

Operations Based on the EKMR Scheme for Distributed 

Memory Multicomputers,” Accepted by IEEE 

Transactions on Parallel and Distributed Systems, 2003. 

[16] M.F.P. O'Boyle and P.M.W. Knijnenburg, “Integrating 

Loop and Data Transformations for Global 

Optimization,” Proc. Int.l Conf. ParallelArchitectures 

and Compilation Techniques, 1998, pp. 12-19. 

 

 

 


