
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

�

© 2010, IJARCS All Rights Reserved 282

�����������	
��
�	�

 Efficient Algorithm for Multi-Dimensional Matrix Multiplication Operations Representation

Satya Prakash*

Birla Institute of Technology, Mesra Ranch (Ext. Centre

Noida)

E-mail: spsinghbit@yahoo.co.in

Anil K Ahlawat
Department of Computer Science& Engineering,

Ajay Kumar Garg Engineering College Ghaziabad

E-mail: a_anil2000@yahoo.co.in

Abstract: Multi-dimensional arrays are widely used in a lot of scientific studies but still some issues have been encountered regarding efficient

operations of these multi-dimensional arrays. In this paper, the extended Karnaugh Map representation (EKMR) scheme has been proposed as an

alternative to the traditional matrix representation (TMR) which caused the multi-dimensional array operation to be inefficient when extended to

dimensions higher than two. EKMR scheme has managed to successfully optimize the performance of the multi-dimensional array operations to

the nth dimension of the array. The basic concept EKMR is to transform the multi-dimensional array in to a set of two-dimensional arrays.

EKMR scheme implies Karnaugh Map which is a technique used to reduce a Boolean expression. It is commonly represented with the help of a

rectangular map which holds all the possible values of the Boolean expression. Then the efficient data parallel algorithms for multi-dimensional

matrix multiplication operation using EKMR are presented in this study which outperformed those data parallel algorithms for multi-

dimensional matrix multiplication operation which used the TMR scheme. The study encourages designing data parallel algorithms for multi-

dimensional dense and sparse multi-dimensional arrays for other operations as well using the EKMR scheme since this scheme produces the

efficient performance for all dimensions and for all operations of the arrays.

Keywords: Matrix multiplication Algorithm, EKMR, TMR.

I. INTRODUCTION

Multi-dimensional arrays which are also referred as

tensors or n-ways arrays are usefully applied to a wide range

of studies or methods such as climate modeling, finite

element analysis (FEA), molecular dynamic and many more

but still many issues have been encountered regarding

efficient operations of these multi-dimensional arrays. Most

of the proposed methods are successful in case of two-

dimensional arrays which do not show accurate results when

applied to the extended form of tensors. This occurred due

to the traditional matrix representation (TMR) which is an

array representation scheme that is commonly used to

represent the multi-dimensional dense or sparse array.

Dense and sparse are the two categories of the array form

which are provided through the various data parallel

programming languages [2] for instance, Vienna Fortran,

High Performance Fortran, etc. If all or most of the array

elements are non-zero values then it is called a dense array.

On the other hand, if most of the elements of the array are

zero then it is called a sparse array. When an operation is

applied on a dense array then it is executed on elements of

the dense array whereas in case of the sparse array, an

operation is exercised only on the non-zero elements in

order to optimize the performance [1]. Coming back to the

flaws of the TMR which is also known as canonical data

layouts, there are three reasons found for the failure of the

TMR scheme when applied on a dense array which has three

or more than three dimensions. First reason is the increase in

the cost of packing/unpacking of the elements of the dense

tensor in relation to its dimensions, second is the increase in

its cost of the index computations with the increase of its

dimensions. Third reason is the increase in the rate of

cache miss for an operation with the increase of the

dimensions of the dense tensor since more cache lines are

acquired [5] [6] [7]. Due to these three drawbacks, TMR

scheme has turned out to be a difficult and less tractable for

designing efficient data parallel algorithms for tensor

operations.

In case of designing the parallel programs for

operations on sparse tensors, the programming languages

usually use compressed row storage (CRS) and compressed

column storage (CCS) as the data compression scheme to

compress the sparse arrays with respect to the TMR scheme

due to which operation is only performed over non-zero

elements of the sparse arrays in order to improve

performance and reduce memory space. But still parallel

array operations with respect to CRS or CCS for higher

dimensional tensors have also failed to produce good

performance merely, because of the following two reasons.

First reason is that more of the single dimensional matrices

are required with the increase of dimensions of the tensors

in order to store the resultant extra indices of non-zero

elements which further increase the time and the required

storage space. The second reason is that with the increase in

the dimensions of the tensors, the cost of indirect data access

[4] and the cost of index comparisons increase for parallel

operations on sparse tensors.

Thus, this dissertation is aimed towards providing a

new, effective and efficient array representation scheme and

data compression scheme for dense and sparse tensors,

respectively. These new array representation scheme and

data compression scheme would then be used to design a

parallel algorithm for multi-dimensional matrix

multiplication operation. The new array representation

scheme provided in this dissertation is called the Extended

Karnaugh Map Representation (EKMR) which is based on

the concept of representing a multi-dimensional array as a

set of two-dimensional arrays [14]. This scheme is

appropriate for both dense and sparse tensors. Thus, it has

become easier to design an efficient parallel algorithm for

tensors of higher dimensions with the help of EKMR. The

Satya Prakash et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 282-287

© 2010, IJARCS All Rights Reserved 283

theoretical and experimental analysis proved that the EKMR

scheme is better than the TMR scheme.

II. EKMR SCHEME

“Chun-Yuan Lin” from Institute of Molecular and

Cellular Biology, National Tsing Hua University, Hsinchu,

300, Taiwan, “Yeh-Ching Chung” from Department of

Computer Science, National Tsing Hua University, Hsinchu,

Taiwan, 300 and “Jen-Shiuh” Liu from Department of

Information Engineering and Computer Science, Feng Chia

University, Taichung, Taiwan, 407 proposed the scheme of

Extended Karnaugh Map Representation which is primarily

based on the Karnaugh Map. The Karnaugh Map is a

technique used to reduce a Boolean expression. It is

commonly represented with the help of a rectangular map

which holds all the possible values of the Boolean

expression. The n variables are used to hold memory space

and 2n possible combinations are represented for an n-input

Karnaugh Map. If n is less than or equal to 4 then the

Karnaugh Map can be shown as a two-dimensional array

and thus, it can be easily represented on a plane. EKMR(1)

is a single input Karnaugh Map that is a simple one-

dimensional array or a vector. Similarly, EKMR(2),

EKMR(3) and EKMR(n) are two-dimensional, three-

dimensional and n-dimensional arrays, respectively where n

is the number of inputs. Thus, for n equals to 1 and 2,

EKMR(n) and TMR(n) exhibit the same array

representation. Therefore, we will take in to account

EKMR(n) where n is greater than 2.

Figure 2.1 (a) 3x4x5 array represented by TMR (b) 4x15

array represented by EKMR

Figure 2.1 represents the TMR(3) and EKMR(3) where (a) is a 3x4x5 array

represented by TMR(3) and (b) is a 4x15 array represented by EKMR(3).

Practically, a multi-dimensional array requires linear memory storage for

programming languages supporting multi-dimensional array. Programming

languages copy the array index space in to the linear memory address.

Thus, an array A[k][i][j] which is represented by TMR(3), has the memory

address LRM (k,i,j;3,4,5) (that is the row major data representing function)

and LCM (k,i,j;3,4,5) (that is the column major data representing function)

for the array element in the third dimension ‘k’, row dimension ‘i’ and

column dimension ‘j’ with respect to the starting memory address of a

3x4x5 size array.

A 3-input Karnaugh Map represents the TMR(3) array A[k][i][j] as a 2-

dimensional array with respect to EKMR(3). Figure 2.1(b) shows the

relative EKMR(3) representation of A[k][i][j]. Figure 2.1(b) is a 4x15 size

2-dimensional array. The EKMR(3) is also given by the row major data

representing function L’
RM(i’,j’;4,15) which is equivalent to i’x15+j’ or the

column major data representing function L’
CM(i’,j’;5,12) which is

equivalent to j’x5+i’.The placement of the elements of the array with

respect to the direction given by the index ‘k’ is the primary difference

between the two data representation schemes which are TMR(3) and

EKMR(3).

III. PARALLEL ALGORITHM FOR

MULTIDIMENSIONAL MATRIX

The design of a parallel algorithm usually has three

phases which are: data distribution, local computation and

result collection [9]. Further on, we will analyze the issues

encountered in these three phases which are concerned with

the design of the data parallel algorithms of the multi-

dimensional dense matrix operations with respect to the row

major data layout using Karnaugh Map that is EKMR

scheme. These data parallel algorithms are not regarded to

be based on the recursive data layout [10]. The reason

behind this consideration is the selection of the recursive

data layout with respect to the TMR scheme tensor

operation algorithm in order to optimize the performance

[11]. In our design example, we will only use multiplication

operation on the matrices although there are other array

operations as well. Our example is using the distribution of

one dense array since the distribution of more dense arrays

for an operation will design a very complicated parallel

algorithm.

A. The Data Distribution Phase

In this section, we will illustrate the row and the column

which are the distribution methods for dense arrays. A dense

global array is distributed to the processor in three steps. In

step number one, the global array is divided in to the local

dense arrays on the basis of the data partition method. In

step number two, the elements of the local dense array from

step number one, are collected in the form of a batch and

then distributed to the relevant processor in the step number

three. The cost of the row and the column data distribution

methods are the same for the first and the third steps [3] so

we will discuss the cost of packing in the second step in

order to analyze these data distribution methods. The

hypothesis is that A[k][i][j] is an n x n x n dense array and P

are the given processors.

a)The Row Data Distribution Method: According to the

definition of EKMR(3), A’ comprises of n rows and each

row has n2 elements. As per the row distribution method,

A’[i’][j’] is distributed to the processors by diving A’ in to

2-dimensional arrays P in the direction i’. The elements of

the same row are saved in the sequential memory addresses

in the EKMR(3), so it is not necessary to pack them before

distribution as shown in figure 3.1(b). Therefore, the row

size is same for TMR(3) and EKMR(3).

Figure 3.1: Row data distribution method for A and A’ to 4 processors

(a)TMR(3) (b) EKMR(3).

Figure 3.1 shows the row data distribution method

for A and A’ to 4 processors where (a) is based on TMR(3)

and (b) is based on EKMR(3).

Satya Prakash et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 282-287

© 2010, IJARCS All Rights Reserved 284

Figure 3.2 shows the row data distribution method for A’ to 4 processors

for EKMR(6).

The number of non-consecutive data blocks is zero

for a single processor as well as for multiple processors. For

the EKMR(4), elements of the partially dense arrays

allocated to each processor are saved to the sequential

memory addresses. So, they are packed before distribution

as shown in figure 3.2. Now A’ is the corresponding

EKMR(n) of the nn dense array. The data parallel algorithm

for the EKMR(n) with respect to the row data distribution

method of the data distribution phase is given below in

figure 3.3.

Figure 3.3

According to figure 3.2 and figure 3.3, P x nn-4 is

the number of non-consecutive data blocks on P processors.

Thus, the number of non-continuous data blocks in the

EKMR scheme for row data distribution method is less than

that of TMR scheme.

b) The Column Data Distribution Method

Figure 3.4 shows column data distribution method for A and A’ to n=4

processors where (a) represents TMR(3) and (b) represents EKMR(3).

Figure 3.5 shows the column data distribution method for A to 4

processors according EKMR(6)

Figure 3.6

Figure 3.6 shows the algorithm column data

distribution method for EKMR(n).

According to figure 3.4 and figure 3.6, P x nn-2 is

the number of non-consecutive data blocks on P processors.

Thus, the number of non-continuous data blocks in the

EKMR scheme for column data distribution method is less

than that of TMR scheme.

B. The Local Computation Phase

When single dense array is distributed to the processors

then the next phase is to perform local computation on these

distributed arrays. Assume A[mn-4] [mn-3]… [m1][l][k][i][j]

and B[mn-4] [mn-3]… [m1][l][k][i][j] are two dense arrays

with size nn for the TMR(n) then A’ and B’ are the relative

EKMR(n) of A(mn-4, mn-3,.. m1) and B(mn-4, mn-3,.. m1) ; C

for TMR(n) and C’ for EKMR(n) are the local dense arrays

in each processor. The parallel algorithm of the

computational phase for multidimensional matrix

multiplication operation for EKMR(n) with respect to the

row distribution method (this algorithm is also similar for

column data distribution method) is shown is figure 3.7.

Satya Prakash et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 282-287

© 2010, IJARCS All Rights Reserved 285

Figure 3.7

C. The Result Collection Phase

The results generated from the computation phase

which are dispersed among processors must be gathered to

produce the final result. Generally, the processor that is used

for distributing the data is also used for collecting the

results. Different ways are adopted by the host processor to

process the interim results for various dense array operations

by collecting the interim results to produce the final result.

For matrix multiplication operation (and for other such

operations), the host processor unpacks the partial or interim

results, which have been collected from each processor, in to

relevant memory addresses to get the final result. This phase

is similar to the data distribution. The result collection phase

may have different implementations for different dense

array operations. The data parallel algorithm for the result

collection phase for multi-dimensional matrix multiplication

operation for the EKMR(n) with the row distribution

method (the similar algorithm will be used for the column

data distribution method) is given below in figure 3.8.

Figure 3.8

IV. PERFORMANCE COMPARISON BETWEEN

TMR AND EKMR SCHEMES

Figure 4.1 shows the time of the data distribution phase of data parallel

algorithms with respect to the row data distribution method for TMR(4) and

EKMR(4) on 16 processors. It illustrates that EKMR scheme takes less

time than TMR scheme for data parallel algorithms in the distribution phase

of the row distribution method.

Figure 4.2 (a)Without Compiler Optimization (b)With Compiler

Optimization

The figure 4.2 shows the time taken for local

computation phase of data parallel algorithms with matrix

multiplication by TMR(3) and EKM(3) schemes for array

size 200 x 200 x 200 on 16 processors where (a) represents

without complier optimization option and (b) represents

with complier optimization option.

Satya Prakash et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 282-287

© 2010, IJARCS All Rights Reserved 286

Figure 4.3 shows time taken by the TMR(3) and EKMR(3) for the result

collection phase of data parallel algorithms of matrix multiplication of array

size 200 x 200 x 200 on 16 processors.

The above performance comparison graphs between

TMR and EKMR schemes are taken in the context of this

study that is data parallel algorithms for matrix

multiplication. The graphs portray that EKMR is a better

and efficient scheme than the TMR scheme in all phases due

to the lesser values obtained in the EKMR scheme for the

following: the number of non-continuous data blocks (with

various data distribution methods), the packing time, the

cost of the index computation of array elements, the number

of cached lines accessed for operations of dense arrays and

the unpacking time. This efficiency of EKMR in comparison

to TMR is also true for all operations, all array sizes

including both dense and sparse arrays [13] and all

algorithms.

V. CONCLUSION

In this paper, we first identified and then discussed the

issues faced in relation to the efficient operations of the

multi-dimensional arrays. It was found that the most of the

proposed methods do not perform well for extended form of

tensors although these methods show good performance

when applied to two-dimensional arrays. We discussed the

flaws of the traditional matrix representation (TMR) and

then proposed the Extended Karnaugh Map Representation

(EKMR) as a new scheme which ruled out the drawbacks of

the TMR scheme. EKMR is based on the Karnaugh Map.

The basic concept of the EKMR technique is to represent

the multi-dimensional array in to the form of a set of two-

dimensional arrays. Thus, the extended Karnaugh map

representation made it easier to design the efficient data

parallel algorithms for multi-dimensional arrays having

more than two dimensions. We analyzed the data parallel

algorithms for multi-dimensional matrix multiplication

using the Karnaugh map that is EKMR and concluded that

EKMR is better than TMR in all aspects. The concepts

given by O’ Boyle to design the loop re-permutation have

been applied in this report to design the data parallel

algorithms for multi-dimensional array multiplication

operation using the EKMR scheme [16]. This report focused

on the application of the EKMR on the dense multi-

dimensional array, however we have discussed that EKMR

is equally effective in case of sparse multi-dimensional

arrays.

With the help of the parallel algorithms for multi-

dimensional matrix multiplication operation using the

Karnaugh map, it was proved that the cost of computing

index of elements with EKMR scheme is less than that of

TMR scheme and the number of lines cached which the

dense array operations have accessed for EKMR scheme is

less than that of TMR scheme. These were the flaws of the

TMR scheme which previously caused the inefficient

performance when the dimensions of the arrays exceeded

the value of 2. Thanks to the EKMR scheme which

optimized the performance even to the nth dimension of the

tensors.

VI. REFERENCES

[1] A.J.C. Bik and H.A.G. Wijshoff, “Compilation

Techniques for Sparse Matrix Computations,” Proc.

ACM Int.l Conf. Supercomputing, 1993, pp. 416-424.

[2] A.J.C. Bik, P.M.W. Knijnenburg, and H.A.G. Wijshoff,

“Reshaping Access Patterns for Generating Sparse

Codes,” Proc. Int.l Workshop Languages and Compilers

for Parallel Computing, 1994, pp. 406-420.

[3] A.J.C. Bik and H.A.G Wijshoff, “Automatic Data

Structure Selection and Transformation for Sparse

Matrix Computations,” IEEE Transactions on Parallel

and Distributed Systems, vol. 7, no. 2, Feb. 1996, pp.

109-126.

[4] G. Bandera, P.P. Trabado, and E.L. Zapata, “Local

Enumeration Techniques for Sparse Algorithms,” Proc.

IEEE Int.l Symp. Parallel Processing, 1998, pp.52-56.

[5] B.B. Fraguela, R. Doallo, E.L. Zapata, “Modeling Set

Associative Caches Behaviour for Irregular

Computations,” Proc. ACM Int.l Conf. Measurement

and Modeling of Computer Systems, 1998, pp.192-201.

[6] B.B. Fraguela, R. Doallo, E.L. Zapata, “Cache Misses

Prediction for High Performance Sparse Algorithms,”

Proc. Int.l Euro-Par Conf., 1998, pp.224-233.

[7] B.B. Fraguela, R. Doallo, E.L. Zapata, “Cache

Probabilistic Modeling for Basic Sparse Algebra

Kernels Involving Matrices with a Non-Uniform

Distribution,” Proc. IEEE Euromicro Conf., 1998, pp.

345-348.

[8] B.B. Fraguela, R. Doallo, E.L. Zapata, “Automatic

Analytical Modeling for the Estimation of Cache

Misses,” Proc. Int.l Conf. Parallel Architectures and

Compilation Techniques, 1999, pp. 221-231.

[9] B. Kumar, C.H. Huang, R.W. Johnson, and P.

Sadayappan, “A Tensor Product Formulation of

Strassen's Matrix Multiplication Algorithm with

Memory Reduction,” Proc. Int.l Symp. Parallel

Processing, 1993, pp. 582-588.

[10] T.R. Chung, R.G. Chang, and J.K. Lee, “Sampling and

Analytical Techniques for Data Distribution of Parallel

Sparse Computation,” Pro. SIAM Conf. Parallel

Processing for Scientific Computing, 1997.

[11] S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M.

Thottethodi, “Recursive Array Layouts and Fast Matrix

Multiplication,” IEEE Transactions on Parallel and

Satya Prakash et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 282-287

© 2010, IJARCS All Rights Reserved 287

Distributed Systems, vol. 13, no. 11, Nov. 2002,

pp.1105-1123.

[12] G.H. Golub and C.F.V. Loan, Matrix Computations,

2nd Edition, The John Hopkins University Press,

Baltimore, Maryland 21218, 1989.

[13] J.B. White and P. Sadayappan, “On Improving the

Performance of Sparse Matrix-Vector Multiplication,”

Proc. Int.l Conf. High-Performance Computing, 1997,

pp. 711-725.

[14] C.Y. Lin, J.S. Liu, and Y.C. Chung, “Efficient

Representation Scheme for Multi-Dimensional Array

Operations,” IEEE Transactions on Computers, vol. 51,

no. 3, Mar. 2002, pp. 327-345.

[15] C.Y. Lin, Y.C. Chung, and J.S. Liu, “Efficient Data

Parallel Algorithms for Multi-Dimensional Array

Operations Based on the EKMR Scheme for Distributed

Memory Multicomputers,” Accepted by IEEE

Transactions on Parallel and Distributed Systems, 2003.

[16] M.F.P. O'Boyle and P.M.W. Knijnenburg, “Integrating

Loop and Data Transformations for Global

Optimization,” Proc. Int.l Conf. ParallelArchitectures

and Compilation Techniques, 1998, pp. 12-19.

