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Abstract: General Purpose Processor (GPP) provides high application flexibility but at a high cost in terms of more silicon area, high power 
consumption and low performance. In systems where high application flexibility is not required, it is possible to trade off flexibility for lower 
cost by tailoring the processor to the application to create an Application Specific Instruction set Processor (ASIP) with high performance yet 
low silicon cost. If we look at the rapid rate at which mobile technology is developing and the constant need for miniaturization, ASIPs seem to 
be poised in a stronger position compared to ASICs. SIM-A Simulator has been developed that generates the performance estimates for the 
application under consideration. Processor description is captured in the form of GUI, which allows the user to specify the architecture in visual 
form. The cycle accurate, structural simulator generated using SIM-A allows the user to collect statistics called cycle count. The SIM-A 
environment has been designed to allow modeling of diverse range of processors. This has been demonstrated to an extent through the modeling 
of RISC processor and VLIW Processor with traditional memory hierarchies. The technique has been validated against standard toolsets.  
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I. INTRODUCTION 

Modern electronics are controlled by processors that 
must meet strict constraints in terms of performance, cost, 
size and power consumption. In a competitive market place, 
performance and cost are critical in differentiating one 
product from another.  An ASIP is a processor that is 
designed to efficiently execute the software for a specific 
application. Although incorporating a complete system on a 
single IC may improve performance, cost, and power 
consumption requirements, such a high level of integration 
constraints the size of the system components.  

A. Steps In ASIP Synthesis: 
Various methodologies have been reported to meet these 

requirements. All these have been studied and five steps are 
suggested for synthesis of ASIPs [1] 

a) Application Analysis 
Application is normally written in High level language. 

Sometimes SUIF can be used as intermediate format. 
Analysis of the application is essential as it provides the 
essential requirement from the application that can guide for 
hardware synthesis as well as instruction set generation.  

b) Architecture Design Space Exploration 
Output of the Application analysis step along with the 

range of architecture for Possibility of suitable architecture 
is explored and the best architecture is selected that satisfy 
the different characteristics like minimum hardware cost, 
performance and power. 

c) Instruction Set Generation 
Till this step we have identified application requirements 

and the suitable architecture.  
d) Code Synthesis 

Till this step, architecture template, instruction set, and 
application are identified. This step generates the code. 
Generated code can be retargetable code generator or 
compiler generator. 

e) Hardware Synthesis 

 
 

In this step the hardware is generated using the ASIP 
architectural template and instruction set architecture using 
standard tools.  

B. Architecture Design Space Exploration: 
System on Chip designs has various goals and 

objectives. Design space consists of a set of parameters. 
Architecture under consideration requires a range of good 
parameter to explore. These parameters may take up the 
different values. Some of the parameter suggested can be 
functional unit of different type, Storage units, interconnect 
resources, number of memory units etc. Further the 
parameters can also be extended to size of instruction cache 
and size of data cache. This has been a very crucial step for 
ASIP design. Design Space exploration helps the SOC 
designers to make the trade-offs between these goals and 
arrive at the "optimal" design. Designers explore changes to 
the architecture or the instruction-set of the processor-
memory system. Designers select a suitable architecture that 
satisfy the performance and power constraint and having 
minimum hardware cost. Architecture is defined using some 
suitable architecture description language (ADL). 

C. Techniques   For Performnace Estimation: 
Two major techniques have been used for performance 

estimation. They are scheduler based and simulator based. 
In Scheduler based approach, application is scheduled to 
generate the output like cycle count. Architectural 
component is already identified at this stage. Target 
processor architecture can be given in the form of 
description file. In Simulator based approach, application 
under consideration runs on a simulator. Depending upon 
the architecture selected in above steps, application is 
simulated to compute the performance. 

Processor Models are extensively used in system design 
process. The system design process starts with an 
application and its implementation. Then the model is tested 
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for its performance and other aspects. In such a scenario an 
integrated environment is required for the designer where 
several tools exist like simulator, assembler, compiler etc. 
Rewriting the tools after each design change is a tedious job. 
Hence automatic generation of these tools is more desirable 
according to the design changes. 

D. Existing Retargetable Simulator  Approaches: 
Retargetable functional simulator (Fsimg) [2] focus on 

tools that deal with the machine language of processors, like 
assemblers, disassembler, instruction set simulator 
etc.Retargetable Function Simulator (Fsimg) was designed 
using Sim-nML language which is primarily an extension of 
the nML [3] language for processor modeling. Fsimg takes 
the specification of the processor in the intermediate 
representation [4] and an executable for the processor in 
ELF [5] format and generates a functional simulator (Fsim) 
which in turn gives the functional behaviour of the processor 
model for the given program 

II. RELATED WORK 

Over the past several decades a considerable amount of 
research has been performed in the area of computer 
architecture simulation. These simulators can be broadly 
divided into several categories: full-system simulators, 
Instruction Set Architecture (ISA), and retargetable 
Simulators. Each category serves an entirely different 
purpose, but all have been used for the advancement of 
computer architecture research. 

The purpose of full-system simulators is to model an 
entire computer system including the processor, memory 
system and any I/O. These simulators are capable of running 
real software completely unmodified just like a virtual 
machine. There are many simulation suites that take this 
approach, including PTLSim [6], M5 [7], Bochs [8], ASIM 
[9], GxEmul [10] and Simics [11]. Simics has several 
extensions that constitute their own full-system simulators 
such as VASA [12] and GEMS [13]. ISA simulators are less 
descriptive than full system simulators. Their objective is to 
model processor alone.ISA simulators performs the various 
functionalities.It simulate and debug machine instructions of 
a processor type that differs from the simulation host, it also 
emphasis on investigating how the various instructions (or a 
series of instruction) affect the simulated processor. Hence 
modeling of the full computer system is unnecessary and 
would impose additional delay and complexity. Example of 
this type of simulator includes SimpleScalar [14], WWT-II 
[15], and RSIM [16]. Over the past decade, a few interesting 
ADLs have been introduced together with their supporting 
software tools. These ADL include MIMOLA, UDL/I, nML, 
ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL, 
EXPRESSION and PRMDL.  

III. EXISTING RETARGETABLE SIMULATORS 

Anahita Processor Description Language (APDL), 
APDL [17] is one of the most recent contributions in the 
area of retargetable simulator. The language was introduced 
in 2007 by N. Honarmand et al. from the Shahid Beheshti 
University, IRAN. The Primary difference between APDL 
and other ADLs is the addition of Timed Register Transfer 
Level (T-RTL), which enables the simulation designer to 
define the latencies and hardware requirement of the 

processor operations. This separation of configuration data 
enables APDL to better integrate with external software for 
analysis as the T-RTL data is organized separately from the 
remainder of the processor description. Moreover, APDL 
can describe both instruction and structure descriptions of a 
target processor. 

The Pascal-like syntax of APDL is clearly more intuitive 
than many other ADLs such as LISA and EXPRESSION. 
While the language is easier to read and understand, the 
researchers have not yet implemented a compiler to produce 
simulations. Furthermore, despite APDL's relative ease, 
users are still faced with the task of learning the details of 
the syntax. 

ISDL [18] was introduced in 1997 by G.Hadjiyiannis, 
S.Hanono, and S. Devadas from Massachusetts Institute of 
Technology. The purpose of ISDL was to provide a 
language for describing instruction sets along with a limited 
amount of details of a processor structure for the automatic 
construction of compilers, assembler, and simulators. ISDL 
enables users to define their target processors in several 
ways. First, users can define operations, their format, and 
the associated assembly language instruction. Second users 
can define the storage resources available to the processor, 
including the register file and memory. Third users can 
define constraints in the processor such as instructions 
requesting the same data path, or restrictions regarding 
assembly syntax. 

ReXSim [19] was introduced in 2003 by a computer 
architecture research team at Irvine. ReXSim is an extension 
of EXPRESSION language which sought to improve 
simulation speed by integrating a novel method of decoding 
instructions of the simulated program before execution of 
the simulation. As a result, the instruction decoding process 
was removed from the execution loop of the simulator, and 
thus improved the simulation speed significantly. Using this 
method, the team was able to produce retargetable 
simulations that showed performance in excess of major 
simulators like SimpleScalar, which is widely considered to 
be a simulation performance benchmark. 

Reduced Colored Petri Net (RCPN) [20] was introduced 
in 2005 by M.Reshadi and N. Dutta from University of 
California, Irvine. RCPN takes a vastly different approach to 
retargetable simulation, in which pipelines are modeled 
using a simplified version of Colored Petri Nets (CPN). 
Petri Nets are graph based mathematical method of 
describing a process. The nodes of the graph represent 
particular discrete events, states, or functions, and the graph 
edges represent the transitions of data between nodes. The 
transitions can be enabled or disabled based on conditions 
specified at the nodes. 

The purpose of RCPN is to provide retargetable 
simulations for modeling of pipelined processors. RCPN 
reduces the functionality of a regular CPN by limiting the 
capabilities of the nodes in the graph for the purpose of 
increasing simulation speed and usability. Additionally, 
RCPN takes the advantage of some of the natural properties 
of CPNs to prevent structural and control hazards. 

Retargetable functional simulator (Fsimg) [21] focus on 
tools that deal with the machine language of processors, like 
assemblers, disassembler, instruction set simulator etc. The 
objective was to have a single processor model for all the 
tools. Hence Retargetable Function Simulator (Fsimg) was 
designed using Sim-nML language which is primarily an 
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extension of the nML language for processor modeling. 
Fsimg takes the specification of the processor in the 
intermediate representation and an executable for the 
processor in ELF. 

Format and generates a functional simulator (Fsim) 
which in turn gives the functional behaviour of the processor 
model for the given program. Around 237 instructions have 
been specified with the resource usage model and pipeline. 
Macro Preprocessor (nMP) for processing Sim-nML 
macros is implemented. It has some limitation. Fsimg is 
imposing a strong restriction on specification writing. 
Current bit-operator library supports only integer data types. 
The trace produced by Fsim is not compressed. It makes it 
difficult to handle and process trace files. It is very slow. 

The LISATek [22] processor design flow is based on 
LISA 2.0 processor models. Given a LISA model, the 
LISATek tool is able to generate instruction-set simulators 
for the processor under design. Typically, the debugger in 
form of a dynamic library directly uses the generated 
simulator. However, a compiled static simulator library is 
also generated, and specifications exist to integrate it into 
the system environment. The system environment would be 
the MPARM. All the core models generated by the 
LISATek suite, regardless of the nature of the ASIP at hand, 
have the same interface. The interaction is based upon four 
key pillars: 

a. The simulated core can be cycled by calling 
specific functions. If the processor is modelled in 
an instruction-accurate fashion, then the generated 
model can be stepped on an instruction basis. On 
the other hand, a model derived from a cycle-
accurate LISA description can be stepped on both 
instruction and cycle basis. 

b. Core-initiated communication (e.g. reads, writes) is 
performed through a specific Application 
Programming Interface (API). It is the task of the 
external program to provide an implementation of 
said API. 

c. System-initiated communication (e.g. interrupts), if 
any, can be forwarded to the core when cycling it, 
and therefore on a fine-grain cycle-by-cycle basis, 
by proper flipping of extra pins. Of course the 
LISA core model must be made aware of the 
meaning of these extra pins to take proper action. 

d. An external LISATek Debugger tool can be 
interfaced to the core via the IPC (Inter-Process 
Communication) mechanism. The external program 
must simply invoke the Debugger with proper 
references; subsequently, the LISATek model and 
the Debugger interact autonomously. 

The implementation of these function calls depends 
completely on the communication method used in the 
system. The implemented API will translate the requests 
into SystemC signals which can be understood by the 
MPARM [23] platform. The Assessment of the performance 
of alternative hardware communication is not addressed.  
Retargetability is poor. 

All of these simulators use techniques to speed up the 
execution of application programs. This is achieved by 
minimizing the amount of details about the processor, 
needed for program execution on the simulator. Even though 
some of these previous approaches target ADL-based 
automatic toolkit generation and DSE, not much work has 

been done in bringing together these elements in an early 
DSE environment. Furthermore, previous approaches are 
restricted to certain classes of processor families and assume 
a fixed memory/cache organization. For a wide variety of 
such processor and memory IP library, the designer needs to 
be able to specify and analyze the interaction between the 
processor instruction set and architecture, and the 
application and explore the different points in design space. 

This problem is addressed in SIMPRESS simulators. The 
EXPRESSION ADL captures both the instruction set and 
architecture information for a design draw from an IP 
library. The library contains a variety of parameterizable 
processor cores and customizable memory / cache 
organizations. Simpress produces a structural simulator 
capable of providing detailed structural feedback in terms of 
utilization, bottle-necks in the processor architecture. The 
processor-system description is input using a graphical 
schematic capture tool, called V-SAT, that outputs an 
Expression Description which is fed into the toolkit 
generators to produce DSE tools. The SIMPRESS generated 
simulator provides feedback information which is back-
annotated to the same V-SAT graphical description.  

Though SIMPRESS Simulators addresses many issues, it 
has certain limitation. The application having function calls 
are not supported. Compilation steps exist in three passes: 
PcProGUI, Expression console, acesMIPS console. 
Basically it is very complex to understand the process of 
compilation and simulator. The Application needs .proc and 
.def file. The .c program generates these files.  There is no 
clear cut method as how .c is converted to .proc and .def, 
especially in case of windows environment. This is strong 
limitation as we can not simulate our own program written 
in .c. this has to be first converting to .procs and .defs and 
for that we need to depend on their servers to provide for the 
same, which is not functional right now. 

In order to overcome all these complexities, we suggest a 
simple and elegant solution. Just there is a need to provide 
the standard application program in the form of scheduled 
and optimized code along with the processor description to 
our Simulator and you will get the cycle count as an output 
of the simulation. 

IV. OVERALL APPROACH 

Application or a set of application in the form of High 
Level Language is taken as input and it given as input to 
retargetable compiler. Architecture description is also given 
input to retargetable compiler. Retargetable compiler 
generates the schedule and optimized code.  This code is 
given as input to Simulator SIM-A. None of the existing 
simulator provides and easy GUI to enter the processor 
components and simulate the code for target host as shown 
in Figure 1. 

 
Figure. 1. Simulator based code generation 
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We are assuming the scheduled and optimize code to be 
generated from retargetable compiler and this code along 
with the Processor description or Architecture description is 
given as input to the Simulator. The Simulator generates the 
data in the form of cycle count. 

V. METHODOLOGY 

Our architecture model consists of a number of 
architecture simulation components that simulate the three 
main parts of the system - Processing elements, memory and 
interconnection medium. Figure 2 shows the overall 
methodology adopted for SIM-A. 

 

 
Figure. 2. Overall methodology 

A. Processor Model: 
This method assumes that each instruction completes in 

a fixed number of cycle. In architecture terms, we can say 
that our processor has fast private memory where code and 
local data can be stored. Hence each processing element is 
equipped with large instruction and local data cache that 
guarantee a very high hit ratio. Architectural Parameters of 
the processor component are: 

a. Local instruction costs in cycle. 
b. Number of available interrupts types. 
c. Context switch latency (cycles to save and restore 

processor state). 
d. Interrupt Latency (Cycles needed to save state and 

branch to interrupt handler). 

B. Memory Model: 
We are considering two-level memory. The levels are 

main memory and cache(s). We are assuming Shared 
memory as Main Memory, though we are considering 
logical partitions with in that memory. Such partitions may 
be code segment, data segment etc. Cache memory is 
assumed to be local to each processing element. However 
any change in this model can be easily incorporated in our 
model as it can be specified in input description and that is 
taken care by our simulator. Architectural parameters of the 
memory components are: 

a. Number of memory modules. 
b. Memory module size. 
c. Cache line size. 
d. Cache set size. 
e. Number of sets per cache. 
f. Cache access latency. 
g. Memory module access latency. 

C. Interconnection Model: 

In a real-time system architecture, the notion of a bus 
component play an important role as it forms the backbone 
of communication among all the devices of the system. For 
this purpose, we need a precise specification of buses for 
applications that will run on top of them. 

Our simulator supports the interconnection of bus. All 
processing elements and all memory modules are connected 
through a common bus. Uniform shared memory access is 
assumed, that is, access of any memory module from any 
processor takes the same amount of time (ignoring delays 
due to bus contention). The simplest interconnection 
strategy is to use a single bus which is being shared by every 
other component for communication. Though this strategy is 
easy to implement, as the number of processor go up, the 
bus becomes the bottleneck. All the components connected 
to this bus should tune their interfaces to use the bus 
protocol. Apart from this, designers have to implement some 
arbitration mechanism to resolve the conflicts. 

VI. DEVELOPMENT OF RETARGETABLE 
SIMULATOR 

Electronic devices built nowadays are often built with a 
single IC composed of multitude of hardware blocks that 
implement the device functionality. In most cases such 
circuit contains one or more processors that enable to 
implement a part of the circuit functionality as software that 
runs on that processor rather than as a specific hardware 
component. Such IC is commonly referred to as a system-
on-a-chip (SoC).  

The main CPU features are: 
a. 101 instructions with possible addressing modes  
b. CPU with independent stack pointer registers  
c. Eight 32-bit data, eight 32-bit address and 32-bit 

status registers  
d. 16-bit external memory interface  

Main assumptions for the ISS were: 
a. Developed in pure Visual basic 6.0 language for 

high performance. 
b. Crystal Report is used as a reporting tool to display 

the different status. 
c. MS Access is used to Store the different schedules 

and optimized code. 
d. Single-instruction accuracy, without taking internal 

architecture under consideration. 
e. Fully static design with the support of loop / wait 

statements. 
f. Usage of native VB types to gain high simulation 

speed. 
g. Communication interfaces separated from 

functionality. 
The main part which contains implementation of main 

processor's logic (ALU, instruction fetch, decoding and 
execution routines) together with fields corresponding to the 
internal resources (all registers). Sub-module features: 

a. Fetching and decoding instructions  
b. Instruction processing routines  
c. Handling interrupts and exceptions  
d. Register implementation and registers read/write 

access  
e. Instruction counter  

Simulators are critical components of the exploration 
toolkit for the system designer. Simulators can be used to 
perform a variety of tasks such as verifying the functionality 
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and / or timing behavior of the system, and generates 
quantitative measurement, for e.g. Cycle count etc. As per 
our design Methodology and hypothetical assumption of the 
Architecture we have taken MIPS Architecture as a base to 
develop our Retargetable simulator. We have given a 
Nomenclature to our Simulator as SIM-A {Simulators for 
Architectures}. We will be using Expression Language for 
Architecture Description. We have developed the GUI 
Interface for the same. We have also provided the GUI for 
easy evaluation and analysis. 

A. SIM-A- Basics: 
SIM-A  is  a  32-bit  datapath,  every  instruction  is  32  

bits  wide,  and  data  comes  in  “words” which  are  also  
32  bits  wide.  Memory in SIM-A, however, is addressed in 
bytes. SIM-A is load-store architecture that is, the only 
instructions that access memory are LW and SW.  

B. Memory Organization: 
We are considering Two-level memory. The levels are 

main memory and cache(s). We are assuming main memory 
as Shared Memory. Cache memory is assumed to be local to 
each processing element. We are also considering logical 
partitions with in that memory. Such Partition may be code 
segment, extra segment etc. Data begins at virtual address 
0x10000000 and grows in the direction of increasing virtual 
addresses (this data is called dynamic data because the 
machine doesn’t know how much of it will be used at 
runtime).  In SIM-A, there is also a concept of  stack – that 
is, data that starts just below virtual address 0x80000000 
and grows in the direction of increasing virtual addresses.   

C. SIM-A Register Set: 
Registers are a small set of fast memory that the datapath 

has available at its disposal for most immediate operations.   
All registers are 32-bit wide.   SIM-A contains thirty two 
user registers (that is, registers that the user can access/use 
in the assembly program) and four special-purpose registers 
that are hidden from the user. 

D. SIM-A Instruction Set: 
This section describes in detail all the SIM-A 

instructions.   Rs and Rt are source registers – the datapath 
should fetch their values whenever they are used.  Source 
registers are usually treated as twos-complement signed 32-
bit numbers.  In some special cases they are treated as 
unsigned numbers (the note that follows explains such 
circumstances). Rd is the destination register – the datapath 
will write the result to that register number. 

Immediate values may either be treated as signed or 
unsigned values, and may either be zero-extended (in which 
case the padding bits are all  zero),  or  sign  extended  (in  
which  case  the  padding  bits  are  all  equal  to  the  most 
significant  bit  of  the  immediate  value).  SOC designs 
have various design goals. These goals include minimal 
cost, maximal performance, low power, high reliability, etc. 
Design Space Exploration allows the SOC designer to make 
trade-offs between these goals and arrive at an “optimal” 
design. SOC designer would like to explore changes to the 
architecture or the instruction-set of the processor-memory 
system. Common examples of such changes include, but not 
limited to: 

a. Changing the pipeline structure. e.g., increasing (or 
decreasing) the number of stages to increase ( or 

decrease) the clock frequency, adding forwarding 
paths to reduce pipeline stalls. 

b. Changing the data path structure. e.g., changing 
slow units to fast units in order to increase 
performance, changing connectivity between units 
and storage elements (like register files) in order to 
decrease power consumption. 

c. Increasing parallelism. e.g Adding more functional 
units that can execute in parallel in order to 
increase performance. 

d. Changing the instruction-set. e.g Adding new 
operations which can be exploited by particular 
applications.  

e. Changing the memory component. e.g Changing 
the size of register file, changing the associativity 
of the cache, etc. 

f. Changing the memory hierarchy. e.g Adding a 
cache between the processor and off-chip memory, 
changing the on-chip memory hierarchy etc.  

E. SIM-A Look and Feel: 

 
Figure. 3. GUI for SIM-A simulator 

This is the first and main form which helps us to 
calculate the cycle count of any program as shown in 
Figure3. First section allows us to select the different 
programs that we are required to simulate.  This is the 
interface through which user will enter the processor 
description and will mimic the behaviour of the processor. If 
you click on the option “Select Program to Run” , it contains 
all the list of programs. Just select the program that we need 
to simulate and Click the button “Run Simulator and 
Provide Result ….” Others buttons are not used right now. 
Second Section provides the output of the program. It 
contains information like total Arithmetic instruction, Shift 
rotate, Logical, Jump Branch etc. It also gives the pop up 
when the program finishes by providing the cycle count. 
User will first enter the processor description details as 
shown in Figure 4. Submit the form to update the processor 
description file. Then it browses to the GUI form where he 
can select the programs that he/She needs to simulate. 
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Figure. 4. GUI for Processor Description 

The above is the brief description of the SIM-A 
Simulator that has been developed in our Embedded System 
Lab. 

VII. DESIGN SPACE EXPLORATION AND 
VALIDATION OF SIM-A 

Table 1 lists the benchmark programs used to validate 
the SIM-A simulator. We have validated our developed 
simulator SIM-A against a number of standard toolsets. This 
validation also proves easy retagetability and large design 
space exploration capabilities of SIM-A. 

Table 1 List Of Benchmark Programs 

No Name Description 

1 SIM-A-BENCH#1(SIM1) 
Excerpt from a 
 hydrodynamic code 

2 SIM-A-BENCH#2(SIM2) 

Standard Inner product 
function 
 of Linear Algebra 

3 SIM-A-BENCH#3(SIM3) 
Excerpt from a Tridiagonal 
Elimination routine 

4 SIM-A-BENCH#4(SIM4) First Sum 

5 SIM-A-BENCH#5(SIM5) First Difference 

A. Validation with SIMPRESS: 
The Framework is based on MIPS 4K like processor 

architecture. The architecture contains five pipeline stages – 
fetch, decode, operand read, execute and writeback. There 
are five parallel issue paths corresponding to two ALU 
Units, one for floating point unit, a branch unit and a 
Load/store unit. The memory hierarchy consists of two L1 
data caches for instructions and data, a unified L2 cache and 
a DRAM main memory. There is a 32-bit wide general 
purpose register file and a 32-bit wide floating point register 
file, each containing 32 registers. After running the 
benchmark program on the SIMPRESS as well as SIM-A 
Simulator, following results are obtained. Figure 5 show the 
graphical analysis of the SIM-A and SIMPRESS Simulator. 

At 1% level of significance, the critical value of ‘t’ for (5+5-
2) 8 degree of freedom is 3.36 and calculated value is 
0.368329.  Since the calculated value of ‘t’ is 0.368329 
which is less than the critical value, which is 3.36, it falls in 
the acceptance region. Hence it may be concluded that both 
the results are equally acceptable at 1% level of 
Significance.  

 

 
Figure. 5. Comparative analysis of SIM-A and SIMPRESS Simulator of 

Cycle Count 

B. Validation With Arm Based Keil Software: 

a) Keil Software and Customizations: 
Keil Software development tools for the ARM 

microcontroller family support every level of developer 
from the professional applications engineer to the student 
just learning embedded software development. µVision3 
ensures easy and consistent Project Management.  A single 
project file stores source file names and saves configuration 
information for Compiler, Assembler, Linker Debugger, 
Flash Loader, and other utilities. The Project menu provides 
access to project files and dialogs for project management. 
When microvision 3 Project started target device needs to be 
selected from the device database. It displays only those 
option that are relevant to the selected device. 

The Instructions about how to write Keil ARM can be 
listed as follows. 

a. Open Keil uVision Program which is Text Editor 
of Keil, that ARM uses for writing C Language 
Source Code Program. 

b. Set default value to translate uVision3 Code to use 
with Keil uVision3 Program and Keil ARM. Click 
Project Components, Environment, Books… then 
select default value to use Complier titled Select 
ARM Development Tools. 

c. Open the project and in turn open the .c program 
and start debugging session. Left hand pane shows 
the details of the Register details and the states as 
shown in the Figure 6. 

All instructions are 32 bits long. Most instructions 
execute in a single cycle. Every instruction can be 
conditionally executed. Data processing instructions act only 
on registers. Three operand format Combined ALU and 
shifter for high speed bit manipulation Specific memory 
access instructions with powerful auto-indexing addressing 
modes. 
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Figure. 6. Editor showing the Register Status and Timing information 

ARM has 37 registers in total, all of which are 32-bits 
long. 

a. 1 dedicated program counter 
b. 1 dedicated current program status register 
c. 5 dedicated saved program status registers 
d. 30 general purpose registers 

However these are arranged into several banks, with the 
accessible bank being governed by the processor mode. 
Each mode can access as follows.  

a. a particular set of r0-r12 registers 
b. a particular r13 (the stack pointer) and r14 (link 

register) 
c. r15 (the program counter) 
d. cpsr (the current program status register) and 

privileged modes can also access 
e. a particular spsr (saved program status register) 

b) Performance Estimates and Validation: 

 
Figure. 7. GUI for ARM-BASED SIM-A 

Benchmark programs are selected and run on SIM-A 
Simulator through a GUI as shown in Figure 7. Once a 
suitable input program is selected and simulator is run it 
provides useful outputs including total cycle count. We are 
able to validate SIM-A Simulator against ARM Based Keil 
simulator. Figure 8 shows the comparative analysis of SIM-
A with ARM based Keil software.  

 
Figure. 8. Comparative analysis of SIM-A and arm based KEIL software 

for cycle count 

C. Validation With SIMPLESCALAR: 

a) Simplescalar Basics:  
SimpleScalar is an open source computer architecture 

simulator developed by Todd Austin.It is a simulator, which 
in simple words means that it can be used to show that 
Machine A is better than Machine B without building either 
Machine A or Machine B. It is written using ‘C’ 
programming language. SimpleScalar is a set of tools that 
model a virtual computer system with CPU, Cache and 
Memory Hierarchy. Using the SimpleScalar tools, users can 
build modeling applications that simulate real programs 
running on a range of modern processors and systems. The 
tool set includes sample simulators ranging from a fast 
functional simulator to a detailed, dynamically scheduled 
processor model that supports non-blocking caches, 
speculative execution, and state-of-the-art branch prediction. 
In addition to simulators, the SimpleScalar tool set includes 
performance visualization tools, statistical analysis 
resources, and debug and verification infrastructure. The 
SimpleScalar tools are used widely for research and 
instruction. The simulators available are sim-fast, sim-safe, 
sim-profile, sim-cache, sim-bpred, and sim-outorder, 

b) Installation and Customization For Simplescalar: 
The following text describes the procedure of installing 

the simulator Simplescalar on a modern  Linux distribution. 
The procedure has been tested on Ubuntu Linux 8.04 but 
should work on most Linux distributions. If you use Ubuntu 
and 8.10 (Intrepid Ibex) or later. Download the necessary 
source code files. 

i. simpletools-2v0.tgz 
ii. simplesim-3v0d-with-cheetah.tar.gz 

iii. simpleutils-990811.tar.gz 
iv. gcc-2.7.2.3.ss.tar.gz 

Setup some environment variables (assuming your home 
directory is /home/oracle and that you are using a bash-
compatible shell1): 
$ export IDIR=/home/oracle/simplescalar 
$ export HOST=i686-pc-linux 
$ export TARGET=sslittle-na-sstrix 

Create the directory “simplescalar” under your home 
directory, and copy all the four tarballs into it:  
$ mkdir $IDIR 
$ mv simplesim-3v0d-with-cheetah.tgz $IDIR 
$ mv simpletools-2v0.tgz $IDIR 
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$ mv simpleutils-990811.tar.gz $IDIR 
$ mv gcc-2.7.2.3.ss.tar.gz $IDIR 
Update Ubuntu (or whatever distribution you are using) with 
the following packages:   
(i) build-essential, (ii) flex, and (iii) bison  
Just un-pack the package file, and remove the old gcc folder 
$ cd $IDIR 
$ tar xvfz simpletools-2v0.tgz 
$ rm -rf gcc-2.6.3 

a. Installing Simpleutils 
Un-pack the package file as follows:  
$ cd $IDIR 
$ tar xvfz simpleutils-990811.tar.gz 
$ cd simpleutils-990811 

b. Building Simulators  
Un-pack the simulator package as follows : 
$ cd $IDIR 
$ tar xvfz simplesim-3v0d-with-cheetah.tar.gz 
$ cd simplesim-3.0 
$ make config-pisa 
$ make 
You may test the installation of simplesim by:  
$ ./sim-safe tests/bin.little/test-math 
Un-pack the source code and configure the installation as 
follows : 
$ cd $IDIR 
$ tar xvfz gcc-2.7.2.3.ss.tar.gz 
$ cd gcc-2.7.2.3 
$ ./configure –-host=$HOST –-target=$TARGET –-with-
gnu-as  
Next build the compiler:  
$ make LANGUAGES=c CFLAGS=-O CC=”gcc -m32” 
$ make enquire 
$ ../simplesim-3.0/sim-safe ./enquire -f > float.h-cross 
$ make LANGUAGES=c CFLAGS=-O CC=”gcc -m32” 
install 

In a separate directory, create a new file, bench.c, that 
has the code with empty body main function. Compile it 
using the following command:  
$IDIR/bin/sslittle-na-sstrix-gcc –o bench bench.c 
That should generate a file bench, which we will run over 
the simulator:  
$IDIR/simplesim-3.0/sim-safe bench 
In the output, you should be able to find the following as 
shown in Figure 9. 
 

 
Figure. 9. Output of sample programs 

c) Performance Estimates and Validation Of 
Simulator: 

The Framework is based on MIPS 4K like processor 
architecture. The architecture contains five pipeline stages – 
fetch, decode, operand read, execute and writeback. There 
are five parallel issue paths corresponding to two ALU 
Units, one for floating point unit, a branch unit and a 
Load/store unit. The memory hierarchy consists of two L1 
data caches for instructions and data, a unified L2 cache and 
a DRAM main memory. There is a 32-bit wide general 
purpose register file and a 32-bit wide floating point register 
file, each containing 32 registers. After running this 
benchmark program on the SIM-A as well as SimpleScalar 
Simulator, following results were obtained. Figure 10 shows 
the graphical analysis of the SIM-A and SimpleScalar 
Simulator. 
 

 
Figure. 10. Comparative analysis of SIM-A against SIMPLESCALAR 

simulator for cycle count 

D. Validation With OVPSim: 

a) OVPSim Basics: 
It is simulator to develop software on: Fast Simulation, 

Free open source models, easy to use. Imperas developed 
some virtual platform and modeling technology to enable 
simulating embedded systems running real application code. 
These simulations run at speeds of 100s and 100s of MIPS 
on typical desktop PCs and are completely Instruction 
Accurate and model the whole system. OVP has three main 
components - the OVP APIs that enable a C model to be 
written, a collection of free open source processor and 
peripheral models, and OVPSim a fast, easy to download 
and use simulator that executes these models.OVP put 
together a simulation model of a platform, compile it to an 
executable, and connect it to your debugger to provide a 
very efficient fast embedded software development 
environment. The focus of OVP is to accelerate the adoption 
of the new way to develop embedded software - especially 
for SoC and MPSoC platforms. 

If any software is developed to run in an embedded 
system we would normally be using an Instruction Set 
Simulator (ISS). As there are multiple processors or cores in 
design we need more than just a single ISS. What is needed 
is a model of your platform that includes models of all the 
processors or cores and models of the peripherals and 
behavioral components that the software communicates with. 
This is a Virtual Platform, or more simply just a simulation 
model of your design. OVP provides the different libraries 
of processor and behavioral models, and APIs for building 
you own processors, peripherals and platforms. This is just 
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what is needed to use existing models or build your own, 
and OVP is easy to use, open, flexible, and importantly, free 
for non-commercial use. 

b) Installation and Customisation for OVPSim: 
The Imperas professional tools and the OVP simulator is 

installed on Windows Platform. The Imperas tools are 
superset of the OVP tools. Either delete the OVP installation 
before installing or install to a different directory. The 
Windows versions are provided as installers as an 
executable, either  
imperas.<version number>.<dot release>.exe or  
OVPsim.<version number>.<dot release>.exe or 
OVPsim.Windows.exe (for current version from 
(www.OVPworld.org). 
The following environment variables are automatically set 
by the installer:  
IMPERAS_HOME Points to the root of the installation  
IMPERAS_VLNV Points to the compiled library  
IMPERAS_ARCH Set to the Host architecture ie Windows  
IMPERAS_RUNTIME Specifies which simulator, Imperas 
(CpuManager) or OVPsim, to load at runtime  
PATH modified to include 
IMPERAS_HOME/bin/IMPERAS_ARCH 

The development of platforms, processor and peripheral 
models on the Windows operating system has been 
validated in an environment using MSYS and MINGW. A 
default build environment is provided with both the Imperas 
tools and OVPsim installations that will allow models and 
platforms to be built in this environment. 

We need the installation files of either OVPSim or from 
Imperas tools and atleast one compiler toolchain. In order to 
cross compile applications under windows the installation of 
MSYS/MinGW is done. In our Demo we use the openCores 
openRISC MIPS32 as the target embedded processor. The 
OVP and Imperas tools are licensed using FLEXlm. Tool 
execution need a license file. A license file bounds to 
individual computer through computer's host ID. OVPsim 
looks for its license file in $IMPERAS_HOME/OVPsim.lic 

 

 
Figure. 11. Essential file needed to run the application 

Imperas provides pre-built toolchains for processors by 
OVP. The Processors include MIPS32, OR1K and ARM. 
The Makefile is available to provide a default build 
environment for an application onto a processor. The 
Makefiles is in the format  
<Processor Type>.Makefile.include. 

We need to perform some customization to work on 
MIPS32 processors. We are required to create a folder that 

contains the entire required file required for execution 
process.  
(a)  Copy the different files to a suitable folder as shown in 
Figure 11. Each file is needed as each file has its own 
significance. 
(b) Change the Makefile to point to MIPS32 processor. 
i.e Change the line  
 CROSS?=MIPS 
(c) Create the application.c file and copy the program in 
application.c. View the application program. 
(d) Compile the program, check for any error and remove it. 
(e) Run the program. 
(f)  The program will generate the different statistics as 
shown in Figure 12. Validation results are presented 
graphically in Fifure 13. Results show that estimates 
produced by our simulator and OVPSim simulator are fairly 
consistent. 
 

 
Figure. 12. Statistics generated by simulator 

 
Figure. 13. Comparative analysis of SIM-A and OVP simulator for cycle 

count 

E. Validation with VEX Simulator: 

a) VEX Basics: 
VEX ("VLIW Example") is a compilation-simulation 

system that targets a wide class of VLIW processor 
architectures, and enables compiling, simulating, analysing 
and evaluating C programs for them 
VEX includes three basic components: 
i. The VEX Instruction Set Architecture. VEX defines a 

32-bit clustered VLIW ISA that is scalable and 
customizable. Scalability includes the ability to change 
the number of clusters, execution units, registers and 
latencies; customizability enables users to define 
special-purpose instructions in a structured way.  

http://www.ovpworld.org/�
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ii. The VEX C Compiler. The VEX C compiler is a 
derivation of the Lx/ST200 C compiler, itself a 
descendant of the Multiflow C compiler. It exposes 
some of the 
parameters to allow architecture exploration by 
changing the number of clusters, execution units, issue 
width and operation latencies, without having to 
recompile the compiler. 

iii. The VEX Simulation System. The VEX simulator is an 
architecture-level (functional) simulator that uses 
compiled simulator technology. 

The VEX simulator used a so-called compiled simulation 
technique. The compiled simulator (CS) translates the VEX 
binary to the binary of the host computer, by first converting 
VEX to C, and then invoking the host C compiler to produce 
a host executable. 

In addition to the standard semantics of the instructions, 
CS also emits instrumentation code to count cycles (and 
other interesting statistics), as well as code to dump the 
results to a log file at the end of the simulation. Timing 
instrumentation is turned on with the "-mas_t" flag passed to 
the compiler driver (or "-mas_ti" and "-mas_td" for finer 
grain control - see the section on compiler flags). 

CS operates on each of the individual VEX assembler 
(.s) files corresponding to the compilation units of a 
program and translates them back to C by implementing the 
VEX operation semantics, the calling convention (ABI), and 
introducing the appropriate instrumentation code. The CS-
generated C files are then compiled with the host platform C 
compiler (e.g., gcc for Linux) and linked with the support 
libraries that deal with the instrumentation. During linking, 
the CS ld wrapper ensures that the right libraries are linked 
in the right order, and performs the necessary "magic" (such 
as wrapping system functions so that they don't cause 
problems) for the binary to execute correctly.By default, 
VEX links in a simple cache simulation library, which 
models an L1 instruction and data cache. The cache sim-
ulator is really a trace simulator, which is embedded in the 
same binary for performance reasons, but only 
communicates with the VEX execution engines through 
simple events that identify memory locations, access types 
and simulation time. 

b) Installation and Customisation for VEX: 
A sample compilation and Simulation steps can be listed 

as follows 
i. Compile the VEX with the _asm() calls: 

a. <vex>/bin/cc c average. 
ii. 2. Compile (natively) the asm library 

b. gcc c asmlib.c 
iii. 3. Link (with the VEX compiler) the 2 parts together 

c. <vex>/bin/cc o average average.o asmlib.o 
iv. 4. Run the average binary 

The first example is a simple "compile-and-run" 
sequence of a program composed of two compilation units  
file1.o and file2.o. Figure 14 shows a command regarding 
compilation of the program. 

 

 
Figure. 14 Commands to complie and generate .s file Compile individual 

modules 
 /home/vex/bin/cc -ms -O4 c file1.c 
 /home/vex/bin/cc -ms -O4 c file2.c 

Link (with math library) 
 /home/bin/cc o test file1.o file2.o -lm 
Run the program 
 ./test 

The assembler files are useful to check the static 
behavior of the compiler, and can be analyzed with the pcntl 
utility which collects static compile information from a 
VEX assembler file.  This is shown in Figure 15. For 
example, if we invoke the following command the output 
produced is shown in Figure 16. 

 

 
Fig. 15. Commands to analyze the file 

Analyze file1.s 
 /home/vex/bin/pcntl file1.s 

 

 
Figure. 16. Output of sample programs 
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c) Performance Estimation and Validation: 
The Framework is based on VLIW based processor 

architecture. A VEX architecture issues multiple operations 
in an instruction in a single cycle, and these operations are 
executed as a single atomic action (this is sometimes called 
VLIW mode). Instructions are executed strictly in program 
order, but within an instruction, all operands are read before 
any results are written. For example, it is possible to swap 
the value of a pair of registers in a single instruction. 
Instructions cannot contain sequential constraints among 
their operations. An exception caused by an instruction may 
not affect the execution of any instruction that was issued 
earlier and must prevent the instruction generating the 
exception from modifying the programmer visible state.  

The execution behavior is that of an in-order machine: 
each instruction executes to completion before the start of 
the next one. In other words, all syllables of an instruction 
start together and commit their results together. Committing 
results includes modifying register state, updating memory, 
and generating exceptions. Table 1 lists all the benchmarks 
programs that have been used to validate the simulators.  

After running this benchmark program on the SIM-A as 
well as VLIW based Vex Simulator, following results were 
obtained. Figure 17 show the graphical analysis of the SIM-
A and SimpleScalar Simulator. 
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Fig. 17. Comparative analysis of sim-a against vex for cycle count 

VIII. CONCLUSION 

System-on-a-Chip (SOC) technology enables the system 
designer to develop highly customized embedded systems 
that can meet demanding performance, power, cost and size 
constraints. However there is urgent need for an 
environment that will allow the system designer to rapidly 
specify and evaluate design alternatives. 

In this paper we presented a SIM-A Simulator entirely 
developed at our Lab that generates the performance 
estimates for the application under consideration. Processor 
description is captured in the form of GUI, which allows the 
user to specify the architecture in visual form. The cycle 
accurate, structural simulator generated using SIM-A allows 
the user to collect statistics called cycle count. It definitely 
helps the designer to analyze the design and modify the 
critical portions.  
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