
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 11

ISSN No. 0976-5697

An Efficient Retargetable Simulator SIM-A for ASIP DSE and Validation with RISC
and VLIW based Processors

Dr. Manoj Kumar Jain*

1Associate Professor in Computer Science,
Mohanlal Sukhadia University,

Udaipur, India
manoj@cse.iitd.ernet.in

Gajendra Kumar Ranka

Software Engineer,
Fujitsu, Pune

gajendra_ranka@hotmail.com

Abstract: General Purpose Processor (GPP) provides high application flexibility but at a high cost in terms of more silicon area, high power
consumption and low performance. In systems where high application flexibility is not required, it is possible to trade off flexibility for lower
cost by tailoring the processor to the application to create an Application Specific Instruction set Processor (ASIP) with high performance yet
low silicon cost. If we look at the rapid rate at which mobile technology is developing and the constant need for miniaturization, ASIPs seem to
be poised in a stronger position compared to ASICs. SIM-A Simulator has been developed that generates the performance estimates for the
application under consideration. Processor description is captured in the form of GUI, which allows the user to specify the architecture in visual
form. The cycle accurate, structural simulator generated using SIM-A allows the user to collect statistics called cycle count. The SIM-A
environment has been designed to allow modeling of diverse range of processors. This has been demonstrated to an extent through the modeling
of RISC processor and VLIW Processor with traditional memory hierarchies. The technique has been validated against standard toolsets.

Keywords: ASIP; Retargetable Simulator; Simulator; RISC based Simulator; VLIW based Simulator;

I. INTRODUCTION

Modern electronics are controlled by processors that
must meet strict constraints in terms of performance, cost,
size and power consumption. In a competitive market place,
performance and cost are critical in differentiating one
product from another. An ASIP is a processor that is
designed to efficiently execute the software for a specific
application. Although incorporating a complete system on a
single IC may improve performance, cost, and power
consumption requirements, such a high level of integration
constraints the size of the system components.

A. Steps In ASIP Synthesis:
Various methodologies have been reported to meet these

requirements. All these have been studied and five steps are
suggested for synthesis of ASIPs [1]

a) Application Analysis
Application is normally written in High level language.

Sometimes SUIF can be used as intermediate format.
Analysis of the application is essential as it provides the
essential requirement from the application that can guide for
hardware synthesis as well as instruction set generation.

b) Architecture Design Space Exploration
Output of the Application analysis step along with the

range of architecture for Possibility of suitable architecture
is explored and the best architecture is selected that satisfy
the different characteristics like minimum hardware cost,
performance and power.

c) Instruction Set Generation
Till this step we have identified application requirements

and the suitable architecture.
d) Code Synthesis

Till this step, architecture template, instruction set, and
application are identified. This step generates the code.
Generated code can be retargetable code generator or
compiler generator.

e) Hardware Synthesis

In this step the hardware is generated using the ASIP
architectural template and instruction set architecture using
standard tools.

B. Architecture Design Space Exploration:
System on Chip designs has various goals and

objectives. Design space consists of a set of parameters.
Architecture under consideration requires a range of good
parameter to explore. These parameters may take up the
different values. Some of the parameter suggested can be
functional unit of different type, Storage units, interconnect
resources, number of memory units etc. Further the
parameters can also be extended to size of instruction cache
and size of data cache. This has been a very crucial step for
ASIP design. Design Space exploration helps the SOC
designers to make the trade-offs between these goals and
arrive at the "optimal" design. Designers explore changes to
the architecture or the instruction-set of the processor-
memory system. Designers select a suitable architecture that
satisfy the performance and power constraint and having
minimum hardware cost. Architecture is defined using some
suitable architecture description language (ADL).

C. Techniques For Performnace Estimation:
Two major techniques have been used for performance

estimation. They are scheduler based and simulator based.
In Scheduler based approach, application is scheduled to
generate the output like cycle count. Architectural
component is already identified at this stage. Target
processor architecture can be given in the form of
description file. In Simulator based approach, application
under consideration runs on a simulator. Depending upon
the architecture selected in above steps, application is
simulated to compute the performance.

Processor Models are extensively used in system design
process. The system design process starts with an
application and its implementation. Then the model is tested

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 12

for its performance and other aspects. In such a scenario an
integrated environment is required for the designer where
several tools exist like simulator, assembler, compiler etc.
Rewriting the tools after each design change is a tedious job.
Hence automatic generation of these tools is more desirable
according to the design changes.

D. Existing Retargetable Simulator Approaches:
Retargetable functional simulator (Fsimg) [2] focus on

tools that deal with the machine language of processors, like
assemblers, disassembler, instruction set simulator
etc.Retargetable Function Simulator (Fsimg) was designed
using Sim-nML language which is primarily an extension of
the nML [3] language for processor modeling. Fsimg takes
the specification of the processor in the intermediate
representation [4] and an executable for the processor in
ELF [5] format and generates a functional simulator (Fsim)
which in turn gives the functional behaviour of the processor
model for the given program

II. RELATED WORK

Over the past several decades a considerable amount of
research has been performed in the area of computer
architecture simulation. These simulators can be broadly
divided into several categories: full-system simulators,
Instruction Set Architecture (ISA), and retargetable
Simulators. Each category serves an entirely different
purpose, but all have been used for the advancement of
computer architecture research.

The purpose of full-system simulators is to model an
entire computer system including the processor, memory
system and any I/O. These simulators are capable of running
real software completely unmodified just like a virtual
machine. There are many simulation suites that take this
approach, including PTLSim [6], M5 [7], Bochs [8], ASIM
[9], GxEmul [10] and Simics [11]. Simics has several
extensions that constitute their own full-system simulators
such as VASA [12] and GEMS [13]. ISA simulators are less
descriptive than full system simulators. Their objective is to
model processor alone.ISA simulators performs the various
functionalities.It simulate and debug machine instructions of
a processor type that differs from the simulation host, it also
emphasis on investigating how the various instructions (or a
series of instruction) affect the simulated processor. Hence
modeling of the full computer system is unnecessary and
would impose additional delay and complexity. Example of
this type of simulator includes SimpleScalar [14], WWT-II
[15], and RSIM [16]. Over the past decade, a few interesting
ADLs have been introduced together with their supporting
software tools. These ADL include MIMOLA, UDL/I, nML,
ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL,
EXPRESSION and PRMDL.

III. EXISTING RETARGETABLE SIMULATORS

Anahita Processor Description Language (APDL),
APDL [17] is one of the most recent contributions in the
area of retargetable simulator. The language was introduced
in 2007 by N. Honarmand et al. from the Shahid Beheshti
University, IRAN. The Primary difference between APDL
and other ADLs is the addition of Timed Register Transfer
Level (T-RTL), which enables the simulation designer to
define the latencies and hardware requirement of the

processor operations. This separation of configuration data
enables APDL to better integrate with external software for
analysis as the T-RTL data is organized separately from the
remainder of the processor description. Moreover, APDL
can describe both instruction and structure descriptions of a
target processor.

The Pascal-like syntax of APDL is clearly more intuitive
than many other ADLs such as LISA and EXPRESSION.
While the language is easier to read and understand, the
researchers have not yet implemented a compiler to produce
simulations. Furthermore, despite APDL's relative ease,
users are still faced with the task of learning the details of
the syntax.

ISDL [18] was introduced in 1997 by G.Hadjiyiannis,
S.Hanono, and S. Devadas from Massachusetts Institute of
Technology. The purpose of ISDL was to provide a
language for describing instruction sets along with a limited
amount of details of a processor structure for the automatic
construction of compilers, assembler, and simulators. ISDL
enables users to define their target processors in several
ways. First, users can define operations, their format, and
the associated assembly language instruction. Second users
can define the storage resources available to the processor,
including the register file and memory. Third users can
define constraints in the processor such as instructions
requesting the same data path, or restrictions regarding
assembly syntax.

ReXSim [19] was introduced in 2003 by a computer
architecture research team at Irvine. ReXSim is an extension
of EXPRESSION language which sought to improve
simulation speed by integrating a novel method of decoding
instructions of the simulated program before execution of
the simulation. As a result, the instruction decoding process
was removed from the execution loop of the simulator, and
thus improved the simulation speed significantly. Using this
method, the team was able to produce retargetable
simulations that showed performance in excess of major
simulators like SimpleScalar, which is widely considered to
be a simulation performance benchmark.

Reduced Colored Petri Net (RCPN) [20] was introduced
in 2005 by M.Reshadi and N. Dutta from University of
California, Irvine. RCPN takes a vastly different approach to
retargetable simulation, in which pipelines are modeled
using a simplified version of Colored Petri Nets (CPN).
Petri Nets are graph based mathematical method of
describing a process. The nodes of the graph represent
particular discrete events, states, or functions, and the graph
edges represent the transitions of data between nodes. The
transitions can be enabled or disabled based on conditions
specified at the nodes.

The purpose of RCPN is to provide retargetable
simulations for modeling of pipelined processors. RCPN
reduces the functionality of a regular CPN by limiting the
capabilities of the nodes in the graph for the purpose of
increasing simulation speed and usability. Additionally,
RCPN takes the advantage of some of the natural properties
of CPNs to prevent structural and control hazards.

Retargetable functional simulator (Fsimg) [21] focus on
tools that deal with the machine language of processors, like
assemblers, disassembler, instruction set simulator etc. The
objective was to have a single processor model for all the
tools. Hence Retargetable Function Simulator (Fsimg) was
designed using Sim-nML language which is primarily an

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 13

extension of the nML language for processor modeling.
Fsimg takes the specification of the processor in the
intermediate representation and an executable for the
processor in ELF.

Format and generates a functional simulator (Fsim)
which in turn gives the functional behaviour of the processor
model for the given program. Around 237 instructions have
been specified with the resource usage model and pipeline.
Macro Preprocessor (nMP) for processing Sim-nML
macros is implemented. It has some limitation. Fsimg is
imposing a strong restriction on specification writing.
Current bit-operator library supports only integer data types.
The trace produced by Fsim is not compressed. It makes it
difficult to handle and process trace files. It is very slow.

The LISATek [22] processor design flow is based on
LISA 2.0 processor models. Given a LISA model, the
LISATek tool is able to generate instruction-set simulators
for the processor under design. Typically, the debugger in
form of a dynamic library directly uses the generated
simulator. However, a compiled static simulator library is
also generated, and specifications exist to integrate it into
the system environment. The system environment would be
the MPARM. All the core models generated by the
LISATek suite, regardless of the nature of the ASIP at hand,
have the same interface. The interaction is based upon four
key pillars:

a. The simulated core can be cycled by calling
specific functions. If the processor is modelled in
an instruction-accurate fashion, then the generated
model can be stepped on an instruction basis. On
the other hand, a model derived from a cycle-
accurate LISA description can be stepped on both
instruction and cycle basis.

b. Core-initiated communication (e.g. reads, writes) is
performed through a specific Application
Programming Interface (API). It is the task of the
external program to provide an implementation of
said API.

c. System-initiated communication (e.g. interrupts), if
any, can be forwarded to the core when cycling it,
and therefore on a fine-grain cycle-by-cycle basis,
by proper flipping of extra pins. Of course the
LISA core model must be made aware of the
meaning of these extra pins to take proper action.

d. An external LISATek Debugger tool can be
interfaced to the core via the IPC (Inter-Process
Communication) mechanism. The external program
must simply invoke the Debugger with proper
references; subsequently, the LISATek model and
the Debugger interact autonomously.

The implementation of these function calls depends
completely on the communication method used in the
system. The implemented API will translate the requests
into SystemC signals which can be understood by the
MPARM [23] platform. The Assessment of the performance
of alternative hardware communication is not addressed.
Retargetability is poor.

All of these simulators use techniques to speed up the
execution of application programs. This is achieved by
minimizing the amount of details about the processor,
needed for program execution on the simulator. Even though
some of these previous approaches target ADL-based
automatic toolkit generation and DSE, not much work has

been done in bringing together these elements in an early
DSE environment. Furthermore, previous approaches are
restricted to certain classes of processor families and assume
a fixed memory/cache organization. For a wide variety of
such processor and memory IP library, the designer needs to
be able to specify and analyze the interaction between the
processor instruction set and architecture, and the
application and explore the different points in design space.

This problem is addressed in SIMPRESS simulators. The
EXPRESSION ADL captures both the instruction set and
architecture information for a design draw from an IP
library. The library contains a variety of parameterizable
processor cores and customizable memory / cache
organizations. Simpress produces a structural simulator
capable of providing detailed structural feedback in terms of
utilization, bottle-necks in the processor architecture. The
processor-system description is input using a graphical
schematic capture tool, called V-SAT, that outputs an
Expression Description which is fed into the toolkit
generators to produce DSE tools. The SIMPRESS generated
simulator provides feedback information which is back-
annotated to the same V-SAT graphical description.

Though SIMPRESS Simulators addresses many issues, it
has certain limitation. The application having function calls
are not supported. Compilation steps exist in three passes:
PcProGUI, Expression console, acesMIPS console.
Basically it is very complex to understand the process of
compilation and simulator. The Application needs .proc and
.def file. The .c program generates these files. There is no
clear cut method as how .c is converted to .proc and .def,
especially in case of windows environment. This is strong
limitation as we can not simulate our own program written
in .c. this has to be first converting to .procs and .defs and
for that we need to depend on their servers to provide for the
same, which is not functional right now.

In order to overcome all these complexities, we suggest a
simple and elegant solution. Just there is a need to provide
the standard application program in the form of scheduled
and optimized code along with the processor description to
our Simulator and you will get the cycle count as an output
of the simulation.

IV. OVERALL APPROACH

Application or a set of application in the form of High
Level Language is taken as input and it given as input to
retargetable compiler. Architecture description is also given
input to retargetable compiler. Retargetable compiler
generates the schedule and optimized code. This code is
given as input to Simulator SIM-A. None of the existing
simulator provides and easy GUI to enter the processor
components and simulate the code for target host as shown
in Figure 1.

Figure. 1. Simulator based code generation

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 14

We are assuming the scheduled and optimize code to be
generated from retargetable compiler and this code along
with the Processor description or Architecture description is
given as input to the Simulator. The Simulator generates the
data in the form of cycle count.

V. METHODOLOGY

Our architecture model consists of a number of
architecture simulation components that simulate the three
main parts of the system - Processing elements, memory and
interconnection medium. Figure 2 shows the overall
methodology adopted for SIM-A.

Figure. 2. Overall methodology

A. Processor Model:
This method assumes that each instruction completes in

a fixed number of cycle. In architecture terms, we can say
that our processor has fast private memory where code and
local data can be stored. Hence each processing element is
equipped with large instruction and local data cache that
guarantee a very high hit ratio. Architectural Parameters of
the processor component are:

a. Local instruction costs in cycle.
b. Number of available interrupts types.
c. Context switch latency (cycles to save and restore

processor state).
d. Interrupt Latency (Cycles needed to save state and

branch to interrupt handler).

B. Memory Model:
We are considering two-level memory. The levels are

main memory and cache(s). We are assuming Shared
memory as Main Memory, though we are considering
logical partitions with in that memory. Such partitions may
be code segment, data segment etc. Cache memory is
assumed to be local to each processing element. However
any change in this model can be easily incorporated in our
model as it can be specified in input description and that is
taken care by our simulator. Architectural parameters of the
memory components are:

a. Number of memory modules.
b. Memory module size.
c. Cache line size.
d. Cache set size.
e. Number of sets per cache.
f. Cache access latency.
g. Memory module access latency.

C. Interconnection Model:

In a real-time system architecture, the notion of a bus
component play an important role as it forms the backbone
of communication among all the devices of the system. For
this purpose, we need a precise specification of buses for
applications that will run on top of them.

Our simulator supports the interconnection of bus. All
processing elements and all memory modules are connected
through a common bus. Uniform shared memory access is
assumed, that is, access of any memory module from any
processor takes the same amount of time (ignoring delays
due to bus contention). The simplest interconnection
strategy is to use a single bus which is being shared by every
other component for communication. Though this strategy is
easy to implement, as the number of processor go up, the
bus becomes the bottleneck. All the components connected
to this bus should tune their interfaces to use the bus
protocol. Apart from this, designers have to implement some
arbitration mechanism to resolve the conflicts.

VI. DEVELOPMENT OF RETARGETABLE
SIMULATOR

Electronic devices built nowadays are often built with a
single IC composed of multitude of hardware blocks that
implement the device functionality. In most cases such
circuit contains one or more processors that enable to
implement a part of the circuit functionality as software that
runs on that processor rather than as a specific hardware
component. Such IC is commonly referred to as a system-
on-a-chip (SoC).

The main CPU features are:
a. 101 instructions with possible addressing modes
b. CPU with independent stack pointer registers
c. Eight 32-bit data, eight 32-bit address and 32-bit

status registers
d. 16-bit external memory interface

Main assumptions for the ISS were:
a. Developed in pure Visual basic 6.0 language for

high performance.
b. Crystal Report is used as a reporting tool to display

the different status.
c. MS Access is used to Store the different schedules

and optimized code.
d. Single-instruction accuracy, without taking internal

architecture under consideration.
e. Fully static design with the support of loop / wait

statements.
f. Usage of native VB types to gain high simulation

speed.
g. Communication interfaces separated from

functionality.
The main part which contains implementation of main

processor's logic (ALU, instruction fetch, decoding and
execution routines) together with fields corresponding to the
internal resources (all registers). Sub-module features:

a. Fetching and decoding instructions
b. Instruction processing routines
c. Handling interrupts and exceptions
d. Register implementation and registers read/write

access
e. Instruction counter

Simulators are critical components of the exploration
toolkit for the system designer. Simulators can be used to
perform a variety of tasks such as verifying the functionality

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 15

and / or timing behavior of the system, and generates
quantitative measurement, for e.g. Cycle count etc. As per
our design Methodology and hypothetical assumption of the
Architecture we have taken MIPS Architecture as a base to
develop our Retargetable simulator. We have given a
Nomenclature to our Simulator as SIM-A {Simulators for
Architectures}. We will be using Expression Language for
Architecture Description. We have developed the GUI
Interface for the same. We have also provided the GUI for
easy evaluation and analysis.

A. SIM-A- Basics:
SIM-A is a 32-bit datapath, every instruction is 32

bits wide, and data comes in “words” which are also
32 bits wide. Memory in SIM-A, however, is addressed in
bytes. SIM-A is load-store architecture that is, the only
instructions that access memory are LW and SW.

B. Memory Organization:
We are considering Two-level memory. The levels are

main memory and cache(s). We are assuming main memory
as Shared Memory. Cache memory is assumed to be local to
each processing element. We are also considering logical
partitions with in that memory. Such Partition may be code
segment, extra segment etc. Data begins at virtual address
0x10000000 and grows in the direction of increasing virtual
addresses (this data is called dynamic data because the
machine doesn’t know how much of it will be used at
runtime). In SIM-A, there is also a concept of stack – that
is, data that starts just below virtual address 0x80000000
and grows in the direction of increasing virtual addresses.

C. SIM-A Register Set:
Registers are a small set of fast memory that the datapath

has available at its disposal for most immediate operations.
All registers are 32-bit wide. SIM-A contains thirty two
user registers (that is, registers that the user can access/use
in the assembly program) and four special-purpose registers
that are hidden from the user.

D. SIM-A Instruction Set:
This section describes in detail all the SIM-A

instructions. Rs and Rt are source registers – the datapath
should fetch their values whenever they are used. Source
registers are usually treated as twos-complement signed 32-
bit numbers. In some special cases they are treated as
unsigned numbers (the note that follows explains such
circumstances). Rd is the destination register – the datapath
will write the result to that register number.

Immediate values may either be treated as signed or
unsigned values, and may either be zero-extended (in which
case the padding bits are all zero), or sign extended (in
which case the padding bits are all equal to the most
significant bit of the immediate value). SOC designs
have various design goals. These goals include minimal
cost, maximal performance, low power, high reliability, etc.
Design Space Exploration allows the SOC designer to make
trade-offs between these goals and arrive at an “optimal”
design. SOC designer would like to explore changes to the
architecture or the instruction-set of the processor-memory
system. Common examples of such changes include, but not
limited to:

a. Changing the pipeline structure. e.g., increasing (or
decreasing) the number of stages to increase (or

decrease) the clock frequency, adding forwarding
paths to reduce pipeline stalls.

b. Changing the data path structure. e.g., changing
slow units to fast units in order to increase
performance, changing connectivity between units
and storage elements (like register files) in order to
decrease power consumption.

c. Increasing parallelism. e.g Adding more functional
units that can execute in parallel in order to
increase performance.

d. Changing the instruction-set. e.g Adding new
operations which can be exploited by particular
applications.

e. Changing the memory component. e.g Changing
the size of register file, changing the associativity
of the cache, etc.

f. Changing the memory hierarchy. e.g Adding a
cache between the processor and off-chip memory,
changing the on-chip memory hierarchy etc.

E. SIM-A Look and Feel:

Figure. 3. GUI for SIM-A simulator

This is the first and main form which helps us to
calculate the cycle count of any program as shown in
Figure3. First section allows us to select the different
programs that we are required to simulate. This is the
interface through which user will enter the processor
description and will mimic the behaviour of the processor. If
you click on the option “Select Program to Run” , it contains
all the list of programs. Just select the program that we need
to simulate and Click the button “Run Simulator and
Provide Result ….” Others buttons are not used right now.
Second Section provides the output of the program. It
contains information like total Arithmetic instruction, Shift
rotate, Logical, Jump Branch etc. It also gives the pop up
when the program finishes by providing the cycle count.
User will first enter the processor description details as
shown in Figure 4. Submit the form to update the processor
description file. Then it browses to the GUI form where he
can select the programs that he/She needs to simulate.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 16

Figure. 4. GUI for Processor Description

The above is the brief description of the SIM-A
Simulator that has been developed in our Embedded System
Lab.

VII. DESIGN SPACE EXPLORATION AND
VALIDATION OF SIM-A

Table 1 lists the benchmark programs used to validate
the SIM-A simulator. We have validated our developed
simulator SIM-A against a number of standard toolsets. This
validation also proves easy retagetability and large design
space exploration capabilities of SIM-A.

Table 1 List Of Benchmark Programs

No Name Description

1 SIM-A-BENCH#1(SIM1)
Excerpt from a
 hydrodynamic code

2 SIM-A-BENCH#2(SIM2)

Standard Inner product
function
 of Linear Algebra

3 SIM-A-BENCH#3(SIM3)
Excerpt from a Tridiagonal
Elimination routine

4 SIM-A-BENCH#4(SIM4) First Sum

5 SIM-A-BENCH#5(SIM5) First Difference

A. Validation with SIMPRESS:
The Framework is based on MIPS 4K like processor

architecture. The architecture contains five pipeline stages –
fetch, decode, operand read, execute and writeback. There
are five parallel issue paths corresponding to two ALU
Units, one for floating point unit, a branch unit and a
Load/store unit. The memory hierarchy consists of two L1
data caches for instructions and data, a unified L2 cache and
a DRAM main memory. There is a 32-bit wide general
purpose register file and a 32-bit wide floating point register
file, each containing 32 registers. After running the
benchmark program on the SIMPRESS as well as SIM-A
Simulator, following results are obtained. Figure 5 show the
graphical analysis of the SIM-A and SIMPRESS Simulator.

At 1% level of significance, the critical value of ‘t’ for (5+5-
2) 8 degree of freedom is 3.36 and calculated value is
0.368329. Since the calculated value of ‘t’ is 0.368329
which is less than the critical value, which is 3.36, it falls in
the acceptance region. Hence it may be concluded that both
the results are equally acceptable at 1% level of
Significance.

Figure. 5. Comparative analysis of SIM-A and SIMPRESS Simulator of

Cycle Count

B. Validation With Arm Based Keil Software:

a) Keil Software and Customizations:
Keil Software development tools for the ARM

microcontroller family support every level of developer
from the professional applications engineer to the student
just learning embedded software development. µVision3
ensures easy and consistent Project Management. A single
project file stores source file names and saves configuration
information for Compiler, Assembler, Linker Debugger,
Flash Loader, and other utilities. The Project menu provides
access to project files and dialogs for project management.
When microvision 3 Project started target device needs to be
selected from the device database. It displays only those
option that are relevant to the selected device.

The Instructions about how to write Keil ARM can be
listed as follows.

a. Open Keil uVision Program which is Text Editor
of Keil, that ARM uses for writing C Language
Source Code Program.

b. Set default value to translate uVision3 Code to use
with Keil uVision3 Program and Keil ARM. Click
Project Components, Environment, Books… then
select default value to use Complier titled Select
ARM Development Tools.

c. Open the project and in turn open the .c program
and start debugging session. Left hand pane shows
the details of the Register details and the states as
shown in the Figure 6.

All instructions are 32 bits long. Most instructions
execute in a single cycle. Every instruction can be
conditionally executed. Data processing instructions act only
on registers. Three operand format Combined ALU and
shifter for high speed bit manipulation Specific memory
access instructions with powerful auto-indexing addressing
modes.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 17

Figure. 6. Editor showing the Register Status and Timing information

ARM has 37 registers in total, all of which are 32-bits
long.

a. 1 dedicated program counter
b. 1 dedicated current program status register
c. 5 dedicated saved program status registers
d. 30 general purpose registers

However these are arranged into several banks, with the
accessible bank being governed by the processor mode.
Each mode can access as follows.

a. a particular set of r0-r12 registers
b. a particular r13 (the stack pointer) and r14 (link

register)
c. r15 (the program counter)
d. cpsr (the current program status register) and

privileged modes can also access
e. a particular spsr (saved program status register)

b) Performance Estimates and Validation:

Figure. 7. GUI for ARM-BASED SIM-A

Benchmark programs are selected and run on SIM-A
Simulator through a GUI as shown in Figure 7. Once a
suitable input program is selected and simulator is run it
provides useful outputs including total cycle count. We are
able to validate SIM-A Simulator against ARM Based Keil
simulator. Figure 8 shows the comparative analysis of SIM-
A with ARM based Keil software.

Figure. 8. Comparative analysis of SIM-A and arm based KEIL software

for cycle count

C. Validation With SIMPLESCALAR:

a) Simplescalar Basics:
SimpleScalar is an open source computer architecture

simulator developed by Todd Austin.It is a simulator, which
in simple words means that it can be used to show that
Machine A is better than Machine B without building either
Machine A or Machine B. It is written using ‘C’
programming language. SimpleScalar is a set of tools that
model a virtual computer system with CPU, Cache and
Memory Hierarchy. Using the SimpleScalar tools, users can
build modeling applications that simulate real programs
running on a range of modern processors and systems. The
tool set includes sample simulators ranging from a fast
functional simulator to a detailed, dynamically scheduled
processor model that supports non-blocking caches,
speculative execution, and state-of-the-art branch prediction.
In addition to simulators, the SimpleScalar tool set includes
performance visualization tools, statistical analysis
resources, and debug and verification infrastructure. The
SimpleScalar tools are used widely for research and
instruction. The simulators available are sim-fast, sim-safe,
sim-profile, sim-cache, sim-bpred, and sim-outorder,

b) Installation and Customization For Simplescalar:
The following text describes the procedure of installing

the simulator Simplescalar on a modern Linux distribution.
The procedure has been tested on Ubuntu Linux 8.04 but
should work on most Linux distributions. If you use Ubuntu
and 8.10 (Intrepid Ibex) or later. Download the necessary
source code files.

i. simpletools-2v0.tgz
ii. simplesim-3v0d-with-cheetah.tar.gz

iii. simpleutils-990811.tar.gz
iv. gcc-2.7.2.3.ss.tar.gz

Setup some environment variables (assuming your home
directory is /home/oracle and that you are using a bash-
compatible shell1):
$ export IDIR=/home/oracle/simplescalar
$ export HOST=i686-pc-linux
$ export TARGET=sslittle-na-sstrix

Create the directory “simplescalar” under your home
directory, and copy all the four tarballs into it:
$ mkdir $IDIR
$ mv simplesim-3v0d-with-cheetah.tgz $IDIR
$ mv simpletools-2v0.tgz $IDIR

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 18

$ mv simpleutils-990811.tar.gz $IDIR
$ mv gcc-2.7.2.3.ss.tar.gz $IDIR
Update Ubuntu (or whatever distribution you are using) with
the following packages:
(i) build-essential, (ii) flex, and (iii) bison
Just un-pack the package file, and remove the old gcc folder
$ cd $IDIR
$ tar xvfz simpletools-2v0.tgz
$ rm -rf gcc-2.6.3

a. Installing Simpleutils
Un-pack the package file as follows:
$ cd $IDIR
$ tar xvfz simpleutils-990811.tar.gz
$ cd simpleutils-990811

b. Building Simulators
Un-pack the simulator package as follows :
$ cd $IDIR
$ tar xvfz simplesim-3v0d-with-cheetah.tar.gz
$ cd simplesim-3.0
$ make config-pisa
$ make
You may test the installation of simplesim by:
$./sim-safe tests/bin.little/test-math
Un-pack the source code and configure the installation as
follows :
$ cd $IDIR
$ tar xvfz gcc-2.7.2.3.ss.tar.gz
$ cd gcc-2.7.2.3
$./configure –-host=$HOST –-target=$TARGET –-with-
gnu-as
Next build the compiler:
$ make LANGUAGES=c CFLAGS=-O CC=”gcc -m32”
$ make enquire
$../simplesim-3.0/sim-safe ./enquire -f > float.h-cross
$ make LANGUAGES=c CFLAGS=-O CC=”gcc -m32”
install

In a separate directory, create a new file, bench.c, that
has the code with empty body main function. Compile it
using the following command:
$IDIR/bin/sslittle-na-sstrix-gcc –o bench bench.c
That should generate a file bench, which we will run over
the simulator:
$IDIR/simplesim-3.0/sim-safe bench
In the output, you should be able to find the following as
shown in Figure 9.

Figure. 9. Output of sample programs

c) Performance Estimates and Validation Of
Simulator:

The Framework is based on MIPS 4K like processor
architecture. The architecture contains five pipeline stages –
fetch, decode, operand read, execute and writeback. There
are five parallel issue paths corresponding to two ALU
Units, one for floating point unit, a branch unit and a
Load/store unit. The memory hierarchy consists of two L1
data caches for instructions and data, a unified L2 cache and
a DRAM main memory. There is a 32-bit wide general
purpose register file and a 32-bit wide floating point register
file, each containing 32 registers. After running this
benchmark program on the SIM-A as well as SimpleScalar
Simulator, following results were obtained. Figure 10 shows
the graphical analysis of the SIM-A and SimpleScalar
Simulator.

Figure. 10. Comparative analysis of SIM-A against SIMPLESCALAR

simulator for cycle count

D. Validation With OVPSim:

a) OVPSim Basics:
It is simulator to develop software on: Fast Simulation,

Free open source models, easy to use. Imperas developed
some virtual platform and modeling technology to enable
simulating embedded systems running real application code.
These simulations run at speeds of 100s and 100s of MIPS
on typical desktop PCs and are completely Instruction
Accurate and model the whole system. OVP has three main
components - the OVP APIs that enable a C model to be
written, a collection of free open source processor and
peripheral models, and OVPSim a fast, easy to download
and use simulator that executes these models.OVP put
together a simulation model of a platform, compile it to an
executable, and connect it to your debugger to provide a
very efficient fast embedded software development
environment. The focus of OVP is to accelerate the adoption
of the new way to develop embedded software - especially
for SoC and MPSoC platforms.

If any software is developed to run in an embedded
system we would normally be using an Instruction Set
Simulator (ISS). As there are multiple processors or cores in
design we need more than just a single ISS. What is needed
is a model of your platform that includes models of all the
processors or cores and models of the peripherals and
behavioral components that the software communicates with.
This is a Virtual Platform, or more simply just a simulation
model of your design. OVP provides the different libraries
of processor and behavioral models, and APIs for building
you own processors, peripherals and platforms. This is just

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 19

what is needed to use existing models or build your own,
and OVP is easy to use, open, flexible, and importantly, free
for non-commercial use.

b) Installation and Customisation for OVPSim:
The Imperas professional tools and the OVP simulator is

installed on Windows Platform. The Imperas tools are
superset of the OVP tools. Either delete the OVP installation
before installing or install to a different directory. The
Windows versions are provided as installers as an
executable, either
imperas.<version number>.<dot release>.exe or
OVPsim.<version number>.<dot release>.exe or
OVPsim.Windows.exe (for current version from
(www.OVPworld.org).
The following environment variables are automatically set
by the installer:
IMPERAS_HOME Points to the root of the installation
IMPERAS_VLNV Points to the compiled library
IMPERAS_ARCH Set to the Host architecture ie Windows
IMPERAS_RUNTIME Specifies which simulator, Imperas
(CpuManager) or OVPsim, to load at runtime
PATH modified to include
IMPERAS_HOME/bin/IMPERAS_ARCH

The development of platforms, processor and peripheral
models on the Windows operating system has been
validated in an environment using MSYS and MINGW. A
default build environment is provided with both the Imperas
tools and OVPsim installations that will allow models and
platforms to be built in this environment.

We need the installation files of either OVPSim or from
Imperas tools and atleast one compiler toolchain. In order to
cross compile applications under windows the installation of
MSYS/MinGW is done. In our Demo we use the openCores
openRISC MIPS32 as the target embedded processor. The
OVP and Imperas tools are licensed using FLEXlm. Tool
execution need a license file. A license file bounds to
individual computer through computer's host ID. OVPsim
looks for its license file in $IMPERAS_HOME/OVPsim.lic

Figure. 11. Essential file needed to run the application

Imperas provides pre-built toolchains for processors by
OVP. The Processors include MIPS32, OR1K and ARM.
The Makefile is available to provide a default build
environment for an application onto a processor. The
Makefiles is in the format
<Processor Type>.Makefile.include.

We need to perform some customization to work on
MIPS32 processors. We are required to create a folder that

contains the entire required file required for execution
process.
(a) Copy the different files to a suitable folder as shown in
Figure 11. Each file is needed as each file has its own
significance.
(b) Change the Makefile to point to MIPS32 processor.
i.e Change the line
 CROSS?=MIPS
(c) Create the application.c file and copy the program in
application.c. View the application program.
(d) Compile the program, check for any error and remove it.
(e) Run the program.
(f) The program will generate the different statistics as
shown in Figure 12. Validation results are presented
graphically in Fifure 13. Results show that estimates
produced by our simulator and OVPSim simulator are fairly
consistent.

Figure. 12. Statistics generated by simulator

Figure. 13. Comparative analysis of SIM-A and OVP simulator for cycle

count

E. Validation with VEX Simulator:

a) VEX Basics:
VEX ("VLIW Example") is a compilation-simulation

system that targets a wide class of VLIW processor
architectures, and enables compiling, simulating, analysing
and evaluating C programs for them
VEX includes three basic components:
i. The VEX Instruction Set Architecture. VEX defines a

32-bit clustered VLIW ISA that is scalable and
customizable. Scalability includes the ability to change
the number of clusters, execution units, registers and
latencies; customizability enables users to define
special-purpose instructions in a structured way.

http://www.ovpworld.org/�

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 20

ii. The VEX C Compiler. The VEX C compiler is a
derivation of the Lx/ST200 C compiler, itself a
descendant of the Multiflow C compiler. It exposes
some of the
parameters to allow architecture exploration by
changing the number of clusters, execution units, issue
width and operation latencies, without having to
recompile the compiler.

iii. The VEX Simulation System. The VEX simulator is an
architecture-level (functional) simulator that uses
compiled simulator technology.

The VEX simulator used a so-called compiled simulation
technique. The compiled simulator (CS) translates the VEX
binary to the binary of the host computer, by first converting
VEX to C, and then invoking the host C compiler to produce
a host executable.

In addition to the standard semantics of the instructions,
CS also emits instrumentation code to count cycles (and
other interesting statistics), as well as code to dump the
results to a log file at the end of the simulation. Timing
instrumentation is turned on with the "-mas_t" flag passed to
the compiler driver (or "-mas_ti" and "-mas_td" for finer
grain control - see the section on compiler flags).

CS operates on each of the individual VEX assembler
(.s) files corresponding to the compilation units of a
program and translates them back to C by implementing the
VEX operation semantics, the calling convention (ABI), and
introducing the appropriate instrumentation code. The CS-
generated C files are then compiled with the host platform C
compiler (e.g., gcc for Linux) and linked with the support
libraries that deal with the instrumentation. During linking,
the CS ld wrapper ensures that the right libraries are linked
in the right order, and performs the necessary "magic" (such
as wrapping system functions so that they don't cause
problems) for the binary to execute correctly.By default,
VEX links in a simple cache simulation library, which
models an L1 instruction and data cache. The cache sim-
ulator is really a trace simulator, which is embedded in the
same binary for performance reasons, but only
communicates with the VEX execution engines through
simple events that identify memory locations, access types
and simulation time.

b) Installation and Customisation for VEX:
A sample compilation and Simulation steps can be listed

as follows
i. Compile the VEX with the _asm() calls:

a. <vex>/bin/cc c average.
ii. 2. Compile (natively) the asm library

b. gcc c asmlib.c
iii. 3. Link (with the VEX compiler) the 2 parts together

c. <vex>/bin/cc o average average.o asmlib.o
iv. 4. Run the average binary

The first example is a simple "compile-and-run"
sequence of a program composed of two compilation units
file1.o and file2.o. Figure 14 shows a command regarding
compilation of the program.

Figure. 14 Commands to complie and generate .s file Compile individual

modules
 /home/vex/bin/cc -ms -O4 c file1.c
 /home/vex/bin/cc -ms -O4 c file2.c

Link (with math library)
 /home/bin/cc o test file1.o file2.o -lm
Run the program
 ./test

The assembler files are useful to check the static
behavior of the compiler, and can be analyzed with the pcntl
utility which collects static compile information from a
VEX assembler file. This is shown in Figure 15. For
example, if we invoke the following command the output
produced is shown in Figure 16.

Fig. 15. Commands to analyze the file

Analyze file1.s
 /home/vex/bin/pcntl file1.s

Figure. 16. Output of sample programs

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 21

c) Performance Estimation and Validation:
The Framework is based on VLIW based processor

architecture. A VEX architecture issues multiple operations
in an instruction in a single cycle, and these operations are
executed as a single atomic action (this is sometimes called
VLIW mode). Instructions are executed strictly in program
order, but within an instruction, all operands are read before
any results are written. For example, it is possible to swap
the value of a pair of registers in a single instruction.
Instructions cannot contain sequential constraints among
their operations. An exception caused by an instruction may
not affect the execution of any instruction that was issued
earlier and must prevent the instruction generating the
exception from modifying the programmer visible state.

The execution behavior is that of an in-order machine:
each instruction executes to completion before the start of
the next one. In other words, all syllables of an instruction
start together and commit their results together. Committing
results includes modifying register state, updating memory,
and generating exceptions. Table 1 lists all the benchmarks
programs that have been used to validate the simulators.

After running this benchmark program on the SIM-A as
well as VLIW based Vex Simulator, following results were
obtained. Figure 17 show the graphical analysis of the SIM-
A and SimpleScalar Simulator.

0
5

10
15

20
25

30

35
40

1 2 3 4 5

Validation with Vex

VEX
SIM-A

Fig. 17. Comparative analysis of sim-a against vex for cycle count

VIII. CONCLUSION

System-on-a-Chip (SOC) technology enables the system
designer to develop highly customized embedded systems
that can meet demanding performance, power, cost and size
constraints. However there is urgent need for an
environment that will allow the system designer to rapidly
specify and evaluate design alternatives.

In this paper we presented a SIM-A Simulator entirely
developed at our Lab that generates the performance
estimates for the application under consideration. Processor
description is captured in the form of GUI, which allows the
user to specify the architecture in visual form. The cycle
accurate, structural simulator generated using SIM-A allows
the user to collect statistics called cycle count. It definitely
helps the designer to analyze the design and modify the
critical portions.

IX. REFERENCES

[1] Manoj Kumar Jain, M. Balakrishnan, Anshul Kumar. “ASIP
Design Methodologies: Survey and Issues “In proceedings of

the IEEE/ACM International Conference on VLSI Design.
(VLSI 2001)”, pages 76-81, January 2001.

[2] Y Subhash Chandra. Retargetable functional simulator –
M.Tech Thesis, Department of Computer Science, IIT
Kanpur, June 1999.

[3] FREERICK, M. The nML Machine Description Formalism,
July 1993.

[4] JAIN, N.C. Disassemble using High level Processor Models.
Master’s thesis, Department of Computer Science and Engg,
IIT Kanpur, Jan 1999.

[5] UNIX System V Rel 4, Programmers Guide : ANSI C and
Programming Support Tools. PHI, New Delhi 1992.
Executable and Linkable format (ELF), Tools Interface
Standards (TIS), Portable Formats Specification, Version 1.1.

[6] M. Yourst, “Ptlsim.” http://www.ptlsim.org/. Jan. 2010.
[7] “M5.” http://www.m5sim.org. Jan2010.

[8] “bochs: The open source IA-32 emulation project.”
http://bochs.sourceforge.net/. Jan. 2010.

[9] J. Emer, P.Ahuja, and E.Borch, “Asim: A performance model
framework” pp.68-76, 2002.

[10] “Gxemul” http://gxemul.sourceforge.net/ Jan 2010.

[11] P.M et al. , “Simics : A Full system simulation platform, “
Computer, Vol.35, pp. 50-58, 2002.

[12] D. Wallin, H.Zeffer, M.Karlsson, and E.Hagersten, “Vasa: A
Simulator infrastructure with adjustable fidelity,” Parallel and
Distributed Computing, 2005.

[13] M.M. et al., “Multifacets general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH
Computer Architecture News, pp. 92-99, 2005.

[14] “SimpleScalar LLC.” http://www.simplescalar.com/, August
2010

[15] S.M. et al., “Wisconsin wind tunnel ii: A fast and portable
parallel architecture simulator,” Workshop on performance
Analysis and Its Impact on Design, June 1997.

[16] V. Pai, P. Ranganathan, and S.Adve, “Rsim : An execution-
driven simulator for ilp-based shared memory multiprocessor
and uniprocessors,” Third Workshop on Computer
Architecture Education, Feb 1997.

[17] N. Honarmand, H.Sohofi, M. Abbaspour, and Z.Navabi, “
Processor description in APDL for design space exploration
of embedded processors,” Proc. EWDTS, 2007.

[18] G.H. et al . ,”ISDL : An Instruction set description language
for retargetability,” In proc Design Automation Conference ,
pp.299-302,,1997.

[19] Mehrdad Reshadi, Prabhat Mishra, Nikhil Bansal, Nikhil
Dutt. ”Rexsim : A Retargetable framework for instruction-set
architecture simulation” CECS Technical Report #03-05
,Feb,2003

[20] M. Reshadi and N.Dutt, “Generic pipedlined processor
modelling and high performance cycle-accurate simulator
generation,” Vol.2, pp. 786-791, 2005.

[21] Y Subhash Chandra. Retargetable functional simulator –
M.Tech Thesis June 1999.

[22] Fedrico Angiolini,;Jianjiang Ceng; Rainer Leuper ;Cesare
Ferri;Luca Benini; “An Integrated Open Framework for

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 11-22

© 2010, IJARCS All Rights Reserved 22

Heterogeneous MPSoc Design Space Exploration”,page3 ,
Date06,2006 EDAA.

[23] M.Loghi; F.Angioni; D.Bertozzi; L.Benini. “Analyzing on-
chip communication in a MPSoC environment” In proceeding
of the 2004, Design, Automation and test in Europe
Conference (DATE’04), IEEE, 2004.

Short Bio Data for the Authors

Dr.M.K. Jain received the M.Sc. degree from
M.L. Sukhadia University, Udaipur, India, in
1989. He received M.Tech. degree in Computer
Applications and PhD in Computer Science &

Engineering from IIT Delhi, India in 1993 and 2004

respectively. He is Associate Professor in Computer Science
at M.L. Sukhadia University Udaipur. His current research
interests include application specific instruction set
processor design, wireless sensor networks, semantic web
and embedded systems.

Gajendra Kumar Ranka has done his Ph.D. in Computer

Science is a research Scholar of Department of
Computer Science, MLSU University, Udaipur
Rajasthan. Currently, he is Software Enineer at

Fujitsu, Pune. His area of research is embedded system
design and software toolset development..

	INTRODUCTION
	IX. REFERENCES

