
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 273

ISSN No. 0976-5697

A Distributed System for a Multi-Agent Systems Building

R. El Bejjet*, H. Medromi

Team of Systems’ Architecture

Laboratory of Computing, Systems and Renewable Energy

National and High School of Electricity and Mecanics

Hassan II – Ain Chock University

Oasis, Casablanca, Morocco.

rachid.elbejjet@gmail.com, hmedromi@yahoo.fr

Abstract: This project aims to define and implement an evolutionary and generic platform for multi agents systems (MAS) simulation by an

agent-based approach. This paper describes an architecture designed and developed in this area. Its principle consists of dividing and modelling a

multi agent system to as many agents as necessary, an organisation and an environment. A designer or a programmer builds its application by

making a choice of the necessary agents, by coding their processing around a processing model and by associating them around integration

architecture, and then by coding non generic agents. This on-agent based approach, designed around a core to which we can add and develop

thematic software layers, enhance the modularity and the genericity of developments allowing their reuse in future developments. This

characteristic distinguishes our platform from other existing environments for being not only independent from any other particular multi-agents

model but it provides a generic models’ library as well.

Keywords : Multi agents systems, simulation, distributed intelligent platform, integration architecture.

I. INTRODUCTION

Currently the computer systems are more and more

complex, often distributed on several sites and constituted of

software in interaction between them or with human beings.

The need to use the technology agents become obvious and the

evolutions in this area are remarkable. In this context, the

conception and the development of a multi-agents system

(SMA) are complex problems because they require taking into

account several parts of the system that can often be tackled

under different angles. The designer must first identify the set

of the problems to solve, and then find some multi-agents

models for their resolution, implement them and then integrate

them in a coherent system. These tasks justify the use of

development environments that helps the designer by

providing him with tools and models already developed on

which he can rely.

There are a number of multi-agents models that can be

independent, competitive, complementary or incompatible.

The combination of several models to construct a complex

application is a non trivial problem. Most environments exist

Jade [3], FIPA [8], Madkit [9], Zeus [10] are founded on a

main model, what avoids the problem of consistency between

models but restricted the categories of applications to those

targeted by the model. Some recent environments such

VOLCANO [11] introduced the idea to use a model of

component to express the dependences between models and to

combine them.

This paper proposes a generic platform used in a

distributed environment. It has been conceived for the

simulation of the multi-agents systems, and based - itself – on

the agents approach, and by the way answers to needs, in

trials, development and implementation of the MAS

applications.

We will show how this architecture allows us to

implement different execution policies able to coexist inside

one only and same simulation.

The on-agents based approach adopted is presented then

in the section 2, the platform proposed for the simulation of

the multi-agents systems is discussed in section 3. The section

4 exposes an illustrative example of application by giving a

process of an application’s simulation achieved through our

platform.

II. ON AGENT-BASED APPROACH

In this part, we will give some basic and well-known

architecture’s model to illustrate our approach in terms of

agents and multi agents systems.

A. Basic model of a situated agent

For a certain proportion of multi-agents simulations (and

also for other types of applications, for example in robotics),

the agents are situated in an environment, that they discern

through their sensors, and on which they can act and can

produce some effects. The calculation’s cycle (at every step of

simulation) is usually the next one: the agent discerns via his

sensors its environment (in particular, the presence of other

agents close by, of obstacles, of pheromones. . .); these data

are treated by its behaviour (intern); to produce, via its

effectors, actions on the environment (ex. moving, taken of

ball or object, deposit of pheromone. . .). The general model of

a situated agent follows the cycle as follows:

sensors ���� behaviours ���� effectors

Therefore, the abstract architecture model in figure 1.

R. El Bejjet et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 273-277

© 2010, IJARCS All Rights Reserved 274

Figure 1. General architecture of a situated agent [18]

B. Multi agents systems

According to the model Vowels of Yves Demazeau, a

MAS can be defined as:

o a set B of entities put in an environment E (E is

characterized by the set of the states of the

environment S)

o a set A of agents A B

o an action system operations) allowing these agents to

act in E (an operation is a function of S => S

o a communication system between agents (mails

sending, signal broadcast, … (I as interaction)

o an organisation O structuring the set of agents and

defining the functions in charge of agents (notion of

role and eventually of groups)

o eventually: a links to users U who act in this MAS

through agents interfaces U A

Furthermore, we consider three levels of analyse witch are:

the agent, the interaction and the organisation.

Figure 2. Analysis levels of a MAS application (according to [Ferber])

III. DESCRIPTION OF THE PROPOSED

PLATFORM

The platform should not be limited to a type of specific

MAS and should remain generic and expandable, so we chose a

modular approach: The core only structures the application and

these are the modules that provide some functions to the

application. So, for a particular application, only the necessary

modules are invoked and are used.

In this way the MASSDIP platform (Figure 3.), remains

the fastest and lightest possible by avoiding any useless code

charged in memory. At the same time it can adapt to different

types of MAS thanks to the addition of suitable agents. In

counter part, being intended to a “professional” use, the

platform requires for its use, some skills in Java programming.

The platform is conceived in three layers, each can be

modelled by a package: A central part (package easyAgent), a

modules part (package easyAgentModule) and a user part. It is

to note that the central part can be compiled regardless of the

modules part and the user part. In the same way the modules

part can be compiled without the user part.

Figure 3. A functional architecture of the platform MASSDIP

A. The central part

The central part is designed in two packages: kernel and

agent interfaces. The package kernel is intended to integrate the

system code of the platform. This package is in charge of the

management of the modules and agents. The package agent

contains all interfaces and abstract classes that it is necessary to

redefine in the modules and the part application.

The package kernel consists of three important classes:

- Master agent (Masteragent),

- Interactions agent (Message),

- Display agent (MainWindow).

• MasterAgent is the main agent of the platform that

manages all the application. It is the class that manages all

the application. MasterAgent is a singleton and we can

recover its process thanks to the function getInstance ().

MasterAgent contains several functions allowing to start

the simulation, to stop it and to leave the program that is

respectively start(), stop() and quit(). MasterAgent

R. El Bejjet et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 273-277

© 2010, IJARCS All Rights Reserved 275

possesses an IAgentManager by default that it is possible

to inform by the setDefaultAgentManager() function and

to recover by the getDefaultAgentManager() function.

MasterAgent forks also a window that it is possible to

recover by the function getMainWindow(). The modules

of display are added automatically to the main window by

the function addDisplayer(IDisplayer) of MasterAgent.

• MainWindow is the main interface of the program. It

places all IDisplayer on a GridBagLayout. The window

manages some Components. It lets some freedom to the

programmers to implement the displays of the modules.

The Components are placed in a gridBagLayout. All

IDisplayers must provide therefore the window with one

Component and one GridBagConstraint.

• Message is the class that acts as envelope and post station

for the classes coming from IMessageBody. The

constructor of Message takes three arguments:

- One IAgent witch is the mail sender.

- One IAgent witch is the recipient.

- One IMessageBody witch is the mail body

The package agent contains all interfaces that must be

implemented by the different modules and agents. We will can

keep the few important interfaces:

- Agent interface (Iagent),

- Display interface (IDisplayer),

- Manager interface (IManager).

We will note that the package agent contains a Group class

that implements IAgentContener. The Group class records the

agents that he contains in a TreeMap. In the same way the

package contains a class Agent that records itself automatically

by the defaultAgentManager.

B. The modules agents

If the core ensures organizing and structuring the

application, the modules provide the means to achieve it. It

requires the setting up of specialized agents, regrouping some

interdependent classes, these classes should implement or

extend the interfaces or the classes defined in the

easyAgent.agent packages or easyAgent.core.message. The

classes can be mainly managers, displayers or define bodies of

specific message to the module.

The package easyAgent.agent.manager has two interfaces :

- IAgentManager

- IspaceManager

These interfaces that inherit IAgent and IAgentContener

and must possess a means therefore to contain the agents that

record themselves. The definite classes should, of course,

define all abstracted functions of these interfaces, but it is to

note that a Group class IAgent and IAgentContener have

already been defined in this package, defining all these

functions of the classic manner of use and using a TreeMap in

which it arranges the agents that are recorded themselves, one

can recover these agents then from their name, or in the

alphabetic order of this one. We can extend Group therefore

and can only redefine the specific functions to the module.

The displayers must implement interfaces IDisplayer of the

easyAgent.agent.displayer package, if they must only display

an agent, they can implement IAgentDisplayer. They must

define getComponent() and getGridBagConstraints() that return

the element to display to the screen as well as the constraints to

place it in the GridBagLayout of the main window. The body

of a message should implement IMessageBody of the

easyAgent.agent.message package and will be able to contain

some attributes or no.

• Manager module: This agent consists of an AgentManager

class that implement IAgentManager and extends the

Group class. It contains a function run() that calls the

function run() of each of its agents, in the order of its

TreeMap. If an agent returns false, AgentManager is

interrupted by itself and returns false. A process of this

class is defined by the application as

DefaultAgentManager by the MasterAgent.

• Message Displayer Agent: This agent consists of an

unique AgentDisplayer class that implements

IAgentDisplayer and extends javax.swing.JTextArea. It is

used to display an agent's information in the main display

window.

• Message Displayer Module : This module contains two

classes, Message and MessageDisplayer. The class

Message extends easyAgent.core.message.Message and

replace it in the application so that any sent message is

displayed thanks to the MessageDisplayer.

MessageDisplayer implements IDisplayer and displays the

messages in a textArea. The size of this one being limited,

the display is interrupted by itself but the application goes

ahead.

• Positionning module agent: This agent consists of three

classes :

 - SpaceManager2D: knows the place of any agent so to

allow its display.

 - SpaceDisplayer2D: displays the agents in their grid.

 - IMove: body of message that agent should send to

SpaceManager2D when moving.

IV. EXPERIMENT

The aim of this project is the conception and the achieving

of a platform for multi-agents systems’ simulation. It is

proposed, here, the description of a simulation process for a

particular on-agents based application.

A. Description of the application to be simulated

The example is about a simulation of a multi-agents

system of a soccer team. (Figure. 4), designed as follows:

• Six cognitive agents: Who play the role of players, these

players are cognitive by looking to have enough information

on their environment (here the land) and to act according to

the different situations. So each player is able to see both the

ball and the other players, to know his adversaries and to

react while taking in consideration all these information.

Also, as in a team of football, here the coordination and the

communication are indispensable for a good progress of all

operation.

• Two reactive agents: These agents will be the goal keepers,

the interest that these are reactive agents relies on the fact

that a goal keeper doesn't react before the ball is close to the

goal. Therefore an agent that plays a referee's role will react

(to get ready to catch the ball) in the case where a ball will

enter in a given perimeter.

• An arbitrate agent: This agent supervises the behaviours of

the other agents of the two teams in order to not to pass the

sides of the land. He is a reactive agent because he only

reacts on the event that is the exit of an agent out of the land.

R. El Bejjet et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 273-277

© 2010, IJARCS All Rights Reserved 276

Figure 4. Example of MAS application to be simulated

B. Description of the simulation process

The tools chosen to develop this platform are java, html and

associated tools. The choice of java is based on its well-known

portability and web technology suitability.

Figure 5. User interface

Once the designer creates the agents and objects to the

number and type required to its application, he has available

means to create the rules of behaviours and models of

knowledge for each of the agents. Finally, he can implement

the logic of interactions by messages. The designer can start the

simulation and can refine his application thus by multiplying

the scenarios of its implementation.

Figure 6. Simulation scenario of a soccer team

V. CONCLUSION

In this paper, we presented a distributed and intelligent

platform intended to the simulation of the multi agents systems.

This architecture is relatively original, because it is based on

the agent's behaviour and also by the fact that it is developed

directly by the Java language.

These features offer interesting possibilities of genericity

and combination. Besides, it is simple of use, distributed and

extendable, it provides as well as a precise control of the

internal organization to an agent, witch is much valuable in

particular for the of multi-agent applications’ simulation field.

We think that there is no optimal architecture of agents; it

depends notably on the area of application considered and on

the needs. A general architecture (hybrid), as InteRRaP, that

tempts to reconcile and factorise at a time the cognitive

architectures and the reactive architectures, is powerful but also

complex. To the contrary, our model of architecture is simpler;

it limits itself in fact to a model by layers, the efficient

architecture remaining to be define by the designer.

Our platform has been tested more especially on the

applications of simulations developed within the EAS team of

the ENSEM.

We hope to have been able to show some of its abilities. Its

applicability to other types of trials and agents remained to

experiment and to value. But the MASSDIP framework is in

fact generic enough, and it is especially about having a library

of agents and abstracted architectures appropriated to the types

of applications and architectures considered.

VI. REFERENCES

[1] Drogoul A., De la simulation multi-agent à la
résolution collective de problèmes, Thèse de
doctorat, Université Paris 6, 1993.

[2] Guessoum Z., Un environnement opérationnel de
conception et de réalisation de systèmes multi-
agents, Thèse de doctorat, Université Paris 6, mai
1996.

[3] Briot J.-P., Demazeau Y. (ed), Principes et
architecture des systèmes multi-agents, Collection
IC2, Hermès, 2001.

[4] Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.,
Jade Programmer’s Guide, JADE 2.5, 2002.

[5] Carabelea C., Boissier O., Florea A., Autonomie dans
les systèmes multiagents, JFSMA ’03, 2003.

[6] Meyer D., Buchta C., SIMENV: A Dynamic
Simulation Environment for Heterogeneous Agents,
Working Paper SFB, Nr. 100, August 2003.

[7] Enterprise JavaBeans,
http://java.sun.com/products/ejb/index.jsp.

[8] Foundation for Intelligent Physical Agents,
http://www.fipa.org.

[9] [9] Gutknecht O., Ferber J., Michel F., MadKit: Une
expérience d’architecture de plate-forme multi-agent
générique, Pesty S., Sayettat C., Eds.,
JFIADSMA’00, St Jean-la-Vêtre, Loire, France,
Octobre 2000, Hermès, p. 223-236.

[10] Nwana H., Ndumu D., Lee L., Collis J., Zeus ; A
Tool-Kit for Building Distributed Multi-Agent
Systems, Applied Artificial Intelligence Journal, vol.
13, no 1, 1999, p. 129-186.

[11] Ricordel P.-M., Demazeau Y., La plate-forme
VOLCANO : modularité et réutilisabilité pour les
systèmes multi-agents, Numéro spécial sur les
plates-formes de développement SMA. Revue
Technique et Science Informatiques (TSI), 2002.

R. El Bejjet et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 273-277

© 2010, IJARCS All Rights Reserved 277

[12] Guessoum Z., Briot J.-P., From Active Objects to
Autonomous Agents, IEEE Concurrency 7,(3), ,
1999, p. 68-76.

[13] Guessoum Z., Occello M.,Environnements de
Développement, Briot J.- P., Demazeau Y., Eds.,
Principes et architectures des systèmes multi-agents,
p. 177-206, Hermès Sciences Publications, Paris,
France, Décembre 2001.

[14] Hubner J. F., Sichman J. S., Boissier O.,
Spécification structurelle, fonctionnelle et déontique
d’organisations dans les Systèmes Multi-Agents,

Mathieu P., Muller J.-P., Eds., JFIADSMA’02,
Lille, France, 2002, p. 205-216.

[15] G. Cabri, L. Leonardi, F. Zambonelli “BRAIN: a
Framework for Flexible Rolebased Interactions in
Multi-agent Systems”, Proceedings of CoopIS 2003,
2003.

[16] E. A. Kendall, “Role Modelling for Agent Systems
Analysis, Design and Implementation”, IEEE
Concurrency, 8(2): 34-41, April-June 2000.

[17] J. Ferber: Les systèmes multi-agents, vers une
intelligence collective, Paris, InterEditions, 1995.

