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Abstract:  There are many algorithms for usual one man TSP developed by researchers from time to time. But the problem has not received 
much attention in its required context. In this paper we study a problem called TSP with Variant Constraint. Lexi-Search is by far the mostly 
used tool for solving large scale NP-hard Combinatorial Optimization problems. Lexi-Search is, however, an algorithm paradigm, which has to 

be filled out for each specific problem type, and numerous choices for each of the components exist. Even then, principles for the design of 
efficient Lexi-Search algorithms have emerged over the years. Although Lexi-Search methods are among the most widely used techniques for 
solving hard problems, it is still a challenge to make these methods smarter. The motivation of the calculation of the lower bounds is based on 
ideas frequently used in solving problems. Computationally, the algorithm extended the size of problem and find better solution. 

 
Keywords: Travelling Salesman Problem, Tour, Lexi-Search, Word, Pattern 

 

I. INTRODUCTION  

The Travelling Salesman Problem (TSP) is a 

classical problem of combinatorial optimization of 

operations research area. The purpose is to find a shortest 

tour through a given no. of locations such that every location 
is visited exactly once. The cost of travelling from location i 

to location j is denoted by Cij.  These costs are symmetric if 

Cij = Cji for each of pair of cities i and j, and asymmetric 

otherwise. There are several practical uses for this problem, 

such as vehicle routing with the additional constraints of 

vehicle’s route, such as capacity of vehicles [1], drilling 

problems [2], minimize waste [3], clustering data arrays [4], 

X-ray crystallography [5], shot sequence generation for scan 
lithography [6] and many others. 

 This problem has also been used during the last 

years as comparison basis for improving several 

optimizations techniques, such as genetic algorithms [7], 

simulated annealing [8], tabu search [9], local search [10], 

ant colony [11] and Branch and Bound (B&B). The 

principal types of B&B used to solve the TSP are: The best 

known exact algorithms are based on either the B&B 
method for the Asymmetric TSP (ATSP) [12] or the Branch 

and Cut (B&C) method for the Symmetric TSP (STSP) 

using the double index formulation of the problem [13]. 

Currently, most algorithms for the TSP ignore high cost arcs 

or edges and save the low cost ones. A drawback of this 

strategy is that costs of arcs and edges are not accurate 

indicators whether those arcs or edges are saved in an 

optimal TSP solution.  
 

“There are n cities and N= {1, 2, 3,... ,n}. The cost 

array C (i, j, k) is the cost of a salesman visiting from city i 

to city j at time (availing facility) k is known (i, j=1, 2, 3,…, 

n; k=1, 2, 3,…..m)”.Here the third dimension need not be 

the usual time which is continuous, but a factor which 
influences the cost C and can be a facility. 

 

A variant of well – known Traveling Salesman 

Problem where a tour does not necessarily visit all cities is 

called the Generalized Traveling Salesman Problem. More 

specifically, the set of „n‟ cities are divided into r sets such 

that the N = NNN r
,...,

21
and 

NN ji

. A 

subset with m < n cities has to be traveled by the salesman. 

The number of cities travelled by as salesman is m. The 

Travelling Salesman has to visit np

 cities in the N p

 sets. 

The problem is to find a minimum cost tour by visiting „m‟ 

cities with given number of np

  cities, where 

r

p p
mn1

 

 

In the sequel we developed a lexi-search algorithm 

based on the “Pattern Recognition Technique” to solve this 

problem which takes care of the simple combinatorial 

structure of the problem. In Section 2, a Lexi-Search method 
was developed for the TSP with a variant constraint and 

mathematical formulation is shown in Section 3. The 

algorithm is presented in Section 4. The computational 

results are provided in Section 5 and the concluding remarks 

are given in Section 6. 

II. AN ALGORITHM   

The name Lexicographic-search or Lexi-search method 

implies that the search is made for an optimal solution in a 
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systematic way, just as one search for meaning of a word in 

a dictionary. When the process of feasibility checking of a 

partial word becomes difficult, though lower bound 

computation is easy, Pattern Recognition Technique [14] 

can be used. Lexi-Search algorithms, in general, require less 

memory, due to the existence of Lexicographic order of 
partial words. If Pattern Recognition Technique is used, the 

dimension requirement of the problem can be reduced, since 

it reduces to the two-dimensional cost array into a linear and 

the problem can be reduced to a linear form of finding an 

optimal word of length n [14] and hence reduces 

computational work in getting an optimal solution. 

III. MATHEMATICAL FORMULATION 

 

 
                                                        -------------------(1) 

 

k = 1, 2 . . . m 
                                                      ----------------- (2) 

 

 
                                                      ---------------- (3) 

 

 
                                                      ------------- (4) 

Constraints (2) & (3) and the restrictions are  

otherwiseikjiX
ipi

n

j

m

k
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otherwisejkjiX
jpj

n
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k
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and 

,n pj jN p

define the constraint set of the 

generalized TSP, whose objective function (1) is minimum. 
Equation (4) represents that the salesman visits the city j 
from city i at time or facility k is 1 otherwise 0. X is a 
feasible tour is it satisfies all the constraints and restrictions 

      

IV. THE ALGORITHM 

The name Lexicographic-search or Lexi-search 

method implies that the search is made for an optimal 

solution in a systematic way, just as one search for meaning 

of a word in a dictionary. When the process of feasibility 

checking of a partial word becomes difficult, though lower 

bound computation is easy, Pattern Recognition Technique 

[14] can be used. Lexi-Search algorithms, in general, require 

less memory, due to the existence of Lexicographic order of 

partial words. If Pattern Recognition Technique is used, the 

dimension requirement of the problem can be reduced, since 

it reduces to the two-dimensional cost array into a linear and 

the problem can be reduced to a linear form of finding an 

optimal word of length n [14]&[15] and hence reduces 
computational work in getting an optimal solution. The 

concepts and notations involved in the Lexi-Search are 

briefly described below. 

A. Pattern Recognition Technique: 

The search efficiency of a Lexi-Search algorithm is based on 

the choice of an appropriate Alphabet-Table. In this case 
two conflicting characteristics of the search list have to be 

taken into account: one is the difficulty in setting bounds to 

the values of the partial words (that defines partial solutions 

representing subsets of solutions). The other difficulty is in 

checking the feasibility of a partial word. Thus two cases 

arises in the choice of Alphabet Table [14] 

 

(i). The process of checking the feasibility of a partial word 

is easy, while the calculations of a lower bound is bulky and  

(ii). Computation of lower bound is easy, while the 

feasibility checking is difficult. 
 

 When the process of feasibility checking of a partial word 

becomes difficult and the lower bound computation is easy, 

a modified Lexi-Search i.e. Lexi-Search with recognizing 

the Pattern of the solution known as Pattern Recognition 

Technique [14] can be adopted. In this method, in order to 

improve the efficiency of the algorithm, first the bounds are 

calculated and then the partial word, for which the value is 

less than the initial (trial) value are checked for the 

feasibility. 

B. Pattern: 

An indicator matrix X, associated with an appropriate 

assignment of tasks to the agents is defined as a Pattern. A 

Pattern is said to be feasible, if X is feasible. Each pattern X 

can also be represented by the set of all ordered triples {(i, j, 

k)}, for which X (i, j, k) =1. In general, there will be m*n*k 
ordered pairs in a matrix X (m, n, k).  

C. Alphabet Table & Word: 

Let Lk = (a1,a2. . .ak). aiε SN be a ordered sequence of k 

indices from S. The pattern represented by the ordered 
triples indices are given by Lk is independent of the order of 

ai in the sequence. For uniqueness, the indices in Lk are 

arranged in increasing order, such that ai < ai+1, i = 

1,2, . . .,k-1. The set S is defined as Alphabet-Table with 

alphabetic order as (1,2, . . .,n3) and the ordered sequence Lk 

is defined as a word of length k. A word Lk is said to be 

sensible word if ai < ai+1, i = 1, 2. . . k-1; non sensible 

otherwise. It is said to be feasible, if it represents a feasible 
pattern. Any of the letters in S can occupy the first place in a 

word Lk. Our interest is only in set of words of length atmost 

equal to n, since the words of length greater than n are 

necessarily infeasible, as any feasible pattern can have only 

n unit entries in it. If k < n, Lk is called a Partial word and if 

K = n, it is a full length word or simply a word. A partial 

word Lk represents a block of words with Lk as a leader i.e. 
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as its first k letters. A leader is said to be feasible, if the 

block of words defined by it has at least one feasible 

word.The value of the (partial) word Lk, V(Lk) is recursively 

defined as V(Lk) = V(Lk-1) + D (ak) with V(L0) =0, where D 

is the cost array arranged such that, D(ak) < D(ak+1). V (Lk) 

and the value of the pattern X, will be the same, since X is 

the (partial) pattern represented by Lk. 
 

D. Lowerbound of a Partial Word: 

 

A lower bound LB (Lk), for the values of the blocks of 

words represented by Lk = (a1, a2. . . ak) can be defined as 

follows: 

)()()(
1

jDVLB
km

j
kkk aLL

 

E. Feasibility criterion of a Partial Word 

A recursive algorithm is developed for checking the 

feasibility of a partial word LK+1= (a1, a2,…..,ak, ak+1) given 

that LK is a feasible partial word. We will introduce some 

more notations which will be useful in the sequel. 

IR  be an array where IR (i) =1, i  N represents that 

the salesman is visiting                        some city 

from city i, otherwise zero. 
IC       be an array where IC (i) =1, i  N represents that the 

salesman is coming to city i from Some city; otherwise zero.    

   

IT      be an array where IT (i) =1, i  N represents that 

the salesman at time (facility) „i‟ travels one pair of cities. 

SW be an array where SW (i) is the city that the 

salesman is visiting from city i,Sw(i) = 0  indicates that the 

salesman is not visiting any city from city i. 

L          be an array where L (i) is the letter in the ith position 

of a word. 

NL    be an array where NL (i) =q indicates that q cities 
are covered up to ith Position of a Word. 

GS be an array where GS (i) represents ith group 

number of cities. 

Then for a given partial word LK = (a1,a2,…..,aK) the values 

of the arrays RI, CI, TI, SW, L ,NL and GS as follows. 

IR(R (ai)) =1,           i=1, 2, 3……..K  

IC(C (ai)) =1,            i=1, 2, 3……..K  

IT (T (ai)) =1,            i=1, 2, 3……. K  

SW(R (ai)) =C (ai),    i=1, 2, 3……..K  

L (i) =ai,                       i=1, 2, 3……..K   

NL(i)=NL(i-1)+1, if IC(R(ai))=0  and  NL(i)=NL(i-1)+1, if 

IR(C(ai))=0     i=1,2,3….K 
GS (GN(R (ai)) =GS (GN(R (ai)) +1     if IC(R (ai)) =0         

and   

GS (GN(C (ai)) =GS (GN(C (ai)) +1     if IR(C (ai)) =0      

i=1,2,3….K 

The recursive algorithm for checking the feasibility 

of a partial word LP is given as follows: In the algorithm 

first we equate IX=0. At the end if IX=1 then the partial 

word is feasible, otherwise it is infeasible. For this algorithm 

we have TR=R (ap+1), TC=C (aP+1) and TT=T (aP+1).     

 

Algorithm – 1:        
STEP1: IX=0 

 NXA=NL [I-1] 

 TCX=TC 

 GOTO 2 

  

STEP 2: IS (IR (TR) = 1)  IF YES GOTO 10 

        IF NO GOTO 2A 

 

STEP2A:IS (IC (TC) = 1)  IF YES GOTO 10 

                            IF NO GOTO 2B 

 

STEP2B:IS (IT (TT) = 1)  IF YES GOTO 10 

                  IF NO GOTO 3 
 

STEP3: IS IC (TR) =0  IF YES NXA=NXA+1 

GOTO 3A 

    IF NO GOTO 3A 

 

STEP3A:IS IR (TC) =0  IF YES NXA=NXA+1 

GOTO 3B 

    IF NO GOTO 3B 

 

STEP3B:IS (NXA>M)   IF YES GOTO 10 

                                             IF NO GOTO 4 
 

STEP4: IS IC (TR) =0  IF YES GS (GN (TR)) = 

GS (GN (TR)) +1   GOTO 4A 

    IF NO GOTO 4A 

 

STEP4A:IS IR (TC) =0  IF YES GS (GN (TC)) = 

GS (GN (TC)) +1   GOTO 4B 

    IF NO GOTO 4B 

 

STEP4B :IS GS (GN (TR)) <= GP (TR)                               

                                            IF YES GNZ1=0 GOTO 4C 

    IF NO GNZ1=1 GOTO 4C 
 

STEP4C :IS GS (GN (TC)) <= GP (TC)                              

                             IF YES GNZ2=0 GOTO 4D 

   IF NO GNZ2=1 GOTO 4D 

 

STEP4D:NPA=NP-(GNZ1+GNZ2)  GOTO 5 

 

STEP5: IS M – NXA <= NPA IF YES GOTO 6 

    IF NO GOTO 7 

 

STEP6: IS (SW (TCX) = 0)           IF YES IX=1 GOTO 10 
                             IF NO IK=SW (TCX) 

GOTO 6A 

 

STEP6A:IS (IK=TR)                     IF YES GOTO 6B 

               IF NO TCX=IK GOTO 6 

 

STEP6B:IS (I=M)   IF YES IX=1 GOTO 10  

    IF NO GOTO 10 

 

STEP7: IS IC (TR) =0  IF YES GS (GN (TR)) = 

GS (GN (TR)) – 1  GOTO 7A  

    IF NO GOTO 7A 
 

STEP7A:IF IR (TC) =0  IF YES GS (GN (TC)) = 

GS (GN (TC)) – 1  GOTO 10 

    IF NO GOTO 10 

 

STEP10: STOP. 
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This recursive algorithm will be used as a subroutine in 

the lexi-search algorithm. We start the algorithm with a very 

large value, say, 9999 as a trial value of VT. If the value of a 

feasible word is known, we can as well start with that value 

as VT. During the search the value of VT is improved. At 

the end of the search the current value of VT gives the 

optimal feasible word. We start with the partial word L1= 

(a1) = (1). A partial word Lp=Lp-1 (ap) where  indicates 
chain form or concatenation.  We will calculate the values of 

V (Lp) and LB (Lp) simultaneously. Then two cases arises 

(one for branching and other for continuing the search). 

                                                                                                                                                              

LB (Lp) < VT. Then we check whether Lp is feasible or not. 

If it is feasible we proceed to consider a partial word of 

order (p+1), which represents a sub block of the block of 

words represented by Lp. If Lp is not feasible then consider 

the next partial word of order p by taking another letter 
which succeeds ap in the pth position. If all the words of 

order p are exhausted then we consider the next partial word 

of order (p-1). 

 

LB (LP)  VT. In this case we reject the partial word 

meaning that the block of words with Lp as leader is rejected 

for not having an optimal word and we also reject all partial 

words of order p that succeeds Lp.  

           Now we are in a position to develop lexi search 
algorithm to find an optimal feasible word. 

 

ALGORITHM 2: (LEXI-SEARCH ALGORITHM) 

The following algorithm gives an optimal feasible word. 

STEP 1 : (Initialization) 

                                    The arrays SN, D,  DC,  R,  C, T and 

values of N, M, GN, GP are  

made  available   IR, IC, IT, SW,  

L,  NL,  GS, V, LB  are 

initialized to zero. The values 

I=1, J=0, VT=9999, 

NZ=N N M –N, MAX=NZ-1 

 

STEP 2:  J=J+1  

  IS (J>MAX) IF YES GOTO 11 

                        IF NO GOTO 3 

 

STEP 3:  L (I) = J 

  JA = J + M - I 
  IS (I = 1)  

 IF YES  NXA = 0,  V (I) = D (J)  GOTO 3B 

     IF NO  NXA=NL (I-1)  GOTO 3A 

 

STEP 3A:  V (I) = V (I -1) + D (J)  

GOTO 3B  

                         

STEP 3B:   LB (I) = V (I) + DC (JA) – DC (J) 

     GOTO 4 

 

STEP 4:IS (LB (I)  VT)  IF YES GOTO 11 
     IF NO GOTO 5 

 

STEP 5:  TR=R (J) 

    TC=C (J) 

    TT=T (J) 

    GOTO 6 

 

STEP 6: CHECK THE FEASIBILITY OF L (USING 

ALGORITHM-1)  

                                     IS (IX=0) IF YES GOTO 2 

    IF NO GOTO 7 

 

STEP 7 :  IS (I=M)  IF YES GOTO 10 
    IF NO GOTO 8 

 

STEP 8 :  L (I) = J 

     IR (TR) = 1 

     IC (TC) = 1 

     IT (TT) = 1 

     SW (TR) = TC 

     NL (I) = NXA 

   GOTO 9 

 

STEP 9 :  I=I+1 
     MAX=MAX+1 

     GOTO 2 

 

STEP10 :  L (I) =J L (I) IS FULL LENGTH WORD 

AND IS FEASIBLE. 

     VT=V (I), record L (I), VT,

  

     GOTO 13 

 

STEP11 :  IS (I=1) IF YES GOTO 14 

   IF NO GOTO 12 

 
STEP12 :  I=I-1 

     MAX=MAX+1 

  GO TO 13 

STEP13 :  J=L (I) 

  NL (I) = 0 

TR = R (J) 

 TC = C (J) 

TT = T (J) 

 IR (TR) = 0 

 IC (TC) = 0 

 IT (TT) = 0 
 SW (TR) = 0 

  GS (GN (TR)) = GS (GN (TR)) -1 

  GS (GN (TC)) = GS (GN (TC)) -1 

 GOTO 2 

STEP14 :  STOP     END 

 

V. COMPUTATIONAL RESULTS 

A Computer program for the proposed algorithm is 
written in C language and is tested on the COMPAQ 
system. We tried a set of problems for different sizes. 
Random numbers are used to construct the Time 
matrix. The following table gives the list of the 
problems tried along with the average CPU time in 
seconds required for solving them. 
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Table I.  (CPU run time in seconds for Lexi-Search Algorithm) 

Sr. 

No. 

Problem Dimensions AT Type-I  Type-II  Type-III 

 n m   Min  Max  Avg Min  Max Avg Min Max Avg 

1 10 5  0.010 0.021 0.040 0.035 0.026 0.004 0.003 0.002 0.004 0.003 

2 20 12  0.0027 0.02 0.005 0.0035 0.004 0.006 0.050 0.002 0.005 0.0035 

3 25 16  0.0037 0.002 0.004 0.003 0.002 0.004 0.003 0.002 0.004 0.003 

4 35 24  0.0036 0.002 0.004 0.003 0.002 0.004 0.003 0.002 0.004 0.003 

5 40 28  0.0038 0.002 0.005 0.0035 0.004 0.006 0.005 0.002 0.005 0.0035 

 

VI. CONCLUSIONS 

The problems are solved by using Lexi-search algorithm 
based on the pattern recognition technique. In the above table 
m represents that the salesman has visited the number of cities. 
The cost matrix was generated randomly in the interval [0,100]. 
For each type of instance we considered six trails. Our 
algorithm has been implemented in C program. The 
computational experiments were performed on  a personal 
computer with AMD SempronTM Processor LE-1200, 
2.10GHz, 896RAM and OS Windows XP Profesional. In the 
table-1 we have presented the computational results for solving 
the problem using the Lexi-Search algorithm based on the 
Pattern Recognition Technique. 
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