
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 463

ISSN No. 0976-5697

Travelling Salesman Problem with a grouping Constraint – A Lexi-Search Approach

Dr. K.Sobhan Babu*

Assistant Professor in Mathematics

U C E K, J N T U Kakinada

Kakinada, A.P., India

sobhanjntu@gmail.com

Dr. Keshava Reddi.E
Associate Professor in Mathematics

College of Engineering, J N T U Anantapur

Anantapur, A.P., India

keshava_e@gmail.com

Prof.Sundara Murthy.M
Senior Professor in Mathematics

Sri Venkateswara University, Tirupati

Chittor, A.P., India

profmurthy@gmail.com

Abstract: There are many algorithms for usual one man TSP developed by researchers from time to time. But the problem has not received
much attention in its required context. In this paper we study a problem called TSP with Variant Constraint. Lexi-Search is by far the mostly
used tool for solving large scale NP-hard Combinatorial Optimization problems. Lexi-Search is, however, an algorithm paradigm, which has to

be filled out for each specific problem type, and numerous choices for each of the components exist. Even then, principles for the design of
efficient Lexi-Search algorithms have emerged over the years. Although Lexi-Search methods are among the most widely used techniques for
solving hard problems, it is still a challenge to make these methods smarter. The motivation of the calculation of the lower bounds is based on
ideas frequently used in solving problems. Computationally, the algorithm extended the size of problem and find better solution.

Keywords: Travelling Salesman Problem, Tour, Lexi-Search, Word, Pattern

I. INTRODUCTION

The Travelling Salesman Problem (TSP) is a

classical problem of combinatorial optimization of

operations research area. The purpose is to find a shortest

tour through a given no. of locations such that every location
is visited exactly once. The cost of travelling from location i

to location j is denoted by Cij. These costs are symmetric if

Cij = Cji for each of pair of cities i and j, and asymmetric

otherwise. There are several practical uses for this problem,

such as vehicle routing with the additional constraints of

vehicle’s route, such as capacity of vehicles [1], drilling

problems [2], minimize waste [3], clustering data arrays [4],

X-ray crystallography [5], shot sequence generation for scan
lithography [6] and many others.

 This problem has also been used during the last

years as comparison basis for improving several

optimizations techniques, such as genetic algorithms [7],

simulated annealing [8], tabu search [9], local search [10],

ant colony [11] and Branch and Bound (B&B). The

principal types of B&B used to solve the TSP are: The best

known exact algorithms are based on either the B&B
method for the Asymmetric TSP (ATSP) [12] or the Branch

and Cut (B&C) method for the Symmetric TSP (STSP)

using the double index formulation of the problem [13].

Currently, most algorithms for the TSP ignore high cost arcs

or edges and save the low cost ones. A drawback of this

strategy is that costs of arcs and edges are not accurate

indicators whether those arcs or edges are saved in an

optimal TSP solution.

“There are n cities and N= {1, 2, 3,... ,n}. The cost

array C (i, j, k) is the cost of a salesman visiting from city i

to city j at time (availing facility) k is known (i, j=1, 2, 3,…,

n; k=1, 2, 3,…..m)”.Here the third dimension need not be

the usual time which is continuous, but a factor which
influences the cost C and can be a facility.

A variant of well – known Traveling Salesman

Problem where a tour does not necessarily visit all cities is

called the Generalized Traveling Salesman Problem. More

specifically, the set of „n‟ cities are divided into r sets such

that the N = NNN r
,...,

21
and

NN ji

. A

subset with m < n cities has to be traveled by the salesman.

The number of cities travelled by as salesman is m. The

Travelling Salesman has to visit np

 cities in the N p

 sets.

The problem is to find a minimum cost tour by visiting „m‟

cities with given number of np

 cities, where

r

p p
mn1

In the sequel we developed a lexi-search algorithm

based on the “Pattern Recognition Technique” to solve this

problem which takes care of the simple combinatorial

structure of the problem. In Section 2, a Lexi-Search method
was developed for the TSP with a variant constraint and

mathematical formulation is shown in Section 3. The

algorithm is presented in Section 4. The computational

results are provided in Section 5 and the concluding remarks

are given in Section 6.

II. AN ALGORITHM

The name Lexicographic-search or Lexi-search method

implies that the search is made for an optimal solution in a

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,463-467

© 2010, IJARCS All Rights Reserved 464

systematic way, just as one search for meaning of a word in

a dictionary. When the process of feasibility checking of a

partial word becomes difficult, though lower bound

computation is easy, Pattern Recognition Technique [14]

can be used. Lexi-Search algorithms, in general, require less

memory, due to the existence of Lexicographic order of
partial words. If Pattern Recognition Technique is used, the

dimension requirement of the problem can be reduced, since

it reduces to the two-dimensional cost array into a linear and

the problem can be reduced to a linear form of finding an

optimal word of length n [14] and hence reduces

computational work in getting an optimal solution.

III. MATHEMATICAL FORMULATION

 -------------------(1)

k = 1, 2 . . . m
 ----------------- (2)

 ---------------- (3)

 ------------- (4)

Constraints (2) & (3) and the restrictions are

otherwiseikjiX
ipi

n

j

m

k
i N ,0&,1,),,(

1 1

and

,n pi iN p

otherwisejkjiX
jpj

n

i

m

k
j N ,0&,1,),,(

1 1

and

,n pj jN p

define the constraint set of the

generalized TSP, whose objective function (1) is minimum.
Equation (4) represents that the salesman visits the city j
from city i at time or facility k is 1 otherwise 0. X is a
feasible tour is it satisfies all the constraints and restrictions

IV. THE ALGORITHM

The name Lexicographic-search or Lexi-search

method implies that the search is made for an optimal

solution in a systematic way, just as one search for meaning

of a word in a dictionary. When the process of feasibility

checking of a partial word becomes difficult, though lower

bound computation is easy, Pattern Recognition Technique

[14] can be used. Lexi-Search algorithms, in general, require

less memory, due to the existence of Lexicographic order of

partial words. If Pattern Recognition Technique is used, the

dimension requirement of the problem can be reduced, since

it reduces to the two-dimensional cost array into a linear and

the problem can be reduced to a linear form of finding an

optimal word of length n [14]&[15] and hence reduces
computational work in getting an optimal solution. The

concepts and notations involved in the Lexi-Search are

briefly described below.

A. Pattern Recognition Technique:

The search efficiency of a Lexi-Search algorithm is based on

the choice of an appropriate Alphabet-Table. In this case
two conflicting characteristics of the search list have to be

taken into account: one is the difficulty in setting bounds to

the values of the partial words (that defines partial solutions

representing subsets of solutions). The other difficulty is in

checking the feasibility of a partial word. Thus two cases

arises in the choice of Alphabet Table [14]

(i). The process of checking the feasibility of a partial word

is easy, while the calculations of a lower bound is bulky and

(ii). Computation of lower bound is easy, while the

feasibility checking is difficult.

 When the process of feasibility checking of a partial word

becomes difficult and the lower bound computation is easy,

a modified Lexi-Search i.e. Lexi-Search with recognizing

the Pattern of the solution known as Pattern Recognition

Technique [14] can be adopted. In this method, in order to

improve the efficiency of the algorithm, first the bounds are

calculated and then the partial word, for which the value is

less than the initial (trial) value are checked for the

feasibility.

B. Pattern:

An indicator matrix X, associated with an appropriate

assignment of tasks to the agents is defined as a Pattern. A

Pattern is said to be feasible, if X is feasible. Each pattern X

can also be represented by the set of all ordered triples {(i, j,

k)}, for which X (i, j, k) =1. In general, there will be m*n*k
ordered pairs in a matrix X (m, n, k).

C. Alphabet Table & Word:

Let Lk = (a1,a2. . .ak). aiε SN be a ordered sequence of k

indices from S. The pattern represented by the ordered
triples indices are given by Lk is independent of the order of

ai in the sequence. For uniqueness, the indices in Lk are

arranged in increasing order, such that ai < ai+1, i =

1,2, . . .,k-1. The set S is defined as Alphabet-Table with

alphabetic order as (1,2, . . .,n3) and the ordered sequence Lk

is defined as a word of length k. A word Lk is said to be

sensible word if ai < ai+1, i = 1, 2. . . k-1; non sensible

otherwise. It is said to be feasible, if it represents a feasible
pattern. Any of the letters in S can occupy the first place in a

word Lk. Our interest is only in set of words of length atmost

equal to n, since the words of length greater than n are

necessarily infeasible, as any feasible pattern can have only

n unit entries in it. If k < n, Lk is called a Partial word and if

K = n, it is a full length word or simply a word. A partial

word Lk represents a block of words with Lk as a leader i.e.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,463-467

© 2010, IJARCS All Rights Reserved 465

as its first k letters. A leader is said to be feasible, if the

block of words defined by it has at least one feasible

word.The value of the (partial) word Lk, V(Lk) is recursively

defined as V(Lk) = V(Lk-1) + D (ak) with V(L0) =0, where D

is the cost array arranged such that, D(ak) < D(ak+1). V (Lk)

and the value of the pattern X, will be the same, since X is

the (partial) pattern represented by Lk.

D. Lowerbound of a Partial Word:

A lower bound LB (Lk), for the values of the blocks of

words represented by Lk = (a1, a2. . . ak) can be defined as

follows:

)()()(
1

jDVLB
km

j
kkk aLL

E. Feasibility criterion of a Partial Word

A recursive algorithm is developed for checking the

feasibility of a partial word LK+1= (a1, a2,…..,ak, ak+1) given

that LK is a feasible partial word. We will introduce some

more notations which will be useful in the sequel.

IR be an array where IR (i) =1, i N represents that

the salesman is visiting some city

from city i, otherwise zero.
IC be an array where IC (i) =1, i N represents that the

salesman is coming to city i from Some city; otherwise zero.

IT be an array where IT (i) =1, i N represents that

the salesman at time (facility) „i‟ travels one pair of cities.

SW be an array where SW (i) is the city that the

salesman is visiting from city i,Sw(i) = 0 indicates that the

salesman is not visiting any city from city i.

L be an array where L (i) is the letter in the ith position

of a word.

NL be an array where NL (i) =q indicates that q cities
are covered up to ith Position of a Word.

GS be an array where GS (i) represents ith group

number of cities.

Then for a given partial word LK = (a1,a2,…..,aK) the values

of the arrays RI, CI, TI, SW, L ,NL and GS as follows.

IR(R (ai)) =1, i=1, 2, 3……..K

IC(C (ai)) =1, i=1, 2, 3……..K

IT (T (ai)) =1, i=1, 2, 3……. K

SW(R (ai)) =C (ai), i=1, 2, 3……..K

L (i) =ai, i=1, 2, 3……..K

NL(i)=NL(i-1)+1, if IC(R(ai))=0 and NL(i)=NL(i-1)+1, if

IR(C(ai))=0 i=1,2,3….K
GS (GN(R (ai)) =GS (GN(R (ai)) +1 if IC(R (ai)) =0

and

GS (GN(C (ai)) =GS (GN(C (ai)) +1 if IR(C (ai)) =0

i=1,2,3….K

The recursive algorithm for checking the feasibility

of a partial word LP is given as follows: In the algorithm

first we equate IX=0. At the end if IX=1 then the partial

word is feasible, otherwise it is infeasible. For this algorithm

we have TR=R (ap+1), TC=C (aP+1) and TT=T (aP+1).

Algorithm – 1:
STEP1: IX=0

 NXA=NL [I-1]

 TCX=TC

 GOTO 2

STEP 2: IS (IR (TR) = 1) IF YES GOTO 10

 IF NO GOTO 2A

STEP2A:IS (IC (TC) = 1) IF YES GOTO 10

 IF NO GOTO 2B

STEP2B:IS (IT (TT) = 1) IF YES GOTO 10

 IF NO GOTO 3

STEP3: IS IC (TR) =0 IF YES NXA=NXA+1

GOTO 3A

 IF NO GOTO 3A

STEP3A:IS IR (TC) =0 IF YES NXA=NXA+1

GOTO 3B

 IF NO GOTO 3B

STEP3B:IS (NXA>M) IF YES GOTO 10

 IF NO GOTO 4

STEP4: IS IC (TR) =0 IF YES GS (GN (TR)) =

GS (GN (TR)) +1 GOTO 4A

 IF NO GOTO 4A

STEP4A:IS IR (TC) =0 IF YES GS (GN (TC)) =

GS (GN (TC)) +1 GOTO 4B

 IF NO GOTO 4B

STEP4B :IS GS (GN (TR)) <= GP (TR)

 IF YES GNZ1=0 GOTO 4C

 IF NO GNZ1=1 GOTO 4C

STEP4C :IS GS (GN (TC)) <= GP (TC)

 IF YES GNZ2=0 GOTO 4D

 IF NO GNZ2=1 GOTO 4D

STEP4D:NPA=NP-(GNZ1+GNZ2) GOTO 5

STEP5: IS M – NXA <= NPA IF YES GOTO 6

 IF NO GOTO 7

STEP6: IS (SW (TCX) = 0) IF YES IX=1 GOTO 10
 IF NO IK=SW (TCX)

GOTO 6A

STEP6A:IS (IK=TR) IF YES GOTO 6B

 IF NO TCX=IK GOTO 6

STEP6B:IS (I=M) IF YES IX=1 GOTO 10

 IF NO GOTO 10

STEP7: IS IC (TR) =0 IF YES GS (GN (TR)) =

GS (GN (TR)) – 1 GOTO 7A

 IF NO GOTO 7A

STEP7A:IF IR (TC) =0 IF YES GS (GN (TC)) =

GS (GN (TC)) – 1 GOTO 10

 IF NO GOTO 10

STEP10: STOP.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,463-467

© 2010, IJARCS All Rights Reserved 466

This recursive algorithm will be used as a subroutine in

the lexi-search algorithm. We start the algorithm with a very

large value, say, 9999 as a trial value of VT. If the value of a

feasible word is known, we can as well start with that value

as VT. During the search the value of VT is improved. At

the end of the search the current value of VT gives the

optimal feasible word. We start with the partial word L1=

(a1) = (1). A partial word Lp=Lp-1 (ap) where indicates
chain form or concatenation. We will calculate the values of

V (Lp) and LB (Lp) simultaneously. Then two cases arises

(one for branching and other for continuing the search).

LB (Lp) < VT. Then we check whether Lp is feasible or not.

If it is feasible we proceed to consider a partial word of

order (p+1), which represents a sub block of the block of

words represented by Lp. If Lp is not feasible then consider

the next partial word of order p by taking another letter
which succeeds ap in the pth position. If all the words of

order p are exhausted then we consider the next partial word

of order (p-1).

LB (LP) VT. In this case we reject the partial word

meaning that the block of words with Lp as leader is rejected

for not having an optimal word and we also reject all partial

words of order p that succeeds Lp.

 Now we are in a position to develop lexi search
algorithm to find an optimal feasible word.

ALGORITHM 2: (LEXI-SEARCH ALGORITHM)

The following algorithm gives an optimal feasible word.

STEP 1 : (Initialization)

 The arrays SN, D, DC, R, C, T and

values of N, M, GN, GP are

made available IR, IC, IT, SW,

L, NL, GS, V, LB are

initialized to zero. The values

I=1, J=0, VT=9999,

NZ=N N M –N, MAX=NZ-1

STEP 2: J=J+1

 IS (J>MAX) IF YES GOTO 11

 IF NO GOTO 3

STEP 3: L (I) = J

 JA = J + M - I
 IS (I = 1)

 IF YES NXA = 0, V (I) = D (J) GOTO 3B

 IF NO NXA=NL (I-1) GOTO 3A

STEP 3A: V (I) = V (I -1) + D (J)

GOTO 3B

STEP 3B: LB (I) = V (I) + DC (JA) – DC (J)

 GOTO 4

STEP 4:IS (LB (I) VT) IF YES GOTO 11
 IF NO GOTO 5

STEP 5: TR=R (J)

 TC=C (J)

 TT=T (J)

 GOTO 6

STEP 6: CHECK THE FEASIBILITY OF L (USING

ALGORITHM-1)

 IS (IX=0) IF YES GOTO 2

 IF NO GOTO 7

STEP 7 : IS (I=M) IF YES GOTO 10
 IF NO GOTO 8

STEP 8 : L (I) = J

 IR (TR) = 1

 IC (TC) = 1

 IT (TT) = 1

 SW (TR) = TC

 NL (I) = NXA

 GOTO 9

STEP 9 : I=I+1
 MAX=MAX+1

 GOTO 2

STEP10 : L (I) =J L (I) IS FULL LENGTH WORD

AND IS FEASIBLE.

 VT=V (I), record L (I), VT,

 GOTO 13

STEP11 : IS (I=1) IF YES GOTO 14

 IF NO GOTO 12

STEP12 : I=I-1

 MAX=MAX+1

 GO TO 13

STEP13 : J=L (I)

 NL (I) = 0

TR = R (J)

 TC = C (J)

TT = T (J)

 IR (TR) = 0

 IC (TC) = 0

 IT (TT) = 0
 SW (TR) = 0

 GS (GN (TR)) = GS (GN (TR)) -1

 GS (GN (TC)) = GS (GN (TC)) -1

 GOTO 2

STEP14 : STOP END

V. COMPUTATIONAL RESULTS

A Computer program for the proposed algorithm is
written in C language and is tested on the COMPAQ
system. We tried a set of problems for different sizes.
Random numbers are used to construct the Time
matrix. The following table gives the list of the
problems tried along with the average CPU time in
seconds required for solving them.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,463-467

© 2010, IJARCS All Rights Reserved 467

Table I. (CPU run time in seconds for Lexi-Search Algorithm)

Sr.

No.

Problem Dimensions AT Type-I Type-II Type-III

 n m Min Max Avg Min Max Avg Min Max Avg

1 10 5 0.010 0.021 0.040 0.035 0.026 0.004 0.003 0.002 0.004 0.003

2 20 12 0.0027 0.02 0.005 0.0035 0.004 0.006 0.050 0.002 0.005 0.0035

3 25 16 0.0037 0.002 0.004 0.003 0.002 0.004 0.003 0.002 0.004 0.003

4 35 24 0.0036 0.002 0.004 0.003 0.002 0.004 0.003 0.002 0.004 0.003

5 40 28 0.0038 0.002 0.005 0.0035 0.004 0.006 0.005 0.002 0.005 0.0035

VI. CONCLUSIONS

The problems are solved by using Lexi-search algorithm
based on the pattern recognition technique. In the above table
m represents that the salesman has visited the number of cities.
The cost matrix was generated randomly in the interval [0,100].
For each type of instance we considered six trails. Our
algorithm has been implemented in C program. The
computational experiments were performed on a personal
computer with AMD SempronTM Processor LE-1200,
2.10GHz, 896RAM and OS Windows XP Profesional. In the
table-1 we have presented the computational results for solving
the problem using the Lexi-Search algorithm based on the
Pattern Recognition Technique.

VII. REFERENCES

[1]. Laporte, G.,” The vehicle rotting problem: an overview of exact
and approximate algorithms”, Eur. J. Oper. Res. 59 (2),
(1992) 345–358.

[2]. Onwubolu, G.C. and Clerc, M., ” Optimal path for automated
drilling operations by a new heuristic approach using particle
swarm optimization”, Int.J. Prod. Res. 42 (3), (2004) 473–491.

[3]. Grafinkel, R. S “Minimizing wallpaper waste, part I: a class of
Traveling Salesman Problems”, Oper Res 25, (1977) 741- 751.

[4]. McCormick, W. T., Schweitaer, P. J. and White, T. W., ”Problem
decomposition and data reorganization by a Clustering
technique”, Oper Res 20, (1972) 993-1009.

[5]. Bland, R. G.and Shallcross, D.F., “Large Traveling Salesman
Problem arising experiment in x-ray Crystallography: A
Preliminary reported on computation”, Oper Res 8, (1989) 125-
128.

[6]. Shinano, Y.,Inui, N., Fukagawa, Y. and Takakura, N., ”An
Application of Traveling- Salesman Models to Shot Sequence
Generation for Scan Lithography”, 5th European Congress on
Computational Methods in Applied Sciences and Engineering,
(2008) 30 –Julys 5, Venice, Italy.

[7]. Affenzeller, M., Wanger, S., “A self-adaptive model for selective
pressure handling within the theory of genetic algorithms”,
EUROCAST 2003, Las Palmas de Gran Canaria, Spain, Lect.
Notes Comp. Sci. 2809 (1),(2003) 384–393.

[8]. Budinich, M., 1996,” A self-organizing neural network for the
traveling salesman problem that is competitive with simulated
annealing”, Neural Comput. 8, pp. 416–424.

[9]. Liu, G., He, Y., Fang, Y., Oiu, Y.,” A novel adaptive search
strategy of intensification and diversification in tabu search”, in:
Proceedings of Neural Networks and Signal Processing,
Nanjing, China.(2003)

[10]. Bianchi, L., Knowles, J., Bowler, J., ” Local search for the
probabilistic traveling salesman problem: Correction to the 2- p-
opt and 1-shift algorithms”, Eur. J. of Oper. Res. 162(1),
(2005) 206–219.

[11]. Chu, S.C., Roddick, J.F., Pan, J.S.,” Ant colony system with
communication strategies”, Inform. Sci. 167 (1–4), (2004), 63–
76.

[12]. Fischetti, M., Lodi, A., Toth, P., Exact Methods for the
Asymmetric Traveling Salesman Problem. In: Gutin, G.,
Punnen, A.P. (Eds.), The Traveling Salesman Problem and its
Variations. Kluwer, Dordrecht, (2002). 169–194 (Chapter 9).

[13]. Naddef, D., 2002, Polyhedral Theory and Branch-and-Cut
Algorithms for the Symmetric TSP.In: Gutin, G., Punnen, A.P.
(Eds.), The Traveling Salesman Problem and its Variations.
Kluwer Dordrecht, (1991) 29–116 (Chapter 2).

[14]. Sundara Murthy, M. “Combinatorial Programming: A Pattern
Recognition Approach”, A Ph.D., Thesis, REC, Warangal.
(1979).

[15]. Sobhan Babu,K & Sundara Murthy.M, “An efficient algorithm
for Variant Bulk Transportation Problem”, International Journal
of Engineering Science and Technology, 2010, Vol.2(7),
pp.2595-2600.

AUTHORS PROFILE

.

Dr.E.KESHAVA REDDI is presently

working a Associate Professor in the

department of Mathematics, College of

Engineering, Anantapur and Controller of

Examinations in JNTU Anantapur. His

Research area includes Optimization,

Data Mining etc.

Dr.K.SOBHAN BABU is presently

working a Assistant Professor in the

department of Mathematics, UCEK,
JNTUK and Additional Controller of

Examinations in JNTUKAKINADA.

Dr.M.SUNDARA MURTHY is a senior

Professor in the Department of

Mathematics, Sri Venkateswara

University, Tirupati. He has so many

publications in National and International

reputed Journals.

