
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 454

ISSN No. 0976-5697

Variant Minimum Spanning Network Connectivity Problem

C.Suresh Babu
Research Scholar

Department of Mathematics

Sri Venkateswara University

Tirupati, A.P., India

suresh8044@gmail.com

Dr.K.Sobhan Babu*

Assistant Professor
Department of Mathematics

U C E K, J N T U K A K I N A D A
Kakinada, A.P., India

sobhanjntu@gmail.com

Dr.M.Sundara Murthy
Senior Professor (Retd)

Department of Mathematics
Sri Venkateswara University

Tirupati, A.P., India

profmurthy@gmail.com

Abstract: Many Combinatorial programming problems are NP-hard (Non Linear Polynomial), and the theory of NP-completeness has reduced

hopes that NP-hard problems can be solved within polynomials bounded computation times. Nevertheless, sub-optimal solutions are sometimes
easy to find. Consequently, there is much interest in approximation and heuristic algorithms that can find near optimal solutions within
reasonable running time. We consider a minimum spanning tree problem and apply the Lexi-Search algorithm base d on the Pattern Recognition
which takes care of simple combinatorial structure of the problem and computational results are reported.

Keywords: Minimum Spanning Tree Problem, Lexi-Search, word, Pattern Recognition

I. INTRODUCTION

Many combinatorial optimization problems are NP-hard

(Non Linear Polynomial), and the theory of NP-

completeness has reduced hopes that NP-hard problems can

be solved within polynomials bounded computation times.
Nevertheless, sub-optimal solutions are sometimes easy to

find. Consequently, there is much interest in approximation

and heuristic algorithms that can find near optimal solutions

within reasonable running time [1].

In mathematical programming, a heuristic method or

heuristic for short is a procedure that determines good or

near-optimal solutions to an optimization problem. As

opposed to exact methods, heuristics carry no guarantee that

an optimal solution will be found. Practically, for many

realistic optimization problems good solutions can be found

efficiently and heuristics are typically among the best

strategies in terms of efficiency and solution quality for
problems of realistic size and complexity. Heuristics can be

classified as either constructive (greedy) or as local search

heuristics. The former are typically one-pass algorithms

whereas the latter are strategies of iterative improvement.

Useful references on heuristic methods can be found in [1],

[2] and [3]. Given an undirected graph whose nodes are

partitioned into a number of subsets (clusters), the

Generalized Minimum Spanning Tree (GMST) problem is

then to find a minimum-cost tree which includes exactly one

node from each cluster.

In this paper we study the problem called variant
minimum spanning network connectivity problem.

In D(i, j, k), „k‟ stands for the third dimension which is

generally called time/facility, but it is not the usual

continuous time. It stands for another independent factor

which influences the cost „D‟. The cost generally depends

on „i‟ and „j‟. For example in the case of cost or distance it

depends not only on i, j, the third factor may be the nature of

vehicle used (i.e. Petrol vehicle or diesel vehicle or luxury

vehicle etc.). Let N = {1, 2 . . n} cities and N × N distances

matrix. The problem is to find the minimum spanning

connectivity cost/distance of all the n-1 cities to the

headquarters city {1}.

According to Kruskal, J.B. if a (finite) connected graph

has a positive real number attached to each edge (the length
of the edge), and if these lengths are all distinct, then among

the spanning trees of the graph there is only one, the sum of

whose edges is a minimum; that is, the shortest spanning

tree of the graph is unique [4].

Let α1 be the city either headquarters {1} or a city connected

to the headquarters and d(αi, α
1
) is the cost/distance then the

problem is

II. MATHEMATICAL FORMULATION

 ----------- (2)

 X(i, j) = 0 or 1 ------------ (3)

The above one is a two dimensional problem. There can

be an individual factor which influences the distances/cost

and that factor is represented as a facility k. Let D(i,j,k) be

the distance/cost from ith city to jth city with facility k where

i, j Є N; N = {1,2, . . ., n} and K = {1,2, . . ., k}. Then the

three dimensional problem is:

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 454-458

© 2010, IJARCS All Rights Reserved 455

Subject to

 X (i1, j1, k1) = X (i2, j2, k2) = 1

and i1 Ni, i2 Nj

 if i=j then k1= k2 and if i ≠j then k1≠ k2 ----- (6)

i.e, if i1 contains and i2 contains then k1and k2 should
be used different facilities

In the sequel we developed a Lexi-search algorithm

based on the “Pattern Recognition Technique” to solve this

problem which takes care of simple combinatorial structure

of the problem and computational results are reported.

III. NUMERICAL ILLUSTRATION

The concepts and the algorithm developed will be

illustrated by a numerical example for which total number of

cities N = {1, 2, 3, 4, 5, 6, 7, 8} here we divide N into two

clusters as N1 and N2 cluster N1 = {3, 5, 6, 8} and cluster N2

= {2, 4, 7} and 1 as a head quarter.

Facility k = {1, 2} the following table- 1 represent that the

cities which are belongs to the respective clusters

Table-1

Cities 1 2 3 4 5 6 7 8

Respective

cluster
- 2 1 2 1 1 2 1

The cost matrices are given as follows.

Table-2

Table-3

The entire D (i, j, k)'s are taken as non-negative integers

it can be easily seen that this is not a necessary condition

and the cost can‟t as well as negative quantities. Suppose
D(2, 4, 2) = 21 means the cost of the connecting the city 2 to

4 by using facility 2 is 21.

IV. CONCEPTS AND DEFINITIONS

A. Definition of a Pattern:

An indicator three dimensional array which is associated

with an assignment is called a pattern. A pattern is said to be

feasible if X is a solution.

The value V(X) gives the total time of the assignment for

the solution represented by X. Thus the value of the feasible

pattern gives the total time represented by it. In the

algorithm, which is developed in the sequel, a search is

made for a feasible pattern with the least value. Each pattern

of the solution X is represented by the set of ordered triples

[(i,j,k)] for which X(i,j,k)=1, with understanding that the

other X(i,j,k)‟s are zeros.

There are M= m n p ordered triples in the three-

dimensional array X. For convenience these are arranged in

ascending order of their corresponding cost and are indexed
from 1 to M [3][4]. Let SN= [1, 2, 3,…. M] be the set of M

indices. Let D be the corresponding array of cost. If a,b

SN and a < b then D(a) D (b). Also let the arrays R, C, F
be the array of row, column and facility indices of the

ordered triples represented by SN and DC be the array of

cumulative sum of the elements of D. The arrays SN, D,

DC, R, C, F for the numerical example are given in the

table-4. If p SN then (R(p),C(p),F(p)) is the ordered triple

and D(a)=T(R(a),C(a),F(a)) is the value of the ordered triple

and

Table-4 (Alphabet Table)

SN D DC R C F

1 1 1 6 8 1

2 2 3 2 1 2

3 3 6 3 5 1

4 3 9 6 7 1

5 4 13 8 5 1

6 4 17 2 6 2

7 5 22 5 7 1

8 5 27 7 2 1

9 6 33 7 2 2

10 7 40 5 8 1

11 7 47 7 6 1

12 8 55 4 2 2

13 8 63 2 4 1

14 8 71 4 6 1

15 8 79 3 2 2

16 8 87 5 6 2

17 9 96 3 2 1

18 9 105 4 5 1

19 9 114 6 4 1

20 9 123 8 6 2

21 9 132 2 3 2

22 9 141 3 6 2

23 9 150 5 2 2

24 9 159 8 2 2

25 10 169 5 3 1

26 10 179 3 7 2

27 10 189 4 3 2

28 11 200 5 4 1

29 11 211 4 8 2

30 11 222 7 6 2

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 454-458

© 2010, IJARCS All Rights Reserved 456

31 12 234 4 2 1

32 12 246 3 5 2

33 12 258 5 1 2

34 12 270 8 5 2

35 13 283 2 5 1

36 13 296 6 3 1

37 13 309 8 1 2

38 14 323 8 1 1

39 15 338 2 8 2

40 16 354 5 1 1

41 16 370 7 8 1

42 16 386 3 1 2

43 16 402 7 3 2

44 17 419 2 6 1

45 17 436 6 3 2

46 18 454 4 2 2

47 18 472 6 5 2

48 18 490 7 8 2

49 18 508 8 4 2

50 19 527 4 5 2

51 19 546 6 1 2

52 19 565 6 1 2

53 19 584 7 5 2

54 20 604 2 8 1

55 20 624 7 5 1

56 21 645 4 7 1

57 21 666 2 4 2

58 21 687 4 7 2

59 22 709 3 6 1

60 23 732 3 1 1

61 - - - - -

62 - - - - --

63 - - - - -

- - - - - -

120- - - - - -

Let us consider 21 SN. It represents the ordered

triple (R(21),C(21),F(21))=(2,3,2).Then D(21)=T(2,3,2)= 69

and DC(21)=132.

B. Definition of Alphabet-Table and word:

Let SN = (1,2,…) be the set of indices, D be an array of

corresponding costs of the ordered triples and DCT be the

array of cumulative sums of elements in D. Let arrays R, C

and F be respectively, the row, column and facility indices

of the ordered triples. Let Lk = {a1, a2, - - -- - , ak}, ai SN

be an ordered sequence of k indices from SN. The pattern
represented by the ordered triples whose indices are given

by Lk is independent of the order of ai in the sequence.

Hence for uniqueness the indices are arranged in the

increasing order such that ai < ai+1, i = 1, 2, - - - -, k-1. The

set SN is defined as the "Alphabet-Table" with alphabetic

order as (1, 2, - - - -, n2p) and the ordered sequence Lk is

defined as a "word" of length k. A word Lk is called a

"sensible word". If ai < ai+1, for i =1, 2, - - - -, k-1 and if this

condition is not met it is called a "insensible word". A word

Lk is said to be feasible if the corresponding pattern X is

feasible and same is with the case of infeasible and partial
feasible pattern. A Partial word Lk is said to be feasible if

the block of words represented by Lk has at least one

feasible word or, equivalently the partial pattern represented

by Lk should not have any inconsistency.

Any of the letters in SN can occupy the first place in the

partial word Lk. Our interest is only in set of words of length

atmost equation, since the words of length greater than n are

necessarily infeasible, as any feasible pattern can have only

n unit entries in it. If k < n, Lk is called a partial word and if

k = n, it is a full length word or simply a word. A partial

word Lk represents, a block of words with Lk as a leader i.e.

as its first k letters. A leader is said to be feasible, if the

block of word, defined by it has at least one feasible word
[5].

V. VALUE OF THE WORD

The value of the (partial) word Lk, V (Lk) is defined
recursively as V (Lk) = V (Lk-1) + TD (ak) with V (Lo) = 0

where TD (ak) is the cost array arranged such that TD (ak) <

TD (ak+1). V (Lk) and V(x) the values of the pattern X will

be the same. Since X is the (partial) pattern represented by

Lk, [5],and [6].

VI. LOWER BOUND OF A PARTIAL WORD LB(LK)

A lower bound LB (Lk) for the values of the block of

words represented by Lk = (a1, a2, - - - - , ak) can be defined

as follows.

VII. FEASIBILITY CRITERION OF A PARTIAL WORD

An algorithm was developed, in order to check the

feasibility of a partial word Lk+1 = (a1, a2, - - - -- ak, ak+1)

given that Lk is a feasible word. We will introduce some
more notations which will be useful in the sequel.

IR be an array where IR (i) = 1, i N indicates that the ith

city is connected to some city j.

Otherwise IC (i) = 0

IK be an array where IK (k) = 1, k K indicates that the kth

facility is utilized by a city i to connect the city j.

CL be an array, where CL(i) = Ni, indicates that the ith city is

belongs to Ni cluster, otherwise CL(i) = 0.

SW be an array where SW (i) = j indicates that the ith city is

connected to some city j.

Otherwise SW (i) = 0

LW be an array where L[i] = i, i N is the letter in the ith

position of a word.

The values of the arrays IR, IK, SW,LW are as follows

IR (R (ai)) = 1, i = 1, 2, - - - - - , k and IR (j) = 0 for other

elements of j

IK (T (ai)) = 1, i = 1, 2, - - - - - , k and IT (j) = 0 for other
elements of j

SW(R (ai)) = C((ai)), i = 1, 2, - - - , k and SW(j) = 0 for

other elements of j

LW (i) = Ni, i = 1, 2, - - - - -, k, and LW (j) = 0, for other

elements of j.

The recursive algorithm for checking the feasibility of a

partial word Lp is given as follows In the algorithm first we

equate IX = 0. At the end if IX = 1 then the partial word is

feasible, otherwise it is infeasible. For this algorithm we

have TR = R (ap+1), TC = C (ap+1) and TK = F (ap+1).

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 454-458

© 2010, IJARCS All Rights Reserved 457

Algorithm-1:

STEP1: IX=0

STEP 2: IS (IR(TR) = 1) IF YES GOTO 13

 IF NO GOTO 3

STEP3: W = TC GOTO 4

STEP 4: IS W = TR IF YES GOTO 13

 IF NO GOTO 5

STEP5: IS SW(W) = 0 IF YES GOTO 7

 IF NO GOTO 6

STEP 6; W = SW (W) GOTO 4
STEP7:IS TK = CL (TR) IF YES GOTO 8

 IF NO GOTO 9

STEP 8 : IX=1

STEP 9 : STOP

We start with the partial word L1 = (a1) = (1). A partial

word Lp is constructed as

Lp = Lp-1 * (p). Where * indicates chain formulation.

We will calculate the values of V (Lp) and LB (Lp)

simultaneously. Then two situations arises one for branching

and other for continuing the search.

a. LB (Lp) < VT. Then we check whether Lp is feasible or

not. If it is feasible we proceed to consider a partial

word of under (p+1). Which represents a sub-block of

the block of words represented by Lp. If Lp is not

feasible then consider the next partial word p by taking

another letter which succeeds ap in the position. If all

the words of order p are exhausted then we consider
the next partial word of order (p-1).

b. LB (Lp) > VT. In this case we reject the partial word

Lp. We reject the block of word with Lp as leader as not

having optimum feasible solution and also reject all

partial words of order p that succeeds Lp.

Algorithm- 2: (Lexi - Search algorithm)
STEP 1 : (Initialization)

The arrays SN, D, DC, R, C, T and LN the values of N, M

are made available IR, IK, L, V, LB are initialized to zero.

The values I=1, J=0, LN (TR) =0, VT= , NZ=M*N*K-1

MAX=NZ-1
STEP 2 J=J+1

 IS (J>MAX) IF YES GOTO 14

 IF NO GOTO 3

STEP 3: L (I) = J

 IS (I = 1) IF YES V (I) =D (J) GOTO 3B

 IF NO GOTO 3A

STEP 3A V (I) =V (I-1) +D (J) GOTO 3B

STEP 3B:LB (I) =V (I) +DC (J+N-I)-DC (J)

 GOTO 4

STEP 4: IS (LB (I) VT) IF YES GOTO 10
 IF NO GOTO 5

STEP 5 : TR=R (J)
 TC=C (J)

 TK=T (J) GOTO 6

STEP 6: CHECK THE FEASIBILITY OF L (USING

ALGORITHM-1)

 IS (IX=0) IF YES GOTO 2

 IF NO GOTO 7

STEP 7 : IS (I=N) IF YES GOTO 8

 IF NO GOTO 9

STEP 8: L (I) = J

 L (I) IS FULL LENGTH WORD AND IS

FEASIBLE.

VT=V (I), RECORD L, VT GOTO 12

STEP9 : IR (TR) =1

 SW(TR) = TC

 I = I + 1 GOTO 2

STEP10 :IS (I=1) IF YES GOTO 13

 IF NO GOTO 11

STEP11 : I=I-1 GO TO 12

STEP12 : J=L (I)

TR = R (J)

TK = T (J)
IR (TR) =0 GOTO 2

STEP13 : STOP & END.

Table-5 (Search - Table)

SN 1 2 3 4 5 6 7 TD LB R C T
RE

M

1 1 1 22 6 8 1 A

2 2 3 22 2 1 2 A

3 3 6 22 3 5 1 A

4 4 9 22 6 7 1 R

5 5 10 24 8 5 1 A

6 6 14 24 2 6 2 R

7 7 15 26 5 7 1 A

8 8 20 26 7 2 1 R

9 9 21 28 7 2 2 A

10 10 28 28 5 8 1 R

11 11 28 28 7 6 1 R

12 12 29 29 4 2 2
A=

29

13 10 22 29 5 8 1 R

14 8 15 28 7 2 1 R

15 6 10 26 2 6 2 R

16 7 11 29 5 7 1 R

17 4 6 22 6 7 1 R

18 5 7 27 8 5 1 A

19 6 11 27 2 6 2 R

20 7 12 30 5 7 1 R

21 6 7 30 2 6 2 R

22 3 4 30 6 7 1 R

23 2 2 26 2 1 2 A

24 3 5 26 3 5 1 A

25 4 8 26 6 7 1 A

26 5 12 26 8 5 1 A

27 6 16 26 2 6 2 R

28 7 17 28 5 7 1 A

29 8 22 28 7 2 1 R

30 9 23 30 7 2 2 R

31 8 17 30 7 2 1 R

32 6 12 28 2 6 2 R

33 7 13 31 5 7 1 R

34 5 9 29 8 5 1 R

35 4 5 29 6 7 1 R

36 3 3 30 3 5 1 R

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 454-458

© 2010, IJARCS All Rights Reserved 458

The partial word is L8 = (1, 2, 3, 4, 7, 8, 9, 12) is a

feasible partial word. For this partial word the array IR, IC,

IT, LW are given in the following Table –6.

Table-6

 1 2 3 4 5 6 7 8

LW 1 2 3 5 7 9 12 -

IR - 1 1 1 1 1 1 1

IK - 2 1 2 1 1 2 1

SW - 1 5 2 7 8 2 5

At the end of the search the current Value of VT is 29

and it is the value of optimal feasible word. L7 = (1, 2, 3, 5,

7, 9, 12). It is given in the 12th row of the search table-5.

VIII. COMPUTATIONAL RESULTS

A Computer program for the proposed algorithm is

written in C language and is tested on the COMPAQ system.

We tried a set of problems for different sizes. Random

numbers are used to construct the Time matrix. The

following table-7 gives the list of the problems tried along

with the average CPU time in seconds required for solving

them.

Table – 7 (Computational Results)

S.No Problem

Dimensions

AT Type-I Type-II Type-III

 M n Min Max Avg Min Max Avg Min Max avg

1 10 10 0.009 0.060 0.095 0.0775 0.075 0..0960 0.0855 0.0967 0.0845 0.0906

2 15 15 0.017 0.09 0.075 0.0825 0.660 0.945 0.8016 0.89 0.941 0.917

3 25 25 0.965 1.26 1.34 1.3 1.241 1.675 1.458 1.654 1.6 1.627

IX. CONCLUSIONS

The problems are solved by using Lexi-search algorithm based on

the pattern recognition technique. The cost matrix was generated

randomly in the interval [0,100]. Our algorithm has been

implemented in C program. The computational experiments were

performed on a personal computer with AMD SempronTM

Processor LE-1200, 2.10GHz, 896RAM and OS Windows XP

Profesional. In the table-7 we have presented the computational

results for solving the problem using the Lexi-Search algorithm

based on the Pattern Recognition Technique.

X. REFERENCES

[1]. Osman, I.H. and Laporte, G., “Metaheuristics: A

Bibliograpgy”, Annals of Operations Research, 63, 513 –

623.

[2]. Reeves, C.R., “Moderen Metaheuristics Techniques for

Combinatorial Problems”, Blackwell, Oxford, 1993.

[3]. Pop, P.C.,”New models of the Generalized Minimum

Spanning Tree Problem”, Journal of Mathematical Modelling

and Algorithms, Volume 3, issue 2, 2004, 153-166.

[4]. Kruskal, J.B., “On the shortest spanning subtree of a graph

and the traveling salesman problem, Proceedings to the

Americal Mathematical Society 7, 1956, 48 – 50.

[5]. Sundara Murthy, M. “Combinatorial Programming: A

Pattern Recognition Approach,” A Ph.D. Thesis, REC,

Warangal. 1979.

[6]. Sobhan Babu, K., Chandra Kala, K., Purusotham, S. and

Sundara Murthy, M. “A New Approach for Variant Multi

Assignment Problem”, International Journal on Computer

Science and Engineering, Vol.02,No.5, 2010, 1633-1640.

