
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 293

ISSN No. 0976-5697

Performance Analysis of Frequent Closed Itemset Mining: PEPP Scalability over

CHARM, CLOSET+ and BIDE

Kalli Srinivasa Nageswara Prasad*
Research Scholar in Computer Science

Sri Venkateswara University, Tirupati

Andhra Pradesh, India

kallisnprasad@gmail.com

Prof. S. Ramakrishna

Department of Computer Science

Sri Venkateswara University, Tirupati

Andhra Pradesh, India

profsramakrishnasvu@gmail.com

Abstract: Frequent itemsets play an essential role in association rule mining, The closed frequent itemset mining is an advancement to frequent

itemset mining for association rules, which become an interesting topic for researchers. In this paper, we present an empirical study to evaluate
the performance compatibility of the Frequent closed itemset mining algorithms that are in current state of the art for mining association rules.

Keywords: Frequent Closed Itemset Mining, CHARM, CLOSET+, BIDE, PEPP

I. INTRODUCTION

In the operation of association rule mining, frequent

itemset mining is an important stage that has been aimed at

and in which remarkable improvements have been made.

The research varies from efficient and scalable algorithms to

most research frontiers; including sequential, structured,

correlative mining, associative classification and frequent

itemset based clustering. Let us discuss present status of this

step including the analyzed challenges.

Frequent itemsets are item sets or substructures which

occur in a dataset more than specified minimum no. of

times. A substructure can be a sub-graph or sub-tree. If such
substructure occurs more than specified threshold, it is

called a frequent structural itemset. Identifying frequent

itemsets is important in mining associations and

correlations. It contributed in data indexing, classification

and clustering. It is proposed by Agrawal et al. [1] for

market basket analysis which explores customer

characteristics from the associations between objects in the

basket. There are several proposed algorithms [2,3,4] for

generating frequent item sets which vary in the way of

traversing item set lattice, use of anti-monotone property

and the way to handle database. Based on these variations,

representative set of algorithms is explained.
Problem Definition: The task of discovering all frequent

itemsets is quite challenging. The search space is

exponential in the number of items occurring in the

database. The support threshold limits the output to a

hopefully reasonable subspace. Also, such databases could

be massive, containing millions of transactions, making

support counting a tough problem. The search space of all

itemsets 2i
contains different itemsets. If ‘ i ’ is large

enough, then the naive approach to generate and count the

supports of all itemsets over the database can’t be achieved

within a reasonable period of time. To compute the supports
of a collection of itemsets, we need to access the database.

Since such databases tend to be very large, it is not always

possible to store them into main memory. Hence the

frequent itemset mining algorithm performance will be

analyzed based on its ability of search and memory usage.

In section II explored the frequent closed itemset mining

algorithms that are targeted to evaluate the performance. In

section III the Dataset adoption explained. In section IV,

results gained from a comparative study briefed and

fallowed by conclusion of the study.

II. EXPLORATION OF THE ALGORITHMS

OPTED FOR PERFORMANCE EVALUATION

A. CHARM [5]:

CHARM simultaneously explores both the itemset space

and tidset space using the IT-tree, unlike previous methods

which typically exploit only the itemset space. CHARM

uses a novel search method, based on the IT-pair properties,

that skips many levels in the IT-tree to quickly converge on

the itemset closures, rather than having to enumerate many

possible subsets. The pseudo-code for CHARM appears in

Figure 5. The algorithm starts by initializing the prefix class

[P], of nodes to be examined, to the frequent single items
and their tidsets. We assume that the elements in [P] are

ordered according to a suitable total order f. The main

computation is performed in CHARM-Extend which returns

the set of closed frequent itemsets C. CHARM-Extend is

responsible for considering each combination of IT-pairs

appearing in the prefix class [P]. For each IT-pair Xi × t(Xi)

it combines with the IT-pairs Xj × t(Xj) . Each Xi generates

a new prefix class [Pi] which is initially empty. The two IT-

pairs are combined to produce a new pair X × Y, where X =

Xi U Xj and Y = t(Xi) ∩ t(Xj). Then tests which of the four

IT-pair properties can be applied by calling CHARM-

Property. Note that this routine may modify the current class
[P] by deleting IT-pairs that are already subsumed by other

pairs. It also inserts the newly generated IT-pairs in the new

class [Pi]. Once all Xj have been processed, then recursively

explore the new class [Pi] in a depth-first manner. Then

insert the itemset X, an extension of Xi, in the set of closed

itemsets C , provided that X is not subsumed by a previously

found closed set. At this stage any closed itemset containing

Xi has already been generated. And then continues to

process the next IT-pair in [P].

Kalli Srinivasa Nageswara Prasad et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,293-298

© 2010, IJARCS All Rights Reserved 294

Charm Algorithm pseudo representation

CHARM (D, min sup):

1. [P] = {Xi × t(Xi) : Xi ∈ I ∧ σ(Xi) ≥ min sup}

2. CHARM-Extend ([P], C = ∅)

3. return C //all closed sets

CHARM-Extend ([P], C):

4. for each Xi × t(Xi) in [P]

5. [Pi] = ∅ and X = Xi

6. for each Xj × t(Xj) in [P], with Xj ≥f Xi

7. X = X ∪ Xj and Y = t(Xi) ∩ t(Xj)

8. CHARM-Property([P], [Pi])

9. if ([Pi] = ∅) then CHARM-Extend ([Pi], C)

10. delete [Pi]

11. C = C ∪ X //if X is not subsumed CHARM-Property

([P], [Pi]):

12. if (σ(X) ≥ minsup) then

13. if t(Xi) = t(Xj) then //Property 1
14. Remove Xj from [P]

15. Replace all Xi with X

16. else if t(Xi) ⊂ t(Xj) then //Property 2

17. Replace all Xi with X

18. else if t(Xi) ⊃ t(Xj) then //Property 3

19. Remove Xj from [P]

20. Add X × Y to [Pi] //use ordering f

21. else if t(Xi) = t(Xj) then //Property 4

22. Add X × Y to [Pi] //use orderin

B. CLOSET+ [6]:

CLOSET+ follows the popular divide-and-conquer

paradigm and the depth-first search strategy which has been

verified a winner for mining long patterns by several

efficient frequent pattern mining algorithms. It uses FP-tree

as the compression technique. A depth-first search and

horizontal format-based method like CLOSET+ will

compute the local frequent items of a certain prefix by
building and scanning its projected database. Therefore, a

hybrid tree-projection method will be introduced to improve

the space efficiency. Unlike frequent itemset mining, during

the closed itemset mining process there may exist some

prefix itemsets that are unpromising to be used to grow

closed itemsets. We should detect and remove such

unpromising prefix itemsets as quickly as possible. Besides

adopting the above mentioned item merging and sub-itemset

pruning methods, CLOSET+ also having the item skipping

technique to further prune search space and speed up

mining.
a. Bottom up Physical Tree Projection: For dense

datasets, their FP-trees can be hundreds (or even

thousands) times smaller than their corresponding

original datasets due to compression. Its conditional

projected FP-trees are usually very compact as well.

Each projected FP-tree is much smaller than the

original FP-tree, and mining on such a compact

structure will also be efficient. As a result, for dense

datasets CLOSET+ still physically builds projected FP-

trees and it is done recursively in a bottom-up manner.

b. Top Down Pseudo Tree Projection: Physically

projecting FP-trees will introduce some over- head
both in space usage and runtime (due to allocating and

freeing memory for projected FP-trees), especially if

the dataset is sparse, the projected FP-tree will not be

very compact and does not shrink quickly. Instead of

physically building projected FP-trees, a new method

is developed for sparse datasets: top-down pseudo

projection of FP-tree. Un- like bottom-up physical

projection of FP-trees, the pseudo projection is done in

the f list order (i.e., in support descending order).

Similar to bottom-up physical projection, a header

table is also used to record enough information such as

local frequent items, their counts and side-link pointers

to FP-tree nodes in order to locate the sub trees for a

certain prefix item- set.

C. BIDE:

BIDE, an algorithm for discovering the complete set of

frequent closed sequences. The contributions of this

algorithm include: (1) A new paradigm for mining closed

sequences without candidate maintenance, called

Bidirectional Extension. The forward directional extension

is used to grow the prefix patterns and also check the closure
of prefix patterns, while the backward directional extension

can be used to both check closure of a prefix pattern and

prune the search space. (2) Under the BI-Directional

Extension paradigm, opted to frequent closed sequence

mining algorithm, BIDE. The BI-Directional Extension

pattern closure checking scheme, the BackScan pruning

method, and the ScanSkip optimization technique are

proposed to speed up the mining and also assure the

correctness of the algorithm.

D. PEPP [7]:

The algorithm PEPP [7] opt to Sequence Graph

protruding that based on edge projection and pruning, an

asymmetric parallel algorithm for finding the set of frequent

closed sequences. The giving of this PEPP [7] is: (A) an
improved sequence graph based idea is generated for mining

closed sequences without candidate maintenance, termed as

Parallel Edge Projection and pruning (PEPP) based

Sequence Graph Protruding for closed itemset mining. The

Edge Projection is a forward approach grows till edge with

required support is possible during that time the edges will

be pruned. During this pruning process vertices of the edge

that differs in support with next edge projected will be

considered as closed itemset, also the sequence of vertices

that connected by edges with similar support and no

projection possible also be considered as closed itemset (B)
in the Edge Projection and pruning based Sequence Graph

Protruding for closed itemset mining, PEPP contains

Forward edge projection and back edge pruning algorithms.

As a first stage PEPP performs dataset preprocessing and

itemsets Database initialization, which finds itemsets with

single element, in parallel prunes itemsets with single

element those contains total support less than required

support.

E. Forward Edge Projection:

In this phase, PEPP selects all itemsets from given

itemset database as input in parallel, then starts projecting

edges from each selected itemset to all possible elements.

The first iteration includes the pruning process in parallel,

from second iteration onwards this pruning is not required,

which we claimed as an efficient process compared to other

similar techniques like BIDE.

Kalli Srinivasa Nageswara Prasad et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 293-298

© 2010, IJARCS All Rights Reserved 295

III. COMPARATIVE STUDY

This section explores the performance compatibility of

CHARM [5], CLOSET+ [6], BIDE [7] and PEPP [8]. All

the experiments were performed on CPU: Intel E6850 with
MOTHERBOARD: nvidia 680i chipset based with SLi,

RAM: 4GB(2 x 2GB running in dual channel mode)

800Mhz DDR2 and HARDDRIVE: maxtor raptor 74GB

10,000RPM + 500GB western digital. We ran the four

algorithms on the same environment. Because our

performance study showed that other reputed algorithms

such as OP [9] and CLOSET [10] cannot compete in high

memory usage with algorithms [5, 6, 7, 8] those we opted,

hence we compared only CHARM [5], CLOSET+ [6],

BIDE [7] and PEPP [8] on peak memory usage.

IV. EXPERIMENTAL SETUP

Our performance study includes both synthetic and real

datasets. We used couple of synthetic datasets that are
generated using IBM-DG[11] and a real dataset Gazelle

contains click stream. In Gazelle, we consider different

products as different items and the page views as events.

The characteristics of these datasets are shown in table 1.

Table1: Structure of datasets opted for performance check

Dataset

Name
No. Seq

No.

Items

avg. Seq.

Len

Max. Seq.

Len

SD1 150000 6532 42 61

SD2 150000 5092 71 114

GAZELLE 2,937 1,423 29 1,443

V. RESULTS ANALYSIS

To verify the performance on dense dataset we opt to

synthetic dataset SD1 Figure1, table 2, Figure 2 and table 3

explores the performance of the mining algorithms [5,6,7,8]

opted. Fig. 2 shows PEPP can be orders of magnitude faster

than BIDE and other two algorithms CHARM and
CLOSET+. When the support is not too low, CHARM,

CLOSET+, BIDE and PEPP performed in similar way.

When support threshold 10% and lower CHARM cannot run

by reporting memory issues. The rest three algorithms

CLOSET+, BIDE and PEPP performance is scalable up to

the support value 4% , At the support lower than 4% PEPP

and BIDE maintains their scalability, but the CLOSET+

took huge execution time for support value 4% and lower.

The PEPP elevated as best in time taken for execution. In

terms of memory usage CHARM is very poor. From Fig. 1

we can observe that BIDE and PEPP uses less memory than

CLOSET+ For example, at support 85%, CLOSET+

consumes about 190MB while BIDE and PEPP consumes
about 18MB.

Table 2: Memory used by algorithms on SD1 for various support values in

%

Memory usage on SD1

Support in

%
0.1 0.08 0.06 0.04 0.03 0.02 0.01

CHARM 101 136 169 201 232 - -

CLOSET

+
74 81 99 126 155 181 201

BIDE 5.4 5.9 6.7 7.1 7.9 8.3 9.8

PEPP 5.6 6.1 6.9 7.7 8.3 9.1 10.4

Figure 1: Graph representation of Memory used by algorithms on SD1 for

various support values in %

Table 3: Time in seconds taken by algorithms to execute on SD1

Execution Time on SD1

Support in % 0.1 0.08 0.06 0.04 0.03 0.02 0.01

CHARM 5 9 21 - - - -

CLOSET+ 5.9 9.4 23 32 79 92 341

BIDE 5.4 6.1 14 24 39 43 106

PEPP 2.3 3.2 8.6 11 18 21 49

Kalli Srinivasa Nageswara Prasad et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,293-298

© 2010, IJARCS All Rights Reserved 296

Figure 2: Graph representation of Time in seconds taken by algorithms to execute on SD1

To verify the performance on sparse dataset we opt to

real time dataset GAZELLE. Figure3, table 4, Figure 4 and

table 5 explores the performance in execution time and

memory usage of the mining algorithms[5,6,7,8] opted. Fig.

3 shows PEPP can be orders of magnitude faster than BIDE
and other two algorithms CHARM and CLOSET+. When

the support is not too low, CHARM, CLOSET+, BIDE and

PEPP performed in similar way. When support threshold

10% and lower CHARM cannot run by reporting memory

issues. The rest three algorithms CLOSET+, BIDE and

PEPP performance is scalable up to the support value 4% ,

At the support lower than 4% PEPP and BIDE maintains

their scalability, but the CLOSET+ took huge execution

time for support value 4% and lower. The PEPP elevated as

best in time taken for execution. In terms of memory usage

CHARM is very poor. From Fig. 4 we can observe that
BIDE and PEPP uses less memory than CLOSET+.

Table 4: Time in seconds taken by algorithms to execute on
GAZELLE

Execution Time on gazelle

Support in

%
0.1 0.08 0.06 0.04 0.03 0.02 0.01

CHARM 0.5 0.9 3 40 298

CLOSET+ 0.6 1 8 110 401 640 980

BIDE 0.4 0.8 1.9 31 201 452 621

PEPP 0.4 0.75 0.87 24 189 326 441

Figure 3: Graph representation of time in seconds taken by algorithms to

execute on GAZELLE

Table 5: Memory used by algorithms on GAZELLE for various support

values in %

MEMORY USAGE on GAZELLE

SUPPORT

in %
0.1 0.08 0.06 0.04 0.03 0.02 0.01

CHARM 21 32 98 115 120 - -

CLOSET+ 11.2 13.4 14.1 18.4 19.3 21.1 24.9

BIDE 4.4 4.9 5.9 6.4 7.1 9.3 10.8

PEPP 3.3 3.8 4.2 4.8 5.1 5.7 6.1

Kalli Srinivasa Nageswara Prasad et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 293-298

© 2010, IJARCS All Rights Reserved 297

Figure 4: Graph representation of Memory used by algorithms on

GAZELLE for various support values in %

We used the synthetic datasets SD1 and SD2 those
generated by IBM-DG to test the scalability of CLOSET+

and compared it with both CHARM and CLOSET. We first

tested the scalability in terms of database size using the

dataset series SD1 with base size from 2000 tuple to 15000

tuple and support threshold set at 0.008%. From Figure 5

and table 6, we can see that, CHARM has the poorest

scalability, and it even become worsen when the dataset

contains more than 600K tuple. In comparison between

CLOSET+, BIDE and PEPP, PEPP runs much faster and it

also has much better scalability in terms of base size: the

slope ratio for CHARM is much higher than other three and

PEPP and BIDE are much scalable that compared to

CLOSET+.

The scalability in terms of number of distinct items using
SD2 series with number of distinct items set at 5092,

15845, 27550 and 31169, respectively, and minimum

support set at 0.005%. From Figure 6 and table 7. , we can

see that initially all algorithms have very similar

performance when the number of distinct items is small, but

once the number of distinct items increases, the runtime of

CHARM has much bigger jump than CLOSET+, BIDE and

PEPP. Out of CLOSET+, BIDE and PEPP, the PEPP run

time is much scalable, which means PEPP also has better

scalability than CHARM, CLOSET+ and BIDE in terms of

the number of distinct items.

Table 6: Time taken by algorithms on SD1 for various tuple sizes

Scalability on SD1

Base size in tuples(*10) 200 400 600 800 1000 1200 1500

CHARM 101 198 267 352 432 521 701

CLOSET+ 94 118 123 144 156 164 181

BIDE 34 39 45 59 64 73 79

PEPP 18 23 28 32 41 59 71

Figure 5: graph representation of Time taken by algorithms on SD1 for various tuple sizes

Table 7: Time taken by algorithms on SD2 for various count of distinct elements

Scalability on SD2

Unique item count 1000 5000 10000 15000 20000 25000 30000

CHARM 18.2 23.2 40.1 56.4 67.3 79.1 91.2

CLOSET+ 16.1 16.3 16.9 17.5 18.1 18.9 19.7

BIDE 14.3 14.7 15.1 15.7 16.2 16.8 17.1

PEPP 14.1 14.2 14.8 15.1 15.7 16.1 16.4

Kalli Srinivasa Nageswara Prasad et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,293-298

© 2010, IJARCS All Rights Reserved 298

Figure 6: Graph representation of time taken by algorithms on SD2 for various count of distinct elements

VI. CONCLUSION

Frequent pattern mining has been studied extensively in

data mining research. In this study, we have re-examined

some previously proposed methodologies, and mainly

focused on the new technique PEPP[8] developed for

frequent closed itemset mining, a highly scalable and both

runtime and space efficient algorithm for dense and sparse

datasets, on different data distributions and support

thresholds. In this paper we conducted empirical analysis of

the performance differences between CHARM[5],

CLOSET+[6], BIDE[7] and PEPP[8]. The aim of this

comparative is to prove the performance in speed, memory

usage and scalability of PEPP over CHARM, CLOSET+
and BIDE.

VII. REFERENCES

[1]. Agrawal, R., T, Imielinski and A, Swami, 1993, Mining
association rules between sets of items in large databases,
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, May 25-28, ACM, New
York, USA., pp: 207-216

[2]. Agrawal, R, and R, Srikant, 1994, Fast algorithms for mining
association rules, Proceedings of the 20th International
Conference on Very Large Data Bases, Sept, 12-15, San
Francisco, CA., USA., pp: 487-499

[3]. Mannila, H., H, Toivonen and A, Inkeri Verkamo, 1994
Efficient algorithms for discovering association rules
Proceedings of the AAAI Workshop on Knowledge Discovery
in Databases, (KDD-94), IEEE, pp: 181-192

[4]. Han, J., J, Pei, Y, Yin and R, Mao, 2004, Mining frequent
patterns without candidate generation: A frequent-pattern tree
approach, Data Mining Knowledge Discovery, 8: 53-87

[5]. M. Zaki, and C. Hsiao, CHARM: An efficient algorithm for
closed itemset mining. In SDM’02, Arlington, VA, April
2002.

[6]. J. Wang, J. Han, and J. Pei, CLOSET+: Searching for the
Best Strategies for Mining Frequent Closed Itemsets. In
KDD’03, Washington, DC, Aug. 2003.

[7]. J. Wang and J. Han. BIDE: Efficient mining of frequent
closed sequences. In Proc. 20th International Conference on
Data Engineering, pages 79–90, 2004.

[8]. Parallel Edge Projection and Pruning (PEPP) Based Sequence
Graph protrude approach for Closed Itemset Mining kalli
Srinivasa Nageswara Prasad, Sri Venkateswara University,
Tirupati, Andhra Pradesh , India. Prof. S. Ramakrishna,
Department of Computer Science, Sri Venkateswara
University, Tirupati, Andhra Pradesh, India Vol. 9 No. 9
September 2011 International Journal of Computer Science
and Information Security Publication September 2011,
Volume 9 No. 9

[9]. J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item
sets by opportunistic projection. In SIGKDD'02, July 2002.

[10]. J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm
for mining frequent closed itemsets. In DMKD'00, May 2000.

[11]. IBM dataset generator for sequential patterns.
http://www.almaden.ibm.com/software/quest/Resources.

Short Bio Data for the Author’s

Kalli Srinivasa Nageswara Prasad has
completed M.Sc(Tech)., M.Sc., M.S (Software Systems).,

P.G.D.C.S. He is currently pursuing Ph.D degree in the

field of Data Mining at Sri Venkateswara University,

Tirupathi, Andhra Pradesh State, India. He has published

Ten Research papers in International journals. He has also

attend Three national conferences.

S.Ramakrishna is currently working as a

professor in the Department of Computer Science, College
of Commerce, Management & Computer Sciences in Sri

Venkateswara university, Tirupathi, Andhra Pradesh State,

India. He has completed M.Sc, M.Phil., Ph.D.,

M.Tech(IT).He is specialized in Fluid Dynamics &

Theoretical Computer Science. His area of Research

includes Artificial Intelligence, Data Mining & Computer

Networks. He has an experience of 26 years in teaching

field. He has published 41 Research papers in National &

International Journals. He has also attended 13 national

Conferences and 3 International Conferences. He has guided

17 Ph.D Scholars and 18 M.Phil Scholars.

