
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 262

ISSN No. 0976-5697

Component-Based Software Development: Linear perspective of Software Engineering

Jawwad Wasat Shareef *
Department of Mathematics & Computer Science,

Rani Durgavati University,

Jabalpur, India

javedshareef@yahoo.com

Rajesh Kumar Pandey
University Institute of Computer Science & Applications,

Rani Durgavati University,

Jabalpur, India

rkpandey18@rediffmail.com

Abstract: The idea of Component-based software development (CBSD) is to build large software system by assembling a set of previously developed
software components that can be independently deployed, configured and connected together. The basic foundation of this approach is that common
parts should be written once rather writing them again and again from scratch and that common system should be assembled through reuse of these

common parts. Component Based Software Engineering (CBSE) is a paradigm that handles efficiently the entire lifecycle of component-based
products. It has given more attention on technologies related to design and implementation of software components and systems built from it. CBSE
aims at constructing and designing systems using a pre-defined set of software components mainly created for reuse. CBSE embodies the ―the ‗buy,
don‘t build‘ philosophy‖, that shifts the emphasis from programming software to composing software systems [1]. This requires established
methodologies and tool support covering the entire component and system life cycle including organizational, technological, marketing, legal and
other aspects. The new software development process is much different from the traditional approach; with time it has now been known that pure
technologies alone are not enough. The life cycle and software engineering model of Component-based software development (CBSD) is much
different from that of the traditional ones [2]. This paper makes an assessment as to how CBD has progressed fulfilling the promises with linear

development stages covering different perspectives and challenges faced by this technology in Software engineering.

Keywords: Components; Component Model, Commercial Off-the Shelf Software (COTS), Component-Based Software Engineering (CBSE),
Component-Based Software Development (CBSD).

I. INTRODUCTION

The use of personal computers and internet is spreading its

wings day by day which make computers commodity goods,

creating a new market and users. New users, most of them are

consumers; require to drastically reducing the price and/or

cost of software in order to match the ever-decreasing

hardware price. The use of components is the primary source

of the productivity and quality. It is the law of nature in any

matured engineering discipline [3]. Making applications from

software components has been a dream in software

engineering community since its very early time. As quoted in

the literatures, McIlroy wrote in the NATO conference in
1968 [4];

―My thesis is that the software industry is weakly founded,
in part because of the absence of a software components
subindustry. … A components industry could be immensely
successful‖.

However, wide spread reuse of software components over

the industry has not come true. The last decade has shown that

Object-Oriented approach is not enough to meet the

requirements as compared with the fast changing requirements

of present-day software applications, in spite of having strong

features like objects, inheritance, reuse and others. In Object-

oriented development the primary concern is of designing

quality classes then in component based development, the

term object has been replaced by Components. Parts of the

system can be obtained and by reusing these parts which have

already been ‗tried and tested‘. A programmer can simply
create a new object that inherits many of its features from

existing objects. This makes object-oriented programs easier

to modify. In the same way, in CBSE, by reusing an existing

component, a developer does not have to build it from scratch,

which saves a lot of time thus avoiding hard work in

establishing the usefulness and in testing that component [2].

To meet the given challenges, software development must

be able to cope with complexity and to quickly adopt those

changes. CBSE uses Software Engineering principles to apply
the same idea as Object oriented programming to the whole

process of designing and constructing software systems. It

focuses on reusing and adapting existing components, as

opposed to just coding in a particular style. CBSE encourages

the composition of software systems. In context of CBSE

comes Component-Based Development (CBD), which plays

an important role in Software engineering. Main task of CBD

is to build systems comprising of already built software units

or components, by encouraging reuse of pre-developed system

pieces rather than building from scratch [2].

II. EVOLUTION OF COMPONENT TECHNOLOGY

The foundation of any CBSD methodology is its

underlying component model, which defines what components

are, how they can be constructed, how they can be composed

or assembled and specifies the standards and conventions that
are needed to enable composition of independently developed

component. Within CBSD we also distinguish development of

components from development of systems. In component-

based system development, we focus on identification of

reusable entities and selection of components that fulfills

Jawwad Wasat Shareef et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,262-266

© 2010, IJARCS All Rights Reserved 263

system‘s requirements, but in developing component our focus

is on reusability [5].

Component definition given by Heineman and Councill‘s

[6] states that:

―A [component is a] software element that conforms to a

component model and can be independently deployed and

composed without modification according to a composition

standard‖.

Which means some technology is needed to make the

components work together in a standard way. The most

commonly used component technologies that are applied for
component-based software development are Sun

Microsystem‘s Javabeans and Enterprise JavaBeans (EJB),

Microsoft‘s COM (Component Object Model), DCOM, .NET

Framework and Object Management Group‘s (OMG) Corba

Component Model (CCM). These technologies have been

compared based on their functionality and mechanism along

with their pros and cons, thus providing a roadmap in selecting

the appropriate technology for CBSD [7]. The CBD approach

appears to be the right approach. This results in a number of

advantages like more effective management of complexity,

reduced cost, in-time, flexibility and high quality.

III. THE PROMISES OF COMPONENT-BASED

DEVELOPMENT

In a system, components are small independent parts,

whereas a large system as a whole can be seen as a component
as well. Expectations from components are reusability,

flexibility, interoperability, and maintainability.

A. Reusability:

A component is a type, class of objects or any other work
product that has been specifically engineered to be reused.
CBD appears to be the best development approach, mainly
because of its capacity for reusability and, therefore, it‘s
potential for saving time and effort. CBD enables the
development of components which completely implement a
technical solution or a business aspect. Such components can
be used everywhere. Functionality, be it technical or business
oriented, has to be developed and implemented just once,
instead of several times. This is a good thing from the point of
view of maintainability, robustness and productivity. The
market for CBD tools and frameworks has shown a great rise
[8]. Reuse is an important feature of the software, and it also is
the basis for development of software industry. It runs through
the reuse and development of software technology [9].

B. Flexibility:

Run time components can work independently and are less

dependent on their environment (hardware, system software,

other applications or components) if they are designed

properly. Therefore, component-based systems are much more
adaptable and extendable than systems traditionally designed

and built. Usually, components are not changed, but replaced.

This flexibility is important in terms of hardware and system

software and functionality [8].

a) Hardware and System Software: Component-based

systems are less sensitive to changes in the foundation (for

example: the operating system) as compared to traditional

systems. This results in a more rapid migration from one

operating system to another. This results in the possibility of a

system which is technically heterogeneous environment [8].

b) Functionality: Component-based systems are at a

functional level much more adaptable and extendable than

traditional systems, because most of the new functionality is

reused or derived from already prebuilt components [8].

C. Maintainability:

In a component-based system, a piece of functionality

ideally is implemented just once. It is self-evident that results

in easier maintenance, leads to lower cost, and a longer life for

these systems. In fact, the distinction between maintenance
and construction will become very vague, and completely

disappear after some time. New applications will consist of a

very large part of already existing components. Building a

system will look more like assembly than really building.

Moreover, the large monolithic systems will disappear

resulting in a blurring of the borders between the systems [8].

IV. RISKS IN COMPONENT-BASED DEVELOPMENT

The aim of CBD is to build systems as an assembly of
components such that the development of components as
reusable entities and the maintenance of the system by
customizing and replacing such components [2]. The
motivation behind the use of CBD is to reduce the development
cost, time to market and provide a system that is efficient in
meeting the changing customer demands. There are number of
risks and challenges associated with CBD. One of the potential
risks for the CBD is what if the primary supplier of the
component goes out of business, or stops supporting the current
version of the component. On the other hand, if the system
demands high quality, how we can assure that the component
will be compatible with the requirements. The potential risks of
CBD [2, 6, 10, 11] are summarized in Table-I. Thus there is a
need for careful planning to meet these risks by defining
guidelines, standards and open architecture for CBD.

Table: 1 Risks of Component-Based Development (CBD)

Sr. No. Risks Description

1. Locating
compatible
components

To search for a compatible or suitable
component from repositories or on internet, a
software engineer must be confident in
finding those components, before they
routinely include a component search as part
of their normal development process.

2. Interoperability CBD poses a major challenge of ensuring
that component services are provided through
standard interfaces to ensure interoperability.

3. Requirement
satisfaction

The component search is performed on a
wide variety of component repositories, as
well as on internet, even after finding a
suitable component there are chances that it
might not perform the specific function or
might fail to interoperate.

4. Testing of
components.

The components can be used in different set
of applications which complicates the testing
process, therefore each component must be
tested for verification and validation.

Thus it is necessary to have a systematic approach to

Component-based development, to avoid problems and risks

and to take full advantage of this technology.

Jawwad Wasat Shareef et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 262-266

© 2010, IJARCS All Rights Reserved 264

V. COMPONENT-BASED DEVELOPMENT – PROCESS

LIFE CYCLE

The term Component-Based Software Development

(CBSD) is an appropriate and methodical approach, which

involves the construction of an application by using prebuilt

chunks, which were developed at different times, at different

locations, by different humans, and possibly with different
concept and uses in mind [13]. CBSE is that branch of

Software Engineering which covers both component

development and system development, both have different

approach. In CBD the main focus in on reusability of

components, there maintenance and the development of new

software systems from reusable components [13]. A

component must possess qualities like it must be easy to

understand, well specified, sufficiently general, easy to adapt,

easy to deliver and deployable and easy to replace.

Component must have simple interface and physically and

logically separated.
With software development proceeding at Internet speed,

in-house development of all system components may prove

too costly in terms of both time and money. Large-scale

component reuse or COTS component acquisition can

generate savings in development resources, which can then be

applied to quality improvement, including enhancements to

reliability. Thus reducing time to market by shifting developer

resources from component level development to integration,

increased modularity also facilitates rapid incremental

delivery, and offer product upgrades as various components

evolve. These advantages bring related disadvantages like

integration difficulties, performance constraints, and
incompatibility among products from different vendors [14]. If

components are selected too early in the process, the system

obtained may not meet all the requirements. CBSD uses the

concept of integrating pre-existing components where the

components are not designed to meet a specific – project

requirements. COTS components are built to meet the market

requirements. The difference between traditional development

and component based development is shown in Table-II.

Table: 2. Difference between Traditional Development & CBSD Approach

[15], [16], [17].

Major Points Traditional

Development

CBSD

a. User Centered developer controls the

development process

User does not have to depend

upon development team. User

produces useful systems using

application domain

knowledge

b. Reusability Development-time Run-time

c. Reliability Dependent on

Developers‘ ability

Thread-safe and secure

d. Design Dominated by

optimization decisions

Pre-built software

components are dominated by

selection decisions

e. Role of

Architecture

Monolithic software

application

Independent parts of software

f. Integration It is the tail end of an

implementation effort

System design involves the

selection of components

g. Interoperability Development is

restricted with one

technology on one

platform

Provides communication

between different

technologies

VI. COMPONENT-BASED DEVELOPMENT –

DIFFERENT STAGES

Crnkovic, I. [2] compared Water-fall model with
Component-based approach. Figure-1. shows the waterfall

model and the meaning of the phases. In traditional water-fall

model the Identifying of requirements and design is combined

with finding and selecting components in CBD approach. The

design encapsulates the system architecture design and

component identification/selection.

The development cycle different steps are:

a. Find components that may be used in the system. All the

components possibly to be used are listed here for further

analysis.

b. Select the components that meet the best coverage of
requirements and suit the component model.

c. A proprietary component can be created to be used in the

system, however this procedure is less attractive as it

requires more efforts and takes more time.

d. Adapt the selected components which suit the existing

component model.

e. Compose and deploy the components using a framework

for components, functionality is provided by component

models.

f. Replace earlier with later versions of components,

Figure: 1. The Development cycle compared with water-fall model,

Crnkovic, I. [2]

In Component based development there are many other

sub-areas like software configuration management, software

metrics, testing, software configuration management, legal
issues, project management, certification and standardization

which needs more specific methods and technology

management.

VII. CHALLENGES FACED BY COMPONENT-BASED

SOFTWARE ENGINEERING

Component-based software engineering (CBSE) has shown

significant prospects in rapid production of large software

systems with enhanced quality, functionality and reduced cost,

but in spite of these good factors there are many challenges

faced by CBSE, according to Crnkovic, I. [18] these are –

A. Component Identification:

To look for components that are available locally or from

trusted source, some-times users have fear that these

Jawwad Wasat Shareef et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,262-266

© 2010, IJARCS All Rights Reserved 265

components will not work as advertised. It is quite possible

that once a user acquire a component from a component

vendor, after some time the firm might winds up or the vendor

does not brings an updated version of that component. In such

cases how a user can be sure or satisfied that he or she will not

face any problems related to component.

B. Component Selection:

Once component has been identified, from a list of specific

components, it is not sure the component will meet the

requirements. CBD fundamental approach is the reuse of

existing components. As there are many uncertainties in the

process of component selection, there is a need for a strategy

to managing risks in the component selection and evolution

process.

C. Component trustworthiness:

Delivery of component is in binary form and the

component development process is outside the control of

component users, the component trustworthiness becomes of

great importance. Associated with the concept of

‗trustworthiness‘ are example- reliability and robustness, but

there is no formal definition and understanding of

‗trustworthy‘, no standardized measurement. The impact of
different aspects of trustworthiness on system attributes is not

known.

D. Component certification:

Certification of components can be done by classifying

them. It is a standard procedure in domains, but not yet

established in general and especially not for software
component [19, 20].

E. Prediction of Component Composition:

Assuming that all the relevant attributes of components

can be specified, it is not known how these attributes

determine the corresponding attributes of systems of which
they are composed. The ideal approach to derive system

attribute from component attributes is still a subject of

research. A question remains — ‗Is such derivation at all

possible? Or should we not concentrate on the measurement of

the attributes of component composites?‘ [21].

F. Maintaining Component Based Systems on Long term

basis:

Maintaining component-based systems on long term basis

is more complex, when systems which include sub-systems

and components with independent life-cycles are involved,

these raises number of issues –

a. Technical issue: by simply replacing a component can a

system be updated technically?

b. Administrative and Organizational issues: which of the

components can be updated? Which of the components

should be updated? Which of the components must be

updated?

c. Legal issue: In case if a system fails, who is responsible for
the failure, is the producer of the system, or producer of

component?

Maintainability of such systems is a risk that many such

systems will be troublesome to maintain.

G. Requirements management and selection of

components:

Requirements management is a complex process. A
problem of requirements management is that requirements in

general are incomplete, imprecise and contradictory. The

fundamental approach in CBD is the reuse of existing

components. The process of engineering requirements is much

more complex as the possible candidate components usually

lack one or more features which meet the system requirements

exactly. In addition, even if some components are individually

well suited to the system, it is not necessary that they do not

function optimally in combination with others in the system.

These constraints may require another approach in

requirements engineering — an analysis of the feasibility of
requirements in relation to the components available. As there

are many uncertainties in the process of component selection

there is a need for a strategy for managing risks in the

components selection and evolution process [6, 22].

H. Component Development Technologies:

There are commonly used component development
technologies, but they exhibit unclear characteristics, each

having their own limitations [7], they are rigid and not an easy

to use technologies.

I. Composition of Components:

A large software system may include a number of

components these components may include sub-components
also. Composition of components sometimes is also treated as

components. When complex structures are involved the

problem of structure configuration rises. It is quite possible

that one same component may be included in two

compositions. Then what will be the status –

a. The same component will be treated as two different

entities or assumed to be the same entity?

b. What happens if these components are of different

versions?

c. Which version will be selected?

d. What happens if these versions are incompatible?
There are still problems with dynamic updating of

components, which needs further research [23].

J. Component tools for Development:

Software engineering focuses on providing practical

solutions to practical problems, and the existence of

appropriate tools is necessary for a successful CBSE
performance. Development tools, such as Netbeans, Visual

Basic, Eclipse have proven there successful performance, but

there is an extreme requirement of many other tools such as –

a. Component selection tools

b. Component configuration tools

c. Evaluation tools

d. Component repositories tools

e. Tools for managing the repositories

f. Component test tools

g. Component-based design tools

h. Run-time system analysis tools,

Jawwad Wasat Shareef et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 262-266

© 2010, IJARCS All Rights Reserved 266

These are some of the many challenges which are being

faced by CBSE. The goal of CBD in software engineering

perspective is to standardize and formalize all disciplines

related to this field. The success of the CBD approach depends

directly on further research and the implementation of CBSE.

VIII. CONCLUSION

Component-based software engineering shifts the emphasis

from programming to composing software systems.

Component-based software development is a one step ahead

of Object oriented development. CBSD is a linear

development and has been accepted in industry as a new

effective development paradigm by emphasizing on the

designing and construction of large complex systems, using

reusable software components. The same approach is being
successfully used in other areas of engineering like

Automobile industry and Consumer electronics industry. Use

of COTS software components increases the productivity and

helps in easy development of systems. CBSD has a bright

future, if established globally will certainly put strong impact

on the quality of software development, but there are certain

unusual problems for software development, which have to be

handled in a systematic way in order to make it widely

acceptable and successful. An attempt has been made to give

the reader an understanding of CBD, expectations from CBD,

risks involved its life cycle in the field of Software

engineering, providing to the reader information about
different stages of CBD in a linear path, discussing some

major activities and challenges faced by CBSE.

IX. ACKNOWLEDGMENT

The authors would like to express their cordial thanks to
Rani Durgavati University, Jabalpur for providing the facility

of Research in their University and also to the reviewers for

their valuable advice.

X. REFERENCES

[1] Roger, S. Pressman., Software Engineering- A Practitioner‘s
Approach, 5th Edition, McGraw Hill International Edition,
Ch.27, pp: 721, 2001.

[2] I. Crnkovic and M. Larsson, ―Challenges of component based
development‖, J. Syst. Software, 61, (3), pp. 201–212, 2002.

[3] C. Szyperski, Component Software, Addison-Wesley, 1998.

[4] M.D. McIlroy, Mass-Produced Software Components, Software
Engineering Concepts and Techniques (1968 NATO Conference
on Software Engineering), Van Nostrand Reinhold, 1976, pp.
88-98, 1976.

[5] M.H. Selamat, H. Sanatnama, A.A.A. Ghani and R. Atan,
Software Component Models from a Technical perspective.
IJCSNS International Journal of Computer Science and Network
Security, VOL.7 No.10, pp.-135-147, October 2007.

[6] G.T. Heineman and W.T. Councill, Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, May
2001.

[7] R.K. Pandey, J.W. Shareef, Component-Based Software
Development with Component Technologies: An Overview,
International Journal of Computer Science and Information
Technologies, Vol. 3 (1), 2012, 3029 – 3036, ISSN: 0975-9646.

[8] M. Huizing, Component Based Development, www.
xootic.nl/magazine/jan-1999/huizing.pdf, last access:22.11.2011

[9] Jiyuan Shi, Software Reuse and Component Technology, Third
International Symposium on Information Processing, October
2010, pp: 499-501.

[10] P. Vitharana, ‗Risks and challenges of component based
software development‘, Commun. ACM, 2003, 46, (8), pp. 67–
72.

[11] J.Z. Gao, Tsao, H.-S.J., and Y. Wu, ―Testing and quality
assurance for component based software‖, Artech House, 2003.

[12] J.W. Shareef, Component-Based Software Development: An
Appropriate and Methodical Approach, International Journal for
Electro Computational World Knowledge Interface, Vol.1, Issue
5, Jan. 2012, ISSN No. 2249-541X.

[13] James, K.L., Software Engineering, PHI Learning Private
Limited, M-97, Connaught Circus, New Delhi, pp: 78, 2009.

[14] S., Sedigh-Ali, A. Ghafoor, and R.A. Paul. Software
Engineering Metrics for COTS-Based Systems, IEEE Computer,
Vol.34, No.6, pp: 44-50, 2001.

[15] K.P. Kaur, Bedi, J. and H. Singh, Towards a suitable and
systematic approach for component based software
development. World Acad. Sci. Eng. Technol., 27: 190-193,
2007.

[16] Sommervilee, I., Software Engineering, 7th Edition, Pearson
Education.

[17] I., Crnkovic and M., Larson, Building Reliable Component
Based Software Systems, Artech House, Boston, 2002.

[18] Crnkovic, I. Component-based Software Engineering – New
Challenges in Software Systems, Artech House, Boston.

[19] J. Voas, J. Payne. Dependability certification of software
components. Journal of Systems and Software, 2000; 52: 165-
172.

[20] J. Morris, G. Lee, K. Parker, G.A. Bundell, Peng Lam Chiou.
Software Component Certification, IEEE, Computer, 2000, pp:
30-36.

[21] K. Wallnau, J. Stafford. Ensembles: Abstractions for a New
Class of Design Problem, 27th Euromicro Conference 2001
Proceedings, IEEE Computer Society, 2001: 48-55.

[22] G. Kotonya, A. Rashid. A strategy for Managing Risks in
Component-based Software Development, 27th Euromicro
Conference 2001 Proceedings, IEEE Computer Society, 2001:
12-21.

[23] I. Crnkovic, M. Larsson, Filipe JK Küster, K. Lau. Databases
and Information Systems, Fourth International Baltic Workshop,
Baltic DB&IS Selected papers. Kluwer Academic Publishers,
2001: 237–252.

