
Volume 1, No. 1, May‐June 2010

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserves 2

EETS: AN ENERGY-EFFICIENT TIME SYNCHRONIZATION ALGORITHM FOR
WIRELESS SENSOR NETWORKS

Kavi Kumar Khedo*

Department of Computer Science and Engineering
University of Mauritius

Reduit, Mauritius
k.khedo@uom.ac.mu

Dhiraj Lobin
Department of Computer Science and Engineering

University of Mauritius
Reduit, Mauritius

dhirajlobin@gmail.com

Abstract: High precision and real-time communications are increasingly becoming important in Wireless Sensor Networks as such networks are
required to support highly time-critical applications. The sensor nodes need to communicate data to each other at the correct time. However, the
clocks of sensor nodes run at different speed and very often drift from the real time value. In this paper we are proposing EETS, an energy
efficient time synchronization algorithm. Energy efficiency is achieved by synchronizing only nodes that are communicating with each other
when an event occurs. EETS is performed in two phases namely the Level discovery phase and the Synchronization phase. A simulation study
has been carried out and the results shows that EETS is more energy efficient than other existing algorithms. Particularly, EETS has been
compared to Network Wide Time Synchronization (NWTS) which is a widely used algorithm for time synchronization in WSN. Simulation
results have shown that NWTS uses about 10% more energy than EETS. NWTS synchronizes 90% of the network nodes but reduces the lifetime
of the network considerably while EETS synchronizes only nodes that need to be synchronized and thus saving energy.

Keywords: Time Synchronization, Energy Efficiency, Sensor Networks, Clock Drift, Network Delay

I. INTRODUCTION

A Wireless Sensor Network (WSN) can be defined as a
network of autonomous devices with built-in sensors that
cooperate to monitor physical or environmental conditions,
such as temperature, sound, vibration, pressure, motion or
pollutants, at different locations. Unlike traditional networks,
WSN usually have an ad-hoc deployment and node volatility
is a common occurrence. In addition to this, sensor nodes
need to operate at significantly low energy level as these
nodes have limited amount of energy thus making their
deployment a real challenge [1, 2]. Sensor nodes are
becoming smaller with lower production cost and the ability
to place sensor nodes in remote and dangerous areas without
worrying about communication lines is definitely a key
aspect over traditional networks. Each node in the network
monitors a region by sensing the events occurring in their
surroundings. This sensory input, when gathered from all the
nodes and analyzed by more traditional computers, paints a
comprehensive, high-resolution picture of the surroundings
in real time.

With technological advances and the rise of its
importance, WSN has been used in more critical applications
where the data needs to be communicated at the right time
[3]. One common problem in traditional networks as well as
in WSN is the clock drift problem [4, 5]. The clocks of
different node run at different speed. After some time, the
clock readings of the nodes will be different. Now if the
nodes need to communicate based on time, a node can reject
a packet considering it to be outdated compared to its clock.

In traditional network, the time can be synchronized with
the use of methods like Network Time Protocol [6] as well as
Global Positioning System. But for WSN these methods are
not suitable. The sensor nodes in WSN have limited amount
of energy. So sensor nodes cannot communicate with a base

server or a GPS very often. Maintaining a connection with a
base server or a GPS will use up the energy of the nodes and
after some time all the nodes in the network will be dead.
Another constraint is that the sensor node being small
devices have low computational power. Complex algorithms
cannot be run on these processors as it will use considerable
amount of energy. With respect to all the constraints of the
WSN, an algorithm which not just synchronize time
efficiently but should also do it with the use of minimum
amount of energy is required.

II. TIME SYNCHRONIZATION IN WIRELESS SENSOR
NETWORKS

Communication between the nodes is the key factor in a
WSN. It is important that the nodes provide the right
information at the right time. This is why time
synchronization in WSN plays an important role. Time
synchronization consists of setting the clocks of each node in
the network to the same global time. At the start when the
WSN is deployed, all the nodes have their clocks
synchronized. But the problem is, as time goes by, the clocks
of the nodes will have different values. This problem arises
because each node’s clock run at different speed and some
might be faster and some slower. The clocks are said to be
drifting apart and this phenomenon is known as Clock Drift
[4].

Time Synchronization is a critical factor in WSN where
the nodes have to communicate with each other [7, 8]. It is
very important to keep the time of each sensor node to be
synchronized with a global time so that when the sensor
reading is taken it is in the order to determine the correct
undergoing of the monitored event. If the time of the sensor
nodes are not synchronized the base station can have
problems in reordering of the sequence of an event.

Kavi Kumar Khedo et al, International Journal of Advanced Research in Computer Science, 1 (1), May-June 2010, 2-8

Another importance of time synchronization in WSN is
when sensor nodes have to transfer data to the base station.
Sensor nodes communicate with the neighboring node to
pass on the data which in turn passes the data to the other
node until it reaches the base station. Sensor nodes are low
energy devices and cannot be running all the time. When the
sensor nodes are not running they are said to be sleeping so
that they can conserve energy. In a multi-hop system the
neighboring nodes should be awaken at the same time. This
means the time at which they awake or go asleep should be
synchronized [9]. If it is not synchronized, when a sensor
node has to send a packet to the base station, the propagation
delay will be high as some nodes will be asleep when they
have to relay a packet.

Wireless Sensor Networks requires more precision in
time synchronization than traditional networks due to their
close coupling with the physical world and energy
constraints [10, 11]. There are many domain specific
applications which require precisely synchronized time and
in addition to these domain specific applications, sensor
network applications rely on time synchronization as
traditional distributed systems do. Time synchronization is
needed for secure cryptographic schemes, ordering logged
events during system debugging, coordination of future
action, and so forth.

The protocols and algorithms used for traditional
networks do not work efficiently in WSN. For example if the
clock of a sensor node is to be synchronized, it is difficult to
know with which other node to synchronize and whether the
other node’s clock is showing the right time. The algorithms
used for traditional networks should be enhanced or an
algorithm which not only synchronizes the time in WSN, but
also meet the challenges like energy efficiency, scalability,
robustness, and ad-hoc deployment of WSN, should be
devised. Many algorithms have been proposed for time
synchronization in WSN. Some of the algorithms are
discussed below.

A. Delay Measurement Time Synchronization (DMTS)
DMTS is a flexible and lightweight technique for both

single and multi hop WSN [12]. The nodes in DMTS are
synchronized based on the concepts of event timestamp and
network event scheduling [7]. The main idea of DMTS is to
choose a leader which broadcast its local time value to other
nodes. The receiver nodes synchronize with each other as
they can synchronize with each other better than
synchronizing with the sender.

B. Reference-Broadcast Synchronization (RBS)
The RBS aims at using the broadcast property of WSN to

build up an algorithm for time synchronization [13]. In
WSN, two receivers found in the listening distance of the
same sender, receives a message sent by the sender at
approximately the same time. If the receivers record their
local time at the moment the message is received, the sensor
nodes can compare and synchronize their local clocks
precisely.

C. Global Clock Synchronization
Global clock synchronization is very important for sensor

network applications that require interfacing with time of the
events in the sensor networks. Li and Rus [14] have proposed
a rate-based algorithm with both synchronous and
asynchronous implementations of the algorithm. Global
synchronization is achieved by flooding the local
synchronization information to the whole system. Various
global values can be chosen to synchronize the network. The

easiest one will be to take either the maximum or the
minimum value. However a faulty or malicious node can
provide an incorrect high or low clock reading. In order to
have a more robust algorithm, the global average is used as
the ultimate clock reading.

D. Network-wide Time Synchronization
Network-wide time synchronization [15] concentrates

more on the scalability of WSN. It aims at making sure that
synchronization accuracy is not degraded as the number of
nodes in the network increases. The main idea in network-
wide time synchronization is to create a hierarchical structure
in a WSN. In this structure a node can be acting
simultaneously as a server to a number of nodes while acting
as a client to another node. The network-wide time
synchronization algorithm works in two phases: The level
discovery phase and the synchronization phase.

E. Probabilistic Clock Synchronization Service
Probabilistic clock synchronization [16] is an extension

to Reference Broadcast Synchronization protocol [13]. It
makes use of the higher precision of the receiver to receiver
synchronization and extends RBS to provide a probabilistic
bound on accuracy of clock synchronization.

F. Flooding Time Synchronization Protocol (FTSP)
For high precision applications, Flooding Time

Synchronization Protocol (FTSP) [17] is a good technique to
go for. FTSP was developed for a sniper localization
application where very high precision is required. FTSP uses
customized MAC-layer time stamping and calibration to
eliminate delays. FTSP synchronizes time between a sender
and multiple nodes using a single radio message which is
time-stamped at both sender and receiver sides. The message
consists of the sender’s time representing the global time at
the transmission of a byte. When the receivers get the
message, the sensor nodes get their local time and thus it
forms a global-local time pair for each receiver. The
receiver’s clock offset is obtained from the difference
between the global and the local time.

G. Comparison of existing algorithms

Table I. Comparison of Time Synchronization Protocols

 Energy
Efficiency

Accuracy Scalability Robustness

DMTS High High Good Good
RBS High High Good Good

Global Clock
Synchronization

Average High Good Average

Network-Wide
Synchronization

Average High Good Average

Probabilistic
Synchronization

High Average Good Average

FTSP High High Good Good

From the comparison table, it can be observed that

DMTS, RBS, Probabilistic Synchronization and FTSP have
high energy efficiency compared to Global clock
synchronization and Network-Wide Synchronization. In
terms of accuracy, except probabilistic synchronization, all
the protocols provide a high accuracy in their
synchronization algorithm. All of the protocols provide good
scalability but only DMTS, RBS and FTSP are robust
enough to manage loss of nodes.

© 2010, IJARCS All Rights Reserves 3

Kavi Kumar Khedo et al, International Journal of Advanced Research in Computer Science, 1 (1), May-June 2010, 2-8

The main problem with the above algorithms is that all
the nodes in the network are synchronized, even the nodes
that which are currently not active. Synchronizing the nodes
will cause them to move from a sleep state to an active state,
perform synchronization and then go back to sleep state. In
this process the nodes use up energy. This gives rise to the
need of a new time synchronization algorithm which will
synchronize only the nodes that are going to communicate
and send data. It will avoid unnecessary use of energy and
will increase the lifetime of the network.

III. PROPOSED TIME SYNCHRONIZATION ALGORITHM
(EETS)

A good time synchronization algorithm should take into
consideration the parameters of energy consumption in the
sensor nodes. It should be able to handle and minimize
energy usage and thus perform energy efficient time
synchronization. In addition to minimize energy
consumption, the algorithm should be able to synchronize
time accurately. For some critical applications it is very
important that the clocks of the nodes are synchronized to the
maximum accuracy. WSNs are highly dynamic with large
number of nodes joining or leaving the network. Thus the
time synchronization algorithm should be scalable and
robust.

In order to satisfy the above requirements, Energy
Efficient Time Synchronization (EETS) algorithm is being
proposed which is a new approach for time synchronization
in WSN. The goal of EETS is not just to synchronize the
time in WSN but it should be doing it in such a way that the
minimum amount of energy is used. EETS consists of two
phases: The Level discovery phase and the Synchronization
phase. The Level discovery phase is performed the first,
followed by the Synchronization phase. But the important
part is that synchronization is performed only when a node
needs to be synchronized.

A. Level Discovery Phase
In the level discovery phase, a root node is selected in the

network. This root node is given the Level 0. The Level 0
node will broadcast a level discovery packet which contains
its own level. When the neighboring receives this packet,
they assign themselves one level higher than the level in the
packet. That is the neighbor of node level 0 will be assigned
level 1. The level 1 node then broadcast a level discovery
packet which contains their level. Again the nodes receiving
this packet will assign themselves one level higher than in
the packet. The neighbors already having a level will ignore
the level discovery packet. This process goes on until all the
nodes in the network have been assigned a level.

Figure 1. Level discovery process

B. Synchronization Phase
The synchronization phase will be run on only nodes that

need to be synchronized. Synchronization will take place
between a node and its neighbor which is found at a lower
level. That is node at level N will synchronize with node at
level N-1.

Figure 2. Synchronization phase of EETS

The steps for the synchronization between two nodes A
and B found in the network are as follows:

• Node A transmits the first packet which contains a
timestamp t1 with respect to its local time.

• When node B receives the first packet, it records the
time t2. Time t2 is defined as time t1 plus the
transmission time D from node A to B plus the
offset d between the node A and B’s clock.

• Node B then transmits a second packet to node A.
The second packet contains the value of t1 and t2 as
well as t3, the time at which the packet was sent
with respect to the local time of node B.

• Node A will receive the second packet at time t4 = t3
+ D + d.

• The offset d can now be calculated at node A by
subtracting t4 from t2

o t2 - t4 = t1 – t3 – D + D + 2d
o d = 0.5*(t2 – t4 – t1 + t3)

• Once node A has found the offset it can adjust its
clock to be synchronized with node B

C. Calculation for Network Delay (D)
Network Delay in WSN networks depends on the

following values:
• Send time: The time needed for assembling the

message and includes processing and buffering
time.

• Propagation time: The time taken for the signal to
travel from the sender to the receiver. It is
proportional to the distance between the sender and
receiver and thus propagation time is the same in
both directions.

• Receive time: The time for receiving the message
from the channel and notifying the host of the
receipt of the message.

• Access time: The time associated with accessing the
channel including carrier sensing.

For the implementation of EETS we will consider that the
send time, propagation time, receive time and access time are
all the same for every node in the network. Thus the time
taken to send a message from the sender to the receiver will
be the same as the time taken for the receiver to send a
message to the sender.

DSender = DReceiver ………………………………….. (1)

© 2010, IJARCS All Rights Reserves 4

Kavi Kumar Khedo et al, International Journal of Advanced Research in Computer Science, 1 (1), May-June 2010, 2-8

D. Calculation of Clock Offset (d)
It is very important for EETS to know the clock

difference between two nodes in order to be able to
synchronize them. The clock offset (d) between the nodes
will be calculated by subtracting the time at which the
receiver receives the packet (t2) from the time at which the
sender receives the packet (t4).

t2 = t1 + D + d ………………………………….. (2)
t4 = t3 + D – d ………………………………….. (3)

Therefore:
t2 - t4 = t1 – t3 – D + D + 2d ……………………. (4)
d = 0.5*(t2 – t4 – t1 + t3) ……………………….. (5)

IV. IMPLEMENTATION OF EETS

In order to provide a full simulation of the EETS, the
algorithm was implemented and the following assumptions
were made for the implementation:

• The WSN consists of clusters with varying number
of nodes.

• The nodes communicate with nodes within a
specified distance to it.

• The greater the distance between two nodes the
greater will be the energy used to transmit
messages.

• The initial energy of all the nodes is equal at the
start of the simulation.

• EETS will be run on a cluster of nodes and not on
the entire network.

A. Energy Model
We use the assumptions in [26] as the basis to calculate

the energy dissipation for our simulations, which are as
follows:

• Energy consumption for modulating or
demodulating one bit:
Eelec = 50nJ/bit

• Energy consumption for spreading one bit to an
area of radius r = 1 meter (i.e., πm2):
Єamp = 100pJ/bit/ m2 = 0.1nJ/bit/m2

• Data rate = 2000bits/s

• Data package size = 2000-bit

• Signal package size = 64-bit

• The radio board consumes 100 µJ for each received
data message:
ERx_data = Eelec* k-bit/message = 50nJ/bit * 2000

bits/message = 100 µJ/message

• The radio board consumes 3 µJ for each received
signal message:
ERx_signal = Eelec* k-bit/message = 50nJ/bit * 64

bits/message = 3.2 µJ/message ~= 3 µJ/message

• The radio board consumes (100 + 200*d^2) µJ for
transmitting a data message to a distance d:
ETx_data = Eelec* k-bit/message + Єamp* k * d2 = 50

nJ/bit * 2000 bits/message + 0.1 nJ/bit*2000

bits/message * d2 = (100 µJ + 200* d2)/message

• The radio board consumes (3 + 64* d2) µJ for
transmitting a signal message to a distance d:
ETx_signal = Eelec* k-bit/message + Єamp*k* d2 = 50

nJ/bit * 64 bits/message + 0.1 nJ/bit*64

bits/message* d2 = (3 µJ + 6.4* d2)/message

• Assuming that the optimized communication radius
of nodes is 60m. The radio board consumes 820 µJ
for transmitting a data message to distance d<=
60m:
ETx_data = 2000(bit)*(50(nJ) + 0.1(nJ)*60*60) =

820 µJ/message

• The radio board consumes 26 µJ for transmitting a
data message to a distance d<= 60m:
ETx_signal = 64(bit)*(50(nJ) + 0.1(nJ)*60*60)= 26.2

µJ/message ~= 26 µJ/message

• If the radio board is in receiving mode, it consumes
100 µJ at each second:
ERadio = Eelec * data_rate = 50nJ/bit* 2000 bits/s

= 100 µJ/s

• If the sensor board is in full operation mode, it
consumes 66 µJ at each second:
ESensor = ERadio * 2/3 = 66 µJ/s

• In general, the MCU (Memory board, CPU board)
is in sleep mode, it just switches to active when
having an external interrupt. So, in the simulation,
we assume that the processor is in sleep mode. It
turns to full operation when having an event. It
means when creating a new message, energy
consumption is calculated as follows:
EMCU_data = 2000(bit)*50(nJ) = 100 µJ/message

• The MCU board consumes 3 µJ for creating a
signal message.
EMCU_signal = 64(bit)*50(nJ) = 3.2 ~= 3 µJ/message

Derived from the above calculations, Table 1 summarizes
the operations and their respective energy consumption.

Table II. Energy consumption of operations

Operations Energy
Create/Receive a data message
Create/Receive a signal message

100 µJ
3 µJ

Send a data message (d<= 60m)
Send a signal message (d<=60m)

820 µJ
26 µJ

Send a message (d > 60m) 100 µJ + 0.1* d2

Sensor board (full operation) 66 µJ/s
Radio board (idle/receive mode) 100 µJ/s

V. SIMULATION STUDY

The simulation study of EETS has been performed using
varying parameters under different scenarios. There are some
parameters that have been set using random functions and as
a result the simulation depends on the randomness of these
functions. During the simulation study, the average energy
level of the WSN was observed relative to the amount of
time the simulation has been running. Moreover EETS has
been compared to Network Wide Time Synchronization
(NWTS) for the different scenarios. EETS is simulated in an
environment where sensor nodes are spread randomly on a

© 2010, IJARCS All Rights Reserves 5

Kavi Kumar Khedo et al, International Journal of Advanced Research in Computer Science, 1 (1), May-June 2010, 2-8

field of given size. The sensor nodes will be reporting any
event they sense to the cluster head.

A. Input parameters
• Size of the field
• Network size that is the number of nodes
• Number of random events occurring
• Initial battery level
• Duration of simulation
• Clock drift rate

B. Output parameters
• Number of remaining node
• Time of each sensor node
• Remaining energy of each node
• Average energy of the WSN

C. Scenarios
EETS has been simulated by establishing different

scenarios. In these scenarios the input parameters has been
varied and graphs of the average remaining energy of the
WSN is plotted against time. In order to examine the
efficiency of EETS, NWTS has been run under the same
scenarios, and the results have been compared.

D. Scenario 1
Scenario 1 consists of varying the number of nodes in the

network while keeping the other parameters constant. This
scenario shows how EETS and NWTS behave when the
network size increases.
Size of the field = 300m X 300m
Network size, that is the number of nodes = 100, 200, 400,
600, 800, 1000
Number of random events occurring = 100
Initial battery level = 2000 mJ
Duration of simulation = 120s
Clock drift rate = 1s

Figure 3. Comparison between EETS and NWTS

Form the above graph it can clearly be seen that EETS is
much more energy efficient than NWTS. As the number of
nodes increase, the average remaining energy for EETS
remains approximately the same but NWTS uses about 10%
more energy compared to EETS.

E. Scenario 2
In this scenario, the size of the field as well as the number

of nodes in the network is varied. For each size of the
network, the number of nodes is varied from 100 to 1000
during each simulation.

Size of the field = 300m X 300m, 600m X 600m, 900m X
900m
Network size, that is the number of nodes = 100, 400, 800,
1000
Number of random events occurring = 100
Initial battery level = 2000 mJ
Duration of simulation = 60s
Clock drift rate = 1s

Figure 4. Varying the network size

From this simulation it can be seen that as the size of the
network increases, the amount of energy required
synchronizing the nodes increases.

F. Scenario 3
Scenarios 3 consist of keeping the field size constant and

vary the number of nodes in the network. For each
simulation the number of random events occurring is
increased. In this scenario, the number of nodes synchronized
by EETS and NWTS as well as the amount of energy
remaining is observed.
Size of the field = 600m X 600m
Network size, that is the number of nodes = 100, 400, 800,
1000
Number of random events occurring = 100, 400, 800, 1000
Initial battery level = 2000 mJ
Duration of simulation = 60s
Clock drift rate = 1s

Figure 5. Percentage of nodes synchronized for EETS and NWTS

© 2010, IJARCS All Rights Reserves 6

Kavi Kumar Khedo et al, International Journal of Advanced Research in Computer Science, 1 (1), May-June 2010, 2-8

Figure 6. Remaining energy after synchronization

From the two above figures (16 and 17) we can see that
NWTS synchronizes more nodes than EETS but it uses more
energy. Synchronizing only nodes that needs to be
synchronize is much more energy efficient. We can see that
EETS saves about 3% more energy than NWTS.

G. Scenario 4
In this scenario we keep all the parameters constant and

vary only the number of random events occurring. This will
show how energy is consumed as the number of events
increases.
Size of the field = 600m X 600m
Network size, that is the number of nodes = 800
Number of random events occurring = 100, 200, 400, 800
Initial battery level = 2000 mJ
Duration of simulation = 60s
Clock drift rate = 1s

Figure 7. Remaining energy per number of events

As the number of events increase, we can see that EETS
uses more energy to synchronize the nodes. But it can be
seen that, as the number of events increases, NWTS uses
even more energy than EETS.

VI. INTERPRETATION OF RESULTS

In scenario 1, the number of nodes deployed in the
network is varied, keeping all other parameters constant and
the amount of energy used by EETS and NWTS is observed.
It has been observed that EETS uses about the same amount
of energy as the number of nodes increase. This is because
EETS will use a little more energy to set the levels of more
nodes. But if the number of occurring events remains the

same, EETS will use approximately the same amount of
energy to synchronize the nodes. The difference in the
amount of energy required will depend on the distance of the
nodes.

NWTS uses much more energy because it tries to
synchronize the whole network. In a small network (100
nodes) NWTS uses less energy. But when the network is big
(1000 nodes) it uses considerable amount of energy. While
trying to synchronize the whole network, the average amount
of remaining energy in the network decreases. Thus the
lifetime of the network also decreases. In order to save
energy it is better to synchronize only the nodes that need to
communicate instead of synchronizing the whole network.

In scenario 2, the network size as well as the number of
nodes in the network is varied. It is observed that as the
network grows in size, the amount of energy required to
synchronize the nodes also increases. This is because the
distance between the nodes increases as the network size
increases. With increase in distance the nodes require more
energy to communicate and thus the average remaining
energy of the network also decreases.

Scenario 3 is set up to observe what percentage of the
network is synchronized by EETS and NWTS. We can see
from figure 17 that as the number of nodes in the network
increases the percentage of nodes synchronized by EETS is
less than that of NWTS. This is because NWTS runs
regularly at an interval of time. The more the number of
cycles, the more nodes synchronized. But EETS
synchronizes only nodes that have detected an event and that
have to communicate with the sink node. So the percentage
of node synchronized as the network grows bigger is lower
than NWTS. On the other hand, looking at figure 18, it is
observed that NWTS uses considerable amount of energy to
synchronize unnecessary nodes. At this rate the lifetime of
the network will decrease rapidly. So it is better to
synchronize only nodes that need to be synchronized and
save energy.

In scenario 4, the number of events occurring is varied
for a fixed size network to evaluate the energy consumption
of EETS and NWTS. EETS does not use much energy to
synchronize the nodes as the number of events increases. But
NWTS has to handle both the occurring event as well as the
synchronization. While synchronizing nodes only involved
with the event, EETS saves much more energy than NWTS
which synchronizes the whole network as well as handles the
event.

It has been seen from the simulation results that EETS is
much more energy efficient than NWTS. This is because
EETS synchronizes only the nodes that need to be
synchronized. NWTS uses about 10% more energy than
EETS for synchronization. The nodes remain in a sleep state
until an event occurs. When an event occurs before handling
this event, EETS synchronizes the nodes that are on the path
to the sink node. Thus it is not necessary to synchronize all
nodes in the network as this will reduce the network lifetime.

VII. CONCLUSION

This paper aimed at addressing the problem of time
synchronization in Wireless Sensor Networks. It has been
seen that WSN are used in many different fields like
agriculture, security, industrial, transport, asset tracking and
ubiquitous computing. Most of these applications are time
critical applications. With increase in the use of WSN, the
importance of accurate communication has gain importance.
The sensor nodes in the network should be able to
communicate at the right time to give the correct results. But

© 2010, IJARCS All Rights Reserves 7

Kavi Kumar Khedo et al, International Journal of Advanced Research in Computer Science, 1 (1), May-June 2010, 2-8

very often, the clocks of the sensor nodes have different
values. The clocks of the sensor nodes have different values
as each of them run at a different speed. At the beginning, the
clock values will be the same, but after some time the values
will differ from each other. This is known as clock drift
whereby the clock values drift away from the correct value.
Time synchronization is a very important factor in
communication between the nodes. Before coming up with a
solution for time synchronization, the different challenges for
designing an algorithm for WSN have been studied. The
sensor nodes of a WSN are small devices with low amount of
energy. An algorithm that will be running on a WSN should
take into account that it does not use up all the energy of the
sensor nodes.

A comparative study of different existing algorithms for
time synchronization has been made. The study of different
existing algorithms has lead to setting up the requirements
for a new time synchronization algorithm and this algorithm
has been named Energy Efficient Time Synchronization
(EETS). EETS aims at performing time synchronization with
the minimal use of energy in the WSN. The algorithm works
in two phases. The first phase is the Level discovery phase.
In this phase, each node of the network is assigned a level.
The second phase is the synchronization phase.
Synchronization takes place only between nodes that needs
to be synchronized. The other nodes in the network stay in a
sleep state. When an event occurs in the network, the node
sensing the event will synchronize with a node at a lower
level before starting to send the collected data.

The EETS has been implemented, executed under
different scenarios and compared to Network Wide Time
Synchronization (NWTS). Simulations have showed that as
the network size increases, NWTS uses about 10% more
energy than EETS. NWTS synchronizes more nodes in the
network but at the same time uses more energy. EETS
synchronized only the nodes that need to be synchronized
and at the same time saves the overall energy of the network.
As a result EETS has proved to be energy efficient and
provides and accurate synchronization of the nodes.

VIII. REFERENCES

[1] M. Molla, and S.I. Ahamed, “A Survey of Middleware
for Sensor Network and Challenges,” In the
Proceedings of the 2006 International Conference
Workshops on Parallel Processing, 14-18 August 2006,
Columbus, Ohio, USA. Washington: IEEE Computer
Society, pp. 223-228.

[2] A. Bharathidasan, and V.A. Ponduru, "Sensor
Networks: An Overview", IEEE Potentials, April-May
2003, vol. 22, issue 2, pp. 20- 23.

[3] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, and
D. Timmermann, “Wireless Sensor Networks - New
Challenges in Software Engineering,” Proceedings of
9th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA),
Lissabon, Portugal, September 2003.

[4] R. Tjoa, K.L. Chee, P.K. Sivaprasad, S.V. Rao, and J.G.
Lim, “Clock drift reduction for relative time slot
TDMA-based sensor networks,” 15th IEEE
International Symposium on Personal, Indoor and
Mobile Radio Communications, 2004. PIMRC 2004, 5-
8 Sept. 2004, pp. 1042- 1047.

[5] D. Sanchez, “Secure, accurate and precise time
synchronization for wireless sensor networks,”

Proceedings of the 3rd ACM workshop on QoS and
security for wireless and mobile networks, Chania,
Crete Island, Greece, pp. 105 – 112, 2007.

[6] D.Mills, “Internet Time Synchronization: The Network
Time Protocol,” Global States and Time in Distributed
Systems. IEEE Computer Society Press, 1994.

[7] B. Sundararaman, U. Buy, A.D. Kshemkalyani, “Clock
synchronization for wireless sensor networks: a
survey”, Ad Hoc Networks, vol. 3, issue 3, pp. 281-323,
May 2005.

[8] C. Lenzen, P. Sommer and R. Wattenhofer, “Optimal
clock synchronization in networks,” Proceedings of the
7th ACM Conference on Embedded Networked Sensor
Systems, Berkeley, California, USA, pp. 225-238,
2009.

[9] Y. Wu, S. Fahmy, and N.B. Shroff , “Optimal
sleep/wake scheduling for time-synchronized sensor
networks with QoS guarantees,” IEEE/ACM
Transactions on Networking (TON) , vol. 17, Issue 5,
October 2009.

[10] S. Yoon, C. Veerarittiphan, M.L. Sichitiu, “Tiny-sync:
Tight time synchronization for wireless sensor
networks”, ACM Transactions on Sensor Networks
(TOSN), vol.3, issue.2, June 2007.

[11] E. McKnight-MacNeil and T. Kunz, “Behavior of
clock-sampling mutual network synchronization in
wireless sensor networks”, Proceedings of the 2009
International Conference on Wireless Communications
and Mobile Computing, Leipzig, Germany, pp. 633-
638, June 2009.

[12] S. Ping, “Delay measurement time synchronization for
wireless sensor networks,” Technical Report IRB-TR-
03-013, Intel Research, June 2003.

[13] J. Elson, L. Girod, and D. Estrin, “Fine-Grained
Network Time Synchronization using Reference
Broadcasts,” In Proceddings of the 5th ACM
Symposium on Operating System Design and
Implementation (OSDI-02), Operating System Review,
pp. 147-164, New York, December 9-11 2002. ACM
Press.

[14] Q. Li and D. Rus, “Global Clock Synchronization in
Sensor Networks,” Proc. IEEE Conf. Computer
Communications (INFOCOM 2004), vol. 1, pp. 564–
574, Hong Kong, China, Mar. 2004.

[15] S. Ganeriwal, R. Kumar, S. Adlakha, and M.
Srivastava, “Network-wide Time Synchronization in
Sensor Networks,” Technical Report, Networked and
Embedded Systems Lab, Elec. Eng. Dept., UCLA,
2003.

[16] S. PalChaudhuri, A. Saha, and D. B. Johnson.
“Probabilistic Clock Synchronization Service in Sensor
Networks,” Technical Report TR 03-418, Department
of Computer Science, Rice University, 2003.

[17] M. Maroti, G. Simon, B. Kusy, and A. Ledeczi, “The
flooding time synchronization protocol,” in Proceedings
of the 2nd international conference on Embedded
networked sensor systems”, Baltimore, MD, USA, Nov.
2004, pp. 39–49.

© 2010, IJARCS All Rights Reserves 8

	I.
	I. Introduction
	II. Time Synchronization In Wireless Sensor Networks
	A. Delay Measurement Time Synchronization (DMTS)
	B. Reference-Broadcast Synchronization (RBS)
	C. Global Clock Synchronization
	D. Network-wide Time Synchronization
	E. Probabilistic Clock Synchronization Service
	F. Flooding Time Synchronization Protocol (FTSP)
	G. Comparison of existing algorithms
	III. Proposed Time Synchronization Algorithm (EETS)
	A. Level Discovery Phase
	B. Synchronization Phase
	C. Calculation for Network Delay (D)
	D. Calculation of Clock Offset (d)

	IV. Implementation of EETS
	A. Energy Model

	V. Simulation Study
	A. Input parameters
	B. Output parameters
	C. Scenarios
	D. Scenario 1
	E. Scenario 2
	F. Scenario 3
	G. Scenario 4

	VI. Interpretation of results
	VII. Conclusion
	VIII. References

