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Abstract: High precision and real-time communications are increasingly becoming important in Wireless Sensor Networks as such networks are 
required to support highly time-critical applications.  The sensor nodes need to communicate data to each other at the correct time. However, the 
clocks of sensor nodes run at different speed and very often drift from the real time value. In this paper we are proposing EETS, an energy 
efficient time synchronization algorithm. Energy efficiency is achieved by synchronizing only nodes that are communicating with each other 
when an event occurs. EETS is performed in two phases namely the Level discovery phase and the Synchronization phase. A simulation study 
has been carried out and the results shows that EETS is more energy efficient than other existing algorithms. Particularly, EETS has been 
compared to Network Wide Time Synchronization (NWTS) which is a widely used algorithm for time synchronization in WSN. Simulation 
results have shown that NWTS uses about 10% more energy than EETS. NWTS synchronizes 90% of the network nodes but reduces the lifetime 
of the network considerably while EETS synchronizes only nodes that need to be synchronized and thus saving energy.  
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I. INTRODUCTION 

A Wireless Sensor Network (WSN) can be defined as a 
network of autonomous devices with built-in sensors that 
cooperate to monitor physical or environmental conditions, 
such as temperature, sound, vibration, pressure, motion or 
pollutants, at different locations. Unlike traditional networks, 
WSN usually have an ad-hoc deployment and node volatility 
is a common occurrence. In addition to this, sensor nodes 
need to operate at significantly low energy level as these 
nodes have limited amount of energy thus making their 
deployment a real challenge [1, 2]. Sensor nodes are 
becoming smaller with lower production cost and the ability 
to place sensor nodes in remote and dangerous areas without 
worrying about communication lines is definitely a key 
aspect over traditional networks. Each node in the network 
monitors a region by sensing the events occurring in their 
surroundings. This sensory input, when gathered from all the 
nodes and analyzed by more traditional computers, paints a 
comprehensive, high-resolution picture of the surroundings 
in real time. 

With technological advances and the rise of its 
importance, WSN has been used in more critical applications 
where the data needs to be communicated at the right time 
[3].  One common problem in traditional networks as well as 
in WSN is the clock drift problem [4, 5]. The clocks of 
different node run at different speed. After some time, the 
clock readings of the nodes will be different. Now if the 
nodes need to communicate based on time, a node can reject 
a packet considering it to be outdated compared to its clock.  

In traditional network, the time can be synchronized with 
the use of methods like Network Time Protocol [6] as well as 
Global Positioning System. But for WSN these methods are 
not suitable. The sensor nodes in WSN have limited amount 
of energy. So sensor nodes cannot communicate with a base 

server or a GPS very often. Maintaining a connection with a 
base server or a GPS will use up the energy of the nodes and 
after some time all the nodes in the network will be dead. 
Another constraint is that the sensor node being small 
devices have low computational power. Complex algorithms 
cannot be run on these processors as it will use considerable 
amount of energy. With respect to all the constraints of the 
WSN, an algorithm which not just synchronize time 
efficiently but should also do it with the use of minimum 
amount of energy is required.  

II. TIME SYNCHRONIZATION IN WIRELESS SENSOR 
NETWORKS 

Communication between the nodes is the key factor in a 
WSN. It is important that the nodes provide the right 
information at the right time. This is why time 
synchronization in WSN plays an important role. Time 
synchronization consists of setting the clocks of each node in 
the network to the same global time. At the start when the 
WSN is deployed, all the nodes have their clocks 
synchronized. But the problem is, as time goes by, the clocks 
of the nodes will have different values. This problem arises 
because each node’s clock run at different speed and some 
might be faster and some slower. The clocks are said to be 
drifting apart and this phenomenon is known as Clock Drift 
[4]. 

Time Synchronization is a critical factor in WSN where 
the nodes have to communicate with each other [7, 8]. It is 
very important to keep the time of each sensor node to be 
synchronized with a global time so that when the sensor 
reading is taken it is in the order to determine the correct 
undergoing of the monitored event. If the time of the sensor 
nodes are not synchronized the base station can have 
problems in reordering of the sequence of an event.  
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Another importance of time synchronization in WSN is 
when sensor nodes have to transfer data to the base station. 
Sensor nodes communicate with the neighboring node to 
pass on the data which in turn passes the data to the other 
node until it reaches the base station. Sensor nodes are low 
energy devices and cannot be running all the time. When the 
sensor nodes are not running they are said to be sleeping so 
that they can conserve energy. In a multi-hop system the 
neighboring nodes should be awaken at the same time. This 
means the time at which they awake or go asleep should be 
synchronized [9]. If it is not synchronized, when a sensor 
node has to send a packet to the base station, the propagation 
delay will be high as some nodes will be asleep when they 
have to relay a packet. 

Wireless Sensor Networks requires more precision in 
time synchronization than traditional networks due to their 
close coupling with the physical world and energy 
constraints [10, 11]. There are many domain specific 
applications which require precisely synchronized time and 
in addition to these domain specific applications, sensor 
network applications rely on time synchronization as 
traditional distributed systems do. Time synchronization is 
needed for secure cryptographic schemes, ordering logged 
events during system debugging, coordination of future 
action, and so forth. 

The protocols and algorithms used for traditional 
networks do not work efficiently in WSN. For example if the 
clock of a sensor node is to be synchronized, it is difficult to 
know with which other node to synchronize and whether the 
other node’s clock is showing the right time. The algorithms 
used for traditional networks should be enhanced or an 
algorithm which not only synchronizes the time in WSN, but 
also meet the challenges like energy efficiency, scalability, 
robustness, and ad-hoc deployment of WSN, should be 
devised. Many algorithms have been proposed for time 
synchronization in WSN. Some of the algorithms are 
discussed below. 

A. Delay Measurement Time Synchronization (DMTS) 
DMTS is a flexible and lightweight technique for both 

single and multi hop WSN [12]. The nodes in DMTS are 
synchronized based on the concepts of event timestamp and 
network event scheduling [7]. The main idea of DMTS is to 
choose a leader which broadcast its local time value to other 
nodes. The receiver nodes synchronize with each other as 
they can synchronize with each other better than 
synchronizing with the sender.  

B. Reference-Broadcast Synchronization (RBS) 
The RBS aims at using the broadcast property of WSN to 

build up an algorithm for time synchronization [13]. In 
WSN, two receivers found in the listening distance of the 
same sender, receives a message sent by the sender at 
approximately the same time. If the receivers record their 
local time at the moment the message is received, the sensor 
nodes can compare and synchronize their local clocks 
precisely. 

C. Global Clock Synchronization 
Global clock synchronization is very important for sensor 

network applications that require interfacing with time of the 
events in the sensor networks. Li and Rus [14] have proposed 
a rate-based algorithm with both synchronous and 
asynchronous implementations of the algorithm. Global 
synchronization is achieved by flooding the local 
synchronization information to the whole system. Various 
global values can be chosen to synchronize the network. The 

easiest one will be to take either the maximum or the 
minimum value. However a faulty or malicious node can 
provide an incorrect high or low clock reading. In order to 
have a more robust algorithm, the global average is used as 
the ultimate clock reading.   

D. Network-wide Time Synchronization 
Network-wide time synchronization [15] concentrates 

more on the scalability of WSN. It aims at making sure that 
synchronization accuracy is not degraded as the number of 
nodes in the network increases. The main idea in network-
wide time synchronization is to create a hierarchical structure 
in a WSN. In this structure a node can be acting 
simultaneously as a server to a number of nodes while acting 
as a client to another node. The network-wide time 
synchronization algorithm works in two phases: The level 
discovery phase and the synchronization phase. 

E. Probabilistic Clock Synchronization Service 
Probabilistic clock synchronization [16] is an extension 

to Reference Broadcast Synchronization protocol [13]. It 
makes use of the higher precision of the receiver to receiver 
synchronization and extends RBS to provide a probabilistic 
bound on accuracy of clock synchronization.  

F. Flooding Time Synchronization Protocol (FTSP) 
For high precision applications, Flooding Time 

Synchronization Protocol (FTSP) [17] is a good technique to 
go for. FTSP was developed for a sniper localization 
application where very high precision is required. FTSP uses 
customized MAC-layer time stamping and calibration to 
eliminate delays. FTSP synchronizes time between a sender 
and multiple nodes using a single radio message which is 
time-stamped at both sender and receiver sides. The message 
consists of the sender’s time representing the global time at 
the transmission of a byte. When the receivers get the 
message, the sensor nodes get their local time and thus it 
forms a global-local time pair for each receiver. The 
receiver’s clock offset is obtained from the difference 
between the global and the local time.  

G. Comparison of existing algorithms  

Table I.   Comparison of Time Synchronization Protocols 

 Energy 
Efficiency 

Accuracy Scalability Robustness 

DMTS High High Good Good 
RBS High High Good Good 

Global Clock 
Synchronization 

Average High Good Average 

Network-Wide 
Synchronization 

Average High Good Average 

Probabilistic 
Synchronization 

High Average Good Average 

FTSP High High Good Good 

 
From the comparison table, it can be observed that 

DMTS, RBS, Probabilistic Synchronization and FTSP have 
high energy efficiency compared to Global clock 
synchronization and Network-Wide Synchronization. In 
terms of accuracy, except probabilistic synchronization, all 
the protocols provide a high accuracy in their 
synchronization algorithm. All of the protocols provide good 
scalability but only DMTS, RBS and FTSP are robust 
enough to manage loss of nodes.  
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The main problem with the above algorithms is that all 
the nodes in the network are synchronized, even the nodes 
that which are currently not active. Synchronizing the nodes 
will cause them to move from a sleep state to an active state, 
perform synchronization and then go back to sleep state. In 
this process the nodes use up energy. This gives rise to the 
need of a new time synchronization algorithm which will 
synchronize only the nodes that are going to communicate 
and send data. It will avoid unnecessary use of energy and 
will increase the lifetime of the network.  

III. PROPOSED TIME SYNCHRONIZATION ALGORITHM 
(EETS) 

A good time synchronization algorithm should take into 
consideration the parameters of energy consumption in the 
sensor nodes. It should be able to handle and minimize 
energy usage and thus perform energy efficient time 
synchronization. In addition to minimize energy 
consumption, the algorithm should be able to synchronize 
time accurately. For some critical applications it is very 
important that the clocks of the nodes are synchronized to the 
maximum accuracy. WSNs are highly dynamic with large 
number of nodes joining or leaving the network. Thus the 
time synchronization algorithm should be scalable and 
robust. 

In order to satisfy the above requirements, Energy 
Efficient Time Synchronization (EETS) algorithm is being 
proposed which is a new approach for time synchronization 
in WSN. The goal of EETS is not just to synchronize the 
time in WSN but it should be doing it in such a way that the 
minimum amount of energy is used. EETS consists of two 
phases: The Level discovery phase and the Synchronization 
phase. The Level discovery phase is performed the first, 
followed by the Synchronization phase. But the important 
part is that synchronization is performed only when a node 
needs to be synchronized.  

A. Level Discovery Phase 
In the level discovery phase, a root node is selected in the 

network. This root node is given the Level 0. The Level 0 
node will broadcast a level discovery packet which contains 
its own level. When the neighboring receives this packet, 
they assign themselves one level higher than the level in the 
packet. That is the neighbor of node level 0 will be assigned 
level 1. The level 1 node then broadcast a level discovery 
packet which contains their level. Again the nodes receiving 
this packet will assign themselves one level higher than in 
the packet. The neighbors already having a level will ignore 
the level discovery packet. This process goes on until all the 
nodes in the network have been assigned a level. 
 

 

Figure 1.  Level discovery process 

B. Synchronization Phase 
The synchronization phase will be run on only nodes that 

need to be synchronized. Synchronization will take place 
between a node and its neighbor which is found at a lower 
level. That is node at level N will synchronize with node at 
level N-1.  

 
Figure 2.  Synchronization phase of EETS 

The steps for the synchronization between two nodes A 
and B found in the network are as follows: 

• Node A transmits the first packet which contains a 
timestamp t1 with respect to its local time. 

• When node B receives the first packet, it records the 
time t2. Time t2 is defined as time t1 plus the 
transmission time D from node A to B plus the 
offset d between the node A and B’s clock. 

• Node B then transmits a second packet to node A. 
The second packet contains the value of t1 and t2 as 
well as t3, the time at which the packet was sent 
with respect to the local time of node B. 

• Node A will receive the second packet at time t4 = t3 
+ D + d. 

• The offset d can now be calculated at node A by 
subtracting t4 from t2 

o t2 - t4 = t1 – t3 – D + D + 2d 
o d = 0.5*(t2 – t4 – t1 + t3) 

• Once node A has found the offset it can adjust its 
clock to be synchronized with node B 

C. Calculation for Network Delay (D) 
Network Delay in WSN networks depends on the 

following values: 
• Send time: The time needed for assembling the 

message and includes processing and buffering 
time. 

• Propagation time:  The time taken for the signal to 
travel from the sender to the receiver. It is 
proportional to the distance between the sender and 
receiver and thus propagation time is the same in 
both directions. 

• Receive time: The time for receiving the message 
from the channel and notifying the host of the 
receipt of the message. 

• Access time: The time associated with accessing the 
channel including carrier sensing. 

For the implementation of EETS we will consider that the 
send time, propagation time, receive time and access time are 
all the same for every node in the network. Thus the time 
taken to send a message from the sender to the receiver will 
be the same as the time taken for the receiver to send a 
message to the sender. 

DSender = DReceiver ………………………………….. (1) 
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D.  Calculation of Clock Offset (d) 
It is very important for EETS to know the clock 

difference between two nodes in order to be able to 
synchronize them. The clock offset (d) between the nodes 
will be calculated by subtracting the time at which the 
receiver receives the packet (t2) from the time at which the 
sender receives the packet (t4). 

t2 = t1 + D + d ………………………………….. (2) 
t4 = t3 + D – d ………………………………….. (3) 

Therefore:  
t2 - t4 = t1 – t3 – D + D + 2d ……………………. (4) 
d = 0.5*(t2 – t4 – t1 + t3) ……………………….. (5) 

IV. IMPLEMENTATION OF EETS 

In order to provide a full simulation of the EETS, the 
algorithm was implemented and the following assumptions 
were made for the implementation: 

• The WSN consists of clusters with varying number 
of nodes. 

• The nodes communicate with nodes within a 
specified distance to it. 

• The greater the distance between two nodes the 
greater will be the energy used to transmit 
messages. 

• The initial energy of all the nodes is equal at the 
start of the simulation. 

• EETS will be run on a cluster of nodes and not on 
the entire network. 

A.  Energy Model 
We use the assumptions in [26] as the basis to calculate 

the energy dissipation for our simulations, which are as 
follows: 

• Energy consumption for modulating or 
demodulating one bit:  
Eelec = 50nJ/bit 

• Energy consumption for spreading one bit to an 
area of radius r = 1 meter (i.e., πm2): 
Єamp = 100pJ/bit/ m2 = 0.1nJ/bit/m2 

• Data rate = 2000bits/s 

• Data package size = 2000-bit  

• Signal package size = 64-bit 

• The radio board consumes 100 µJ for each received 
data message: 
ERx_data  = Eelec* k-bit/message = 50nJ/bit * 2000 

bits/message = 100 µJ/message  

• The radio board consumes 3 µJ for each received 
signal message: 
ERx_signal  = Eelec* k-bit/message = 50nJ/bit * 64 

bits/message = 3.2 µJ/message ~= 3 µJ/message  

 

• The radio board consumes (100 + 200*d^2) µJ for 
transmitting a data message to a distance d: 
ETx_data   = Eelec* k-bit/message + Єamp* k * d2 = 50 

nJ/bit * 2000 bits/message + 0.1 nJ/bit*2000 

bits/message * d2 = (100 µJ + 200* d2)/message  

• The radio board consumes (3 + 64* d2) µJ for 
transmitting a signal message to a distance d: 
ETx_signal  = Eelec* k-bit/message + Єamp*k* d2 = 50 

nJ/bit * 64 bits/message + 0.1 nJ/bit*64 

bits/message* d2 = (3 µJ + 6.4* d2)/message 

• Assuming that the optimized communication radius 
of nodes is 60m. The radio board consumes 820 µJ 
for transmitting a data message to distance d<= 
60m: 
ETx_data  = 2000(bit)*(50(nJ) + 0.1(nJ)*60*60) = 

820 µJ/message  

• The radio board consumes 26 µJ for transmitting a 
data message to a distance d<= 60m: 
ETx_signal = 64(bit)*(50(nJ) + 0.1(nJ)*60*60)= 26.2 

µJ/message  ~= 26 µJ/message 

• If the radio board is in receiving mode, it consumes 
100 µJ at each second: 
ERadio  = Eelec * data_rate = 50nJ/bit* 2000 bits/s  

= 100 µJ/s  

• If the sensor board is in full operation mode, it 
consumes 66 µJ at each second: 
ESensor  = ERadio * 2/3  = 66 µJ/s  

• In general, the MCU (Memory board, CPU board) 
is in sleep mode, it just switches to active when 
having an external interrupt. So, in the simulation, 
we assume that the processor is in sleep mode. It 
turns to full operation when having an event. It 
means when creating a new message, energy 
consumption is calculated as follows: 
EMCU_data  = 2000(bit)*50(nJ) = 100 µJ/message 

• The MCU board consumes 3 µJ for creating a 
signal message. 
EMCU_signal  = 64(bit)*50(nJ) = 3.2  ~= 3 µJ/message 

Derived from the above calculations, Table 1 summarizes 
the operations and their respective energy consumption. 

Table II.  Energy consumption of operations 

Operations Energy  
Create/Receive a data message 
Create/Receive a signal message 

100 µJ 
3 µJ 

Send a data message (d<= 60m) 
Send a signal message (d<=60m) 

820 µJ 
26 µJ 

Send a message (d > 60m) 100 µJ + 0.1* d2

Sensor board (full operation) 66 µJ/s 
Radio board (idle/receive mode) 100 µJ/s 

V. SIMULATION STUDY 

The simulation study of EETS has been performed using 
varying parameters under different scenarios. There are some 
parameters that have been set using random functions and as 
a result the simulation depends on the randomness of these 
functions. During the simulation study, the average energy 
level of the WSN was observed relative to the amount of 
time the simulation has been running. Moreover EETS has 
been compared to Network Wide Time Synchronization 
(NWTS) for the different scenarios. EETS is simulated in an 
environment where sensor nodes are spread randomly on a 
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field of given size. The sensor nodes will be reporting any 
event they sense to the cluster head. 

A. Input parameters 
• Size of the field 
• Network size that is the number of nodes 
• Number of random events occurring 
• Initial battery level 
• Duration of simulation 
• Clock drift rate 

B. Output parameters 
• Number of remaining node 
• Time of each sensor node 
• Remaining energy of each node 
• Average energy of the WSN 

C. Scenarios 
EETS has been simulated by establishing different 

scenarios. In these scenarios the input parameters has been 
varied and graphs of the average remaining energy of the 
WSN is plotted against time. In order to examine the 
efficiency of EETS, NWTS has been run under the same 
scenarios, and the results have been compared. 

D. Scenario 1 
Scenario 1 consists of varying the number of nodes in the 

network while keeping the other parameters constant. This 
scenario shows how EETS and NWTS behave when the 
network size increases. 
Size of the field = 300m X 300m 
Network size, that is the number of nodes = 100, 200, 400, 
600, 800, 1000 
Number of random events occurring = 100 
Initial battery level = 2000 mJ 
Duration of simulation = 120s 
Clock drift rate = 1s 

 

 
Figure 3.  Comparison between EETS and NWTS 

Form the above graph it can clearly be seen that EETS is 
much more energy efficient than NWTS. As the number of 
nodes increase, the average remaining energy for EETS 
remains approximately the same but NWTS uses about 10% 
more energy compared to EETS. 

E. Scenario 2 
In this scenario, the size of the field as well as the number 

of nodes in the network is varied. For each size of the 
network, the number of nodes is varied from 100 to 1000 
during each simulation. 

Size of the field = 300m X 300m, 600m X 600m, 900m X 
900m 
Network size, that is the number of nodes = 100, 400, 800, 
1000 
Number of random events occurring = 100 
Initial battery level = 2000 mJ 
Duration of simulation = 60s 
Clock drift rate = 1s 

 

 
Figure 4.  Varying the network size 

From this simulation it can be seen that as the size of the 
network increases, the amount of energy required 
synchronizing the nodes increases. 

F. Scenario 3 
Scenarios 3 consist of keeping the field size constant and 

vary the number of nodes in the network. For each 
simulation the number of random events occurring is 
increased. In this scenario, the number of nodes synchronized 
by EETS and NWTS as well as the amount of energy 
remaining is observed. 
Size of the field = 600m X 600m 
Network size, that is the number of nodes = 100, 400, 800, 
1000 
Number of random events occurring = 100, 400, 800, 1000 
Initial battery level = 2000 mJ 
Duration of simulation = 60s 
Clock drift rate = 1s 

 

 
Figure 5.  Percentage of nodes synchronized for EETS and NWTS 
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Figure 6.  Remaining energy after synchronization 

From the two above figures (16 and 17) we can see that 
NWTS synchronizes more nodes than EETS but it uses more 
energy. Synchronizing only nodes that needs to be 
synchronize is much more energy efficient. We can see that 
EETS saves about 3% more energy than NWTS. 

G. Scenario 4 
In this scenario we keep all the parameters constant and 

vary only the number of random events occurring. This will 
show how energy is consumed as the number of events 
increases. 
Size of the field = 600m X 600m 
Network size, that is the number of nodes = 800 
Number of random events occurring = 100, 200, 400, 800 
Initial battery level = 2000 mJ 
Duration of simulation = 60s 
Clock drift rate = 1s 

 

 
Figure 7.  Remaining energy per number of events 

As the number of events increase, we can see that EETS 
uses more energy to synchronize the nodes. But it can be 
seen that, as the number of events increases, NWTS uses 
even more energy than EETS. 

VI. INTERPRETATION OF RESULTS 

In scenario 1, the number of nodes deployed in the 
network is varied, keeping all other parameters constant and 
the amount of energy used by EETS and NWTS is observed. 
It has been observed that EETS uses about the same amount 
of energy as the number of nodes increase.  This is because 
EETS will use a little more energy to set the levels of more 
nodes. But if the number of occurring events remains the 

same, EETS will use approximately the same amount of 
energy to synchronize the nodes. The difference in the 
amount of energy required will depend on the distance of the 
nodes.  

NWTS uses much more energy because it tries to 
synchronize the whole network. In a small network (100 
nodes) NWTS uses less energy. But when the network is big 
(1000 nodes) it uses considerable amount of energy. While 
trying to synchronize the whole network, the average amount 
of remaining energy in the network decreases. Thus the 
lifetime of the network also decreases. In order to save 
energy it is better to synchronize only the nodes that need to 
communicate instead of synchronizing the whole network. 

In scenario 2, the network size as well as the number of 
nodes in the network is varied. It is observed that as the 
network grows in size, the amount of energy required to 
synchronize the nodes also increases. This is because the 
distance between the nodes increases as the network size 
increases. With increase in distance the nodes require more 
energy to communicate and thus the average remaining 
energy of the network also decreases. 

Scenario 3 is set up to observe what percentage of the 
network is synchronized by EETS and NWTS. We can see 
from figure 17 that as the number of nodes in the network 
increases the percentage of nodes synchronized by EETS is 
less than that of NWTS. This is because NWTS runs 
regularly at an interval of time. The more the number of 
cycles, the more nodes synchronized. But EETS 
synchronizes only nodes that have detected an event and that 
have to communicate with the sink node. So the percentage 
of node synchronized as the network grows bigger is lower 
than NWTS. On the other hand, looking at figure 18, it is 
observed that NWTS uses considerable amount of energy to 
synchronize unnecessary nodes. At this rate the lifetime of 
the network will decrease rapidly. So it is better to 
synchronize only nodes that need to be synchronized and 
save energy. 

In scenario 4, the number of events occurring is varied 
for a fixed size network to evaluate the energy consumption 
of EETS and NWTS.  EETS does not use much energy to 
synchronize the nodes as the number of events increases. But 
NWTS has to handle both the occurring event as well as the 
synchronization. While synchronizing nodes only involved 
with the event, EETS saves much more energy than NWTS 
which synchronizes the whole network as well as handles the 
event. 

It has been seen from the simulation results that EETS is 
much more energy efficient than NWTS. This is because 
EETS synchronizes only the nodes that need to be 
synchronized. NWTS uses about 10% more energy than 
EETS for synchronization. The nodes remain in a sleep state 
until an event occurs. When an event occurs before handling 
this event, EETS synchronizes the nodes that are on the path 
to the sink node. Thus it is not necessary to synchronize all 
nodes in the network as this will reduce the network lifetime. 

 

VII. CONCLUSION  

This paper aimed at addressing the problem of time 
synchronization in Wireless Sensor Networks. It has been 
seen that WSN are used in many different fields like 
agriculture, security, industrial, transport, asset tracking and 
ubiquitous computing. Most of these applications are time 
critical applications. With increase in the use of WSN, the 
importance of accurate communication has gain importance. 
The sensor nodes in the network should be able to 
communicate at the right time to give the correct results. But 
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very often, the clocks of the sensor nodes have different 
values. The clocks of the sensor nodes have different values 
as each of them run at a different speed. At the beginning, the 
clock values will be the same, but after some time the values 
will differ from each other. This is known as clock drift 
whereby the clock values drift away from the correct value. 
Time synchronization is a very important factor in 
communication between the nodes. Before coming up with a 
solution for time synchronization, the different challenges for 
designing an algorithm for WSN have been studied. The 
sensor nodes of a WSN are small devices with low amount of 
energy. An algorithm that will be running on a WSN should 
take into account that it does not use up all the energy of the 
sensor nodes.  

A comparative study of different existing algorithms for 
time synchronization has been made. The study of different 
existing algorithms has lead to setting up the requirements 
for a new time synchronization algorithm and this algorithm 
has been named Energy Efficient Time Synchronization 
(EETS). EETS aims at performing time synchronization with 
the minimal use of energy in the WSN. The algorithm works 
in two phases. The first phase is the Level discovery phase. 
In this phase, each node of the network is assigned a level. 
The second phase is the synchronization phase. 
Synchronization takes place only between nodes that needs 
to be synchronized. The other nodes in the network stay in a 
sleep state. When an event occurs in the network, the node 
sensing the event will synchronize with a node at a lower 
level before starting to send the collected data. 

The EETS has been implemented, executed under 
different scenarios and compared to Network Wide Time 
Synchronization (NWTS). Simulations have showed that as 
the network size increases, NWTS uses about 10% more 
energy than EETS. NWTS synchronizes more nodes in the 
network but at the same time uses more energy. EETS 
synchronized only the nodes that need to be synchronized 
and at the same time saves the overall energy of the network. 
As a result EETS has proved to be energy efficient and 
provides and accurate synchronization of the nodes. 
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