BREAST CANCER DETECTION USING MACHINE LEARNING TECHNIQUES
Abstract
Keywords
Full Text:
PDFReferences
J. Han and M. Kamber (2000). “Data Mining; Concepts and Techniques,” Morgan Kaufmann” Publishers.
T. Mitchell (1997). “Machine Learning,” McGraw Hill.
Brzakovic, D., Luo, X.M., Brzakovic, P(1990). “An approach to automated detection of tumors in mammograms.” IEEE Transactions on Medical Imaging 9(3), 233–241.
Kopans, D.B. (1989) Breast Imaging. J. B. Lippincott Company
Bassett, L. W. Jackson, V. P. Jahan, R. Fu Y. S., and Gold, R. H. (1997). Diagnosis of Diseases of the Breast, W. B. Saunders Company
Palmer, G.M. Zhu, C. Breslin, T.M. Xu, F. Gilchrist, K.W. and Ramanujam, N. (2003). Comparison of Multiexcitation Fluorescence and Diffuse Reflectance Spectroscopy for the Diagnosis of Breast Cancer, IEEE Transactions on Biomedical Engineering, vol. 50, no. 11, pp. 1233-1242.
Lu, S. Bottema, M.J. (2001) Classifying lobular and DCIS microcalcification. In Yaffe, M.J. editor, Digital Mammography 2000, in Proc. of the 5th International Workshop on Digital Mammography, Madison, Medical Physics Publishing, pp. 280–284.
Duda, R.O. Hart, R.E. Stork, D.G. (2001). Pattern Classification. John Wiley & Sons
MohiyHadhoud, ohamed Amin, Walid Dabbour (2005) “Detection of breast cancer tumor using mathematical morphology and wavelet analysis”, in GVIP 05 conference, CICC, Cairo, Egypt.
F. van Gelderen (2004). “Understanding X-Rays: A Synopsis of Radiology”. Springer.
E. Pisano, M. Yaffe, B. Hemminger, R. Hendrick, L. Niklason, A. Maidment, C. Kimme-Smith, S. Feig, E. Sickles, and M. Braeuning(2000).“Current status of fueled digital mammography, Acad. Radiololgy”., vol. 7, no.4,pp.266280.
National Cancer Institute (2014). Mammograms. electronic. Available on cancer.gov/cancer topics/types/breast/ mammograms-fact-sheet.
Breast Cancer Surveillance Consortium (2013). “Performance measures for 1,838,372 screening mammography examinations from 2004 to 2008 by age based on BCSC data through 2009. Electronic”..
SUDHIR D. SAWARKAR,GHATOL (2006), Neural network aided Breast Cancer Detection & diagnosis using Support Vector Machine,Proceeding of 7th WSEAS International conference on Neural Network,June 12-14,(pp 158-163)
Hu Y., Ashenayi K., Veltri, R., O'Dowd G., Miller G., Hurst R. Bonner (1994). A comparison of neural network and fuzzy c means methods in bladder cancer cell classification; In Proceedingsof IEEE World Congress on Computational Intelligence; 6; p. 3461 – 3466.
Ali Raad, Ali Kalakech , MohammadAyache (2012). Breast cancer classification using neural network approach ;MLP& RBF,13th International Arab Conference on Information Technology ACIT,ISSN.182-0857.
Alaa M. Elsayad (2010). “Predicting the severity of breast masses with ensemble of Bayesian classifiers” , Journal of computer science 6(5);576-584.
Miljenko, K., MatejMertik(2008). “Application of Bayesian networks in emergency medicine”.
Suckling etal. (1994). “The Mammographic Image Analysis Society Digital Mammogram Database”. In: Proceedings of the 2nd International Workshop on Digital Mammography, York, England, July 1012, pp. 375–378. Elsevier Science, Amsterdam.
B.Ster, and A.Dobnikar (1996). “Neural networks in medical diagnosis: Comparison with othermethods.” Proceedings of the international conference on engineering applications of neural networks pp. 427–430. 1996.
S.Doyle, S.Agner, A.Madabhushi, M.Feldman, J.Tomaszewski.(2006). “A boosting cascade for automated detection of prostate cancer from digitized histology”. 13th International Conference on Medical Image Computing and Computer Assisted Intervention pp. 504–511.
Sickles, E.A. (1984). Mammographic features of early breast cancer, American Journal of Roentgenology, vol. 143, pp. 61-464.
Kanaga, K.C.1, Anandan, S.2, Chin, M.Y.1 &Laila(2008). “Characterization of micro- calcifications and mass on female breast using processing in full field digital mammography (FFDM)”, symposium sainskesihatankebangsaanke 7, hotel legend, Kuala Lumpur, 183-187.
T.M.MejiaM.G.Perez,V.H.Andaluz and A. Conci (2015) “Automatic Segmentation and analysis of Thermogram using texture descriptors for breast cancer detection” Asia-pacific conf. comput. aided syst. Eng. pp24-29.
M.Stalin and R.Kalaimagal(2016) “Breast cancer diagnosis from low intensity asymmetry thermogram breast image usingfast support vector machine” i-manager’s jornal on image processing,vol.3,no.3,pp17-26
DOI: https://doi.org/10.26483/ijarcs.v10i5.6464
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 International Journal of Advanced Research in Computer Science

