Application of Machine Learning Tools for Predicting Determinant Factors

Main Article Content

Assefa Chekole Addis


Abstract: Machine learning is a technique of optimizing a performance criterion using example data and past experience. Data in machine learning plays a key role, and machine leaning tools are used to discover and learn knowledge from the datasets stored.

The purpose of this research is to build a model that can predict the determinant factors for crop production status using machine learning techniques as a means of visualizing the data. In order to conduct this research supervised machine learning techniques were employed. For the purpose of this research, the datasets were collected from selected region agricultural offices.

The data sets used for the training and testing of the predictive model is 10,000 instances with 41 regular attributes. As a result, for identifying the determinant factors Rapid Miner machine learning tool was used. In order to find the best predictive modeling technique different experiments were conducted using Random Forest, Decision tree, Naïve Bays and ID3 predictive models. To validate the predictive performance of the selected models split and cross validation testing methods was used.

As the findings of this research shows that, Random Forest and decision tree models were performed the highest accuracy and precision than others. Therefore, the Random Forest predictive modeling have been used to predict the determinate factors form small and large datasets.


Download data is not yet available.

Article Details

Author Biography

Assefa Chekole Addis, University of Gondar

Lecturer, Department of Information Science, University of Gondar, Ethiopia



E. Alpaydin, Introduction to machine learning, 2nd ed., The MIT Press, 2010.

Shangran Li 2019 J. Phys.: Conf. Ser. 1168 032132

Shai Shalev-Shwartz and Shai Ben-David (2014).Understanding Machine Learning from Theory to Algorithms.

Taiwo, O. A. (2010). Types of Machine Learning Algorithms, New Advances in Machine Learning, Yagang Zhang (Ed.), ISBN: 978-953-307-034-6, InTech, University of Portsmouth United Kingdom. Pp 3 – 31.

A. Seyoum, P. Dorosh and S. Asrat, "Crop Production in Ethiopia: Regional Patterns and Trends", Ethiopian development research institute, 2011. [Online]. Available: pdf. [Accessed: 09- Jan 2016].

Supervised Machine Learning Algorithms: Classification and Comparison

Cheng, J., Greiner, R., Kelly, J., Bell, D.& Liu, W. (2002). Learning Bayesian networks from data: An information theory based approach. Artificial Intelligence Volume 137, pp. 43 – 90.

Good, I.J. (1951). Probability and the Weighing of Evidence, Philosophy Volume 26, Issue 97, 1951. Published by Charles Griffin and Company, London 1950.Copyright © The Royal Institute of Philosophy 1951, pp. 163-164.doi:

Domingos, P. & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning Volume 29, pp. 103–130 Copyright © 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Hormozi, H., Hormozi, E. & Nohooji, H. R. (2012). The Classification of the Applicable Machine Learning Methods in Robot Manipulators. International Journal of Machine Learning and Computing (IJMLC), Vol. 2, No. 5, 2012 doi: 10.7763/IJMLC.2012.V2.189pp. 560 – 563.

Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques. Informatica 31 (2007). Pp. 249 – 268.

T. Hastie, R. Tibshirani, J. H. Friedman (2001) ― The elements of statistical learning,‖ Data mining, inference, and prediction, 2001, New York: Springer Verlag.

Setiono R. and Loew, W. K. (2000), FERNN: An algorithm for fast extraction of rules from neural networks, Applied Intelligence.

Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques (2nd ed.), ISBN: 0-12-088407-0, Morgan Kaufmann Publishers, San Francisco, CA, U.S.A. © 2005 Elsevier Inc.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, Oxford, England. 1995. Oxford University Press, Inc. New York, NY, USA ©1995.

Neocleous C. & Schizas C. (2002). Artificial Neural Network Learning: A Comparative Review. In: Vlahavas I.P., Spyropoulos C.D. (eds) Methods and Applications of Artificial Intelligence. Hellenic Conference on Artificial IntelligenceSETN 2002. Lecture Notes in Computer Science, Volume 2308. Springer, Berlin, Heidelberg, doi: 10.1007/3-540-46014-4_27 pp. 300-313.

Chekole, Assefa & Beshah, Tibebe. (2019). Application of Data Mining Tools for Identifying Determinant Factors for Crop Productivity. International Journal of Computer Applications. 181. 16-21. 10.5120/ijca2019918497.