Deepti Sehrawat, Nasib Singh Gill


With the rapid technology augmentation, it becomes necessary to find complementary emerging computing technologies. This paper highlights future computing technologies, emerging trends and industry buzz to identify most prominent technologies in India. In the emerging technologies, the market is perceiving the entry of local vendors covering such areas as the Internet of Things (IoT), Robotic Process Automation offerings and Machine Learning based technologies. Some technologies are of transformational nature and results in the foundation of new ecosystem these are, Internet of Things with its associated applications and Machine Learning. Technologies on innovation trigger take more time for wide market acceptance. Main objective of this paper is to present a future vision for smart environment which can provide knowledge accumulation and new directions to new researchers in the related field.


emerging trends; future computing technologies; edge computing; artificial general intelligence; deep learning; digital twin.

Full Text:



Lu, Y. (2017). Industry 4.0: a survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1-10.

Hahanov, V., Gharibi, W., Man, K. L., Iemelianov, I., Liubarskyi, M., Abdullayev, V., ... & Chumachenko, S. (2018). Cyber-Physical Technologies: Hype Cycle 2017. In Cyber Physical Computing for IoT-driven Services (pp. 259-272). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-54825-8_14

Singh, K. J., & Kapoor, D. S. (2017). Create Your Own Internet of Things: A survey of IoT platforms. IEEE Consumer Electronics Magazine, 6(2), 57-68. doi: 10.1109/MCE.2016.2640718

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660. of Things: A survey of IoT platforms. IEEE Consumer Electronics Magazine, 6(2), 57-68. doi: https://doi.org/10.1016/j.future.2013.01.010

Yaqoob, I., Ahmed, E., Hashem, I. A. T., Ahmed, A. I. A., Gani, A., Imran, M., & Guizani, M. (2017). Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE wireless communications, 24(3), 10-16. doi: 10.1109/MWC.2017.1600421

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637-646. Available Online: 10.1109/JIOT.2016.2579198

Shi, W., & Dustdar, S. (2016). The promise of edge computing. Computer, 49(5), 78-81. doi: 10.1109/MC.2016.145

Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30-39. doi: 10.1109/MC.2017.9

Greenwald, S., Kulik, A., Kunert, A., Beck, S., Frohlich, B., Cobb, S., ... & Snyder, A. (2017). Technology and applications for collaborative learning in virtual reality. doi: https://repository.isls.org/handle/1/210

Rao, B., Gopi, A. G., & Maione, R. (2016). The societal impact of commercial drones. Technology in Society, 45, 83-90. doi: https://doi.org/10.1016/j.techsoc.2016.02.009

Hong, I., Kuby, M., & Murray, A. (2017). A deviation flow refueling location model for continuous space: a commercial drone delivery system for urban areas. In Advances in Geocomputation (pp. 125-132). Springer, Cham.

Akyildiz, I. F., Lin, S. C., & Wang, P. (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks, 93, 66-79. doi: https://doi.org/10.1016/j.comnet.2015.10.013

Akyildiz, I. F., Wang, P., & Lin, S. C. (2015). SoftAir: A software defined networking architecture for 5G wireless systems. Computer Networks, 85, 1-18. doi: https://doi.org/10.1016/j.comnet.2015.05.007

Chen, M., Qian, Y., Mao, S., Tang, W., & Yang, X. (2016). Software-defined mobile networks security. Mobile Networks and Applications, 21(5), 729-743.

Chen, T., Matinmikko, M., Chen, X., Zhou, X., & Ahokangas, P. (2015). Software defined mobile networks: concept, survey, and research directions. IEEE Communications Magazine, 53(11), 126-133. doi: 10.1109/MCOM.2015.7321981

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436. Available Online: DOI: 10.1038/nature14539

Kim, K. G. (2016). Book Review: Deep Learning. Healthcare informatics research, 22(4), 351-354.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117. doi: https://doi.org/10.1016/j.neunet.2014.09.003

Boschert, S., & Rosen, R. (2016). Digital twin—the simulation aspect. In Mechatronic Futures (pp. 59-74). Springer, Cham.

Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (pp. 85-113). Springer, Cham.

Gutierrez-Garcia, J. O., & López-Neri, E. (2015, July). Cognitive computing: A brief survey and open research challenges. In Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015 3rd International Conference on (pp. 328-333). IEEE. doi: 10.1109/ACIT-CSI.2015.64

Zheng, Z., Xie, S., Dai, H. N., & Wang, H. (2016). Blockchain challenges and opportunities: A survey. Work Pap.–2016.

Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. In Handbook of research on educational communications and technology (pp. 735-745). Springer, New York, NY. doi: https://doi.org/10.1007/978-1-4614-3185-5_59

Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M., & Rindos, A. (2015, June). Sdsecurity: A software defined security experimental framework. In Communication Workshop (ICCW), 2015 IEEE International Conference on (pp. 1871-1876). IEEE. doi: 10.1109/ICCW.2015.7247453

DOI: https://doi.org/10.26483/ijarcs.v9i2.5838


  • There are currently no refbacks.

Copyright (c) 2018 International Journal of Advanced Research in Computer Science