
��������	�
����	��������������

������������������������������������ ����!����"���������������

�#��#$���%�"&#�

������'�������������(((��)��� ������

© 2010, IJARCS All Rights Reserved 242

ISSN No. 0976-5697

Coupling Metrics for Aspect Oriented Programming

-A Systematic Review

Kotrappa Sirbi*
Department of Computer Science & Engineering

K L E’s College of Engineering & Technology

Belgaum, India

kotrappa06@gmail.com

Prakash Jayanth Kulkarni
Department of Computer Science & Engineering

Walchand College of Engineering

Sangli, India

pjk_walchand@rediffmail.com

Abstract: Metrics are an important technique in quantifying desirable software and software development characteristics of aspect- oriented

software development (AOSD). Coupling is an internal software attribute that can be used to indicate the degree of system interdependence

among the components of software. Coupling is thought to be a desirable goal in software construction, leading to better values for

maintainability, reusability and reliability. Although several coupling frameworks and coupling metrics have been proposed for aspect-oriented

software, the tool support and empirical evaluation of these metrics are still being missed. However, there have been very few attempts to

systematically review and report the available evidence in the literature to support the claims made in favor or against AOP coupling metrics for

maintainability and reuse, modularity etc., compared with OOP approaches. In this paper, we present a systematic review (extended version) of

recent coupling metrics for AO designs. In this review work consolidates data from recent research results, highlights circumstances when the

applied metrics suitable to AO designs, draws attention to deficiencies where AO metrics need to be improved.

Keywords: Aspect Oriented Programming (AOP), Software Quality Metrics, Aspect Oriented (AO) Metrics, Aspect J.

I. INTRODUCTION

Now days, our society is becoming dependent on software
that’s why demand of quality software is increasing day by
day. In the literature of software quality models, many
researchers and practitioners have proposed their quality
models, which are intended to evaluate external software
qualities such as maintainability, usability, efficiency,
functionality, reliability, portability and reusability. These
external software quality characteristics could be measured
with the help of software metrics. Metrics are designed on the
basis of design structure of programming languages such as
module-oriented programming (MOP), object-oriented
programming (OOP) and aspect-oriented programming
(AOP). Design of metrics depends on internal quality
characteristics such as encapsulation, cohesion, coupling and
complexity. In turn, researchers and practitioners have
proposed a large number of new metrics and assessment
frameworks for quality design principles such as complexity.
High complexity of any software system is an indication of
low quality.AOP languages aim to improve the ability of
designers to modularize concerns that cannot be modularized
using traditional module-oriented (MO) or object-oriented
(OO) paradigms. Such concerns are scattered in multiple
modules (classes) and are known as crosscutting concerns.
Examples of crosscutting concerns include logging, tracing,
caching, resource pooling etc. The ability to modularize such
concerns is expected to improve comprehensibility, parallel
development, reuse and ease of change, reducing development
costs, increasing dependability and adaptability. Since AO is a
new abstraction, the definition of complexity is required to
redefine in the context of AOP.

Aspect-oriented programming (AOP) [2] is now well
established in both academic and industrial circles, and is
increasingly being adopted by designers of mainstream
implementation frameworks (e.g. JBoss and Spring). AOP

aims at improving the modularity and maintainability of
crosscutting concerns (e.g. security, exception handling,
caching) in complex software systems. It does so by allowing
programmers to factor out these concerns into well-
modularised entities (e.g. aspects and advices) that are then
woven into the rest of the system using a range of
composition mechanisms, from pointcuts and advices, to
intertype declarations [2,31] and aspect collaboration
interfaces.

Unfortunately, and in spite of AOP’s claims to modularity,
it is widely acknowledged that AOP mechanisms introduce
new intricate forms of coupling [21, 28], which in turn might
jeopardise maintainability [1, 3]. To explore this, a growing
number of exploratory studies have recently investigated how
maintainability might be impacted by the new forms of
coupling introduced by AOP mechanisms [14, 15, 16].

The metrics used by these studies are typically taken from
the literature [10, 11, 22, 23, 26, 32] and are assumed to
effectively capture coupling phenomenon in AOP software.
However, the use of AO metrics is fraught with dangers,
which as far as AOP maintainability is concerned have not yet
been thoroughly investigated. In order to measure coupling
effectively a metrics suite should fulfill a number of key
requirements. For instance, the suite should take into account
all the composition mechanisms offered by the targeted
paradigm[19,20,21], the metrics definitions should be
formalised according to well-accepted validation frameworks,
e.g. Kitchenham’s validation framework[17,18,19], and they
should take into account important coupling dimensions, such
as coupling type or strength. If these criteria are not fully
satisfied, maintainability studies of AOP might draw artificial
or inaccurate conclusion and, worse, might mislead
programmers about the potential benefits and dangers of AOP
mechanisms regarding software maintenance. Unfortunately,
the validity and reliability of AO metrics as indicators of
maintainability in AOP systems remains predominantly
untested. In particular, there has been only one systematic

Kotrappa Sirbi et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 242-247

© 2010, IJARCS All Rights Reserved 243

review on the use of metrics in AOP maintainability studies.
Inspired from medical research, a systematic review is a
fundamental empirical instrument based on a literature
analysis that seeks to identify flaws and research gaps in
existing work by focusing on explicit research questions. This
paper proposes such a systematic review with the aim to
pinpoint situations where existing AO metrics have been
effective as surrogate measures for key maintainability
attributes. In this systematic review consolidates data from a
range of relevant AOP studies, highlights circumstances when
the applied coupling measures are suitable to AO programs
and draws attention to deficiencies where AO metrics needs to
be improved.

The remainder of this paper provides Section II some
background on AO programs and designs metrics. We then
discuss the design of our systematic review and present its
results Section III and IV. Finally, we discuss our findings in
Sections V and concluded in Section VI.

II. BACKGROUND

Here we present a brief discussion on important
representative AOP languages and also gives a background on
metrics for AO Programs and Designs.

A. AOP Languages and Constructs

One of the reasons why the impact of AOP on

maintainability is difficult to study pertains to the inherent

heterogeneity of aspect-oriented mechanisms and languages.

Different AOP languages tend to incarnate distinct blends of

AOP and use different encapsulation and composition

mechanisms. They might also borrow abstractions and

composition mechanisms from other programming paradigms,

such as collaboration languages (CaesarJ), feature-oriented

programming (CaesarJ), and subject-oriented programming

(HyperJ[14]). Most AOP languages tend to encompass

conventional AOP properties such as joinpoint models, advice

and aspects, or their equivalent, but each possesses unique

features that make cross-language assessment difficult. Table 1

lists ten such features for AspectJ [2, 30], HyperJ [16] and

CaesarJ [7], three of the most popular AOP languages (Table

1). For instance, AspectJ supports advanced dynamic pointcut

designators, such as “cflow”. HyperJ uses hyperspace modules

to modularize crosscutting behaviour as well as non-

crosscutting behaviour. HyperJ thus does not distinguish

explicitly between aspects and classes in the way AspectJ

does. Other abstractions unique to HyperJ include

Compositions Relationships. These uses merge like operators

to define how surrounding modules should be assembled.

Finally, CaesarJ supports the use of virtual classes to

implement a more pluggable crosscutting behaviour. This

pluggable behaviour is connected with the base code through

Aspect Collaboration Interfaces. In Spring AOP [24] aspects

are nothing more than regular spring beans, which themselves

are plain-old Java objects (POJO) registered suitably with the

Spring Inversion of Control container. The core advantage in

using Spring AOP is its ability to realize the aspect as a plain

Java class. In Spring AOP, a join point exclusively pertains to

method execution only, which could be viewed as a limitation

of Spring AOP. However, in reality, it is enough to handle

most common cases of implementing crosscutting concern.

Spring AOP uses the AspectJ pointcut expression

syntax.AspectWerkz [29] offers both power and simplicity and

will help you to easily integrate AOP in both new and existing

projects. AspectWerkz utilizes runtime bytecode modification

to weave your classes at runtime. It hooks in and weaves

classes loaded by any class loader except the bootstrap class

loader. It has a rich and highly orthogonal join point model.

Aspects, advices and introductions are written in plain Java

and your target classes can be regular POJOs. You have the

possibility to add, remove and re-structure advice as well as

swapping the implementation of your introductions at runtime.

Your aspects can be defined using either an XML definition

file or using runtime attributes.JBoss-AOP [15, 29] allows you

to apply interceptor technology and patterns to plain Java

classes and Dynamic Proxies. It includes Java Class

Interception, Fully compositional pointcuts caller side for

methods and constructors control flow, annotations, Aspect

classes, Hot-Deploy, Introductions, Dynamic Proxies and

Dynamic AOP features. The PROSE system (PROSE stands

for PROgrammable extenSions of sErvices) [29] is a dynamic

weaving tool (allows inserting and withdrawing aspects to and

from running applications) PROSE aspects are regular JAVA

objects that can be sent to and be received from computers on

the network. Signatures can be used to guarantee their

integrity.

B. Existing AO Metrics

AO metrics aim to measure the level of interdependency
between modules within a program [12], thus assessing a
code’s modularisation, and indirectly maintainability. This
creates a challenge when designing AO metrics for AOP, as
these metrics should ideally take into account each language’s
unique features, while still providing a fair basis for
comparison multiple AOP languages. A number of AO metrics
have so far been proposed for AO programs. Some are adapted
from object-orientation, and transposed to account for AO
mechanisms. For instance, both Ceccato and Tonella [8] and
Sant’Anna et al [22] have proposed AO metrics adapted from
an object-oriented (OO) metrics suite by Chidamber and
Kemerer [9]. These metrics can be applied to both OO and AO
programs. This is especially useful in empirical studies that
perform aspect-aware refactoring. Zhao [25] uses dependency
graphs to measure some AO mechanisms that are not
measured individually in either Ceccato and Tonella or
Sant’Anna’s suites. Zhao’s suite contains metrics that measure
coupling sourced from AO abstractions and mechanisms
independently of OO abstractions and mechanisms.

Table 1. Most popular AO abstractions and mechanisms unique to main AOP

languages

Kotrappa Sirbi et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 242-247

© 2010, IJARCS All Rights Reserved 244

III. SYSTEMATIC REVIEW

In this section we describe the objectives and methods as
well as the strategical steps carried out in the systematic
review.

A. Review objectives

The objectives of this extended systematic review paper is
to analyse the effectiveness of AO metrics in existing AO
empirical studies as a predictor of modularity (as well as
maintainability and reusability).

B. Review Strategy

We performed a systematic literature review of empirical
studies of AOP based development, published in major
software engineering journals and conference proceedings.
Searches for papers took place in 58 papers and among them
22 popular online journal banks or were those published in
International Computer Science & Engineering, IT Journals
and recognised conference papers such as AOSD and
ECOOP.We gave priorities to publications in conferences and
relevant papers were found from ACM, SpringerLink, IEEE,
Google Scholar, Online Library, and 4 were collected from
other sources.

IV. RESULTS

A final set of 15 papers was finally obtained (Table 2), which

is a typical sample size, for systematic reviews in software

engineering [18, 28].

Table 2. Electronic Journals used for Studies

A. Assessed Metrics Attibutes

It is difficult to select AO metrics to assess maintainability
as definitions are often open to interpretations. For instance in
[24], maintainability is “the ease with which a software system
or component can be modified to correct faults, improve
performance, or other attributes, or adapt to a changed
environment”. There is also no consensus about the external
and internal attributes are the most significant indicators of
maintainability. This is apparent in the empirical studies from
the diverse selection of metrics used. Two main processes
were recorded to select suitable coupling metrics. Firstly,
many studies used AO metrics previously selected in similar
AOP empirical studies. Secondly, results showed the Goal-
Question-Metric (GQM) [6] style approach is a common
technique used to select appropriate metrics in empirical
studies. This approach guides researchers to: (i) define the goal
of measuring maintainability, then (ii) derive external
attributes that are possible indicators of maintainability, then
(iii) derive from these a set of internal measurable attributes,
and finally (iv) derive a set of metrics to measure the internal
measurable attributes. Unfortunately, using GQM still leaves a

large degree of interpretation to its users, who might
independently reach divergent conclusions. One further
problem with this uncertainty is that the metric selection
process can become circular, especially when measuring
maintainability, as external quality attributes are
interconnected. For instance, stability indicates
maintainability, yet maintainability can be seen as an indicator
of stability.

Similar techniques for selecting appropriate metrics in
empirical studies have been used in [28]. This study decided to
measure attributes such as maintainability, reusability and
reliability as indicators of maintainability. From this list,
internal attributes such as separation of concerns, coupling,
complexity, cohesion and size were selected. The final set of
selected AO metrics was then defined based upon these
internal attributes. We can therefore see that uncertainty on
key external attributes has great impact on the remainder of the
metric selection process.

This lack of conformity on these attributes has
unsurprisingly affected the selected coupling metrics. For
instance, maintainability is measured in studies [7, 13] through
the application of 9 metrics to measure size, coupling,
cohesion and separation of concerns metrics. In [9, 20, 21, 22,
23] complexity is in addition derived as an external attribute
contributing to maintainability.

Similar problems have been observed in maintainability
studies of object-oriented programming (OOP) this has been
highlighted in a survey of existing OO empirical studies and
their methodologies to predict external quality attributes [5].

Many studies acknowledge that modularity, coupling,
cohesion and complexity are internal attributes that affect
maintainability. Interestingly, error-proneness was the attribute
that was not explicitly derived as an indicator of
maintainability.

In short, different interpretations of maintainability and its
subsequent derived attributes influence the AO metrics chosen
or defined within the context of an empirical study. This may
explain the wide range of AO metrics observed in AOP
empirical studies, which we review in the next subsections.

B. AO Metrics used to Measure Maintainability

We identified 29 AO metrics in sample set of studies. A
representative subset of these metrics is shown in Table 3. For
each metric [29], the table lists it’s name, description, and six
characteristics.

Generally, the most frequent metrics were adapted from
object orientation (OO).

Among them, the most common were Coupling Between
Components (CBC) and Depth of Inheritance Tree (DIT),
appearing in 66% of the studies. Adapted metrics hold the
advantage of being based upon OO metrics that are widely
used, and can be assumed reliable. The (implicit) reasoning is
that adapting OO metrics to AOP maintains their usefulness.
This however might not hold: DIT for instance combines both
the implicit AO inheritance with the traditional OO
inheritance. It thus considers two very different coupling
sources together. These sources may have different affects
upon maintainability and it may be beneficial to consider these
seperately.

In contrast, some of the studies also use AO metrics
developed for AOP, such as Coupling on Advice Execution
(CAE) and Number of degree Diffusion Pointcuts (dPC).
These metrics enable a more in-depth analysis of the system
coupling behaviour, as they consider finer-grained langauge
constructs. However, they are more likely to behave
unexpectedly, being underdeveloped.

Kotrappa Sirbi et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 242-247

© 2010, IJARCS All Rights Reserved 245

No AO metrics were found to be interchangeable, i.e. none
were found to be applicable to different AO languages without
any ambiguity. This is probably due to the heterogeneity of
AO programming abstractions and mechanisms that makes it
very hard to define metrics accurately across multiple AO
languages.

The majority of metrics found in our study assess outgoing
coupling connections (indicated as “Fan Out” in Table 3). This
can be seen as a weakness, as both incoming and outgoing
coupling connections help refactoring decisions, as discussed
in [31].

C. Measured AOP Mechanism

OO AO metrics can be adapted to take into account AO
mechanisms, producing a seemingly equivalent measure.
However, this approach might miss some of specific needs of
AO programs. We now review how the mechanisms of the
AOP languages most commonly used in maintainability
studies of AOP were accounted for in coupling measures, and
draw attention to mechanisms that are frequently overlooked.
Table 4 lists the mechanisms and abstractions used in the AO
metrics of our study. One first challenge arises from the
ambiguity of many notions. For instance, seven metrics use
“modules” as their level of granularity, but what is module
might vary across languages. In AspectJ an aspect may be
considered a module – containing advice, pointcuts and
intertype declarations, yet in CaesarJ, each advice forms its
own module. More generally, many AO metrics use
ambiguously terms (“module”, “concern”, or “component”)
which might be mapped to widely varying constructs in
different languages. This hampers the ability of the metrics to
draw cross-language comparisons [15].

Table 3. Properties of used Metrics [Burrows R et al]

Another challenge comes from the fact that certain

phenomenon are best analysed by looking at the base and

aspect codes separately. For instance, as a program evolves, it

may lose its original structure. However, in AO programs, the

base level and aspect level often evolve independently and

have different structures. Understanding how each evolution

impacts structure thus requires that each be investigated

separately. This is not done in most of the empirical studies we

found. We also noted that the majority of used AO metric

suites did not focus on interface complexity. This is a problem

as AO systems are at risk of creating complex interfaces by

extracting code which is heavily dependent on the surrounding

base code, and metrics are needed to identify problematic

situations [22].More generally, few studies look at the

connection between maintainability and specific AO

mechanisms. For instance Response for a Module (RFM)

measures connections from a module to methods / advices.

This is useful in analysing coupling on a “per module” basis,

but does not distinguish between individual AO language

constructs. For instance, it adds up intertype declarations

jointly with advice as they both provide functionality that

insert extra code into the normal execution flow of the system.

However intertype declarations differ from other types of

advice as they inject new members (e.g. attributes) into the

base code. AO metrics have been proposed to address this

problem and measure singular mechanisms, such as advice,

pointcuts, joinpoints and some intertype declarations[9,26,23],

but have rarely been used in maintainability studies.

Table 4. Properties of used Metrics [Burrows R et al]

Table 5. AO Metrics for Internal Software Attributes [Crystal Edge et al]

To sum up, no study used metrics to measure constructs

unique to AO programming languages, and very few measured
finer-grained language constructs [28]. Although this depends
on the particular goals of each maintainability study, this is
generally problematic as each mechanism within a particular
language has the potential to affect maintainability differently,
and should therefore be analysed in its own right.

Metrics are useful indicators only if they have been
validated. There are two complementary approaches to
validate software metrics, empirical validation and theoretical
validation [20, 28]. In this context, theoretical validation tests
that a coupling metric is accurately measuring coupling and
there is evidence that the metric can be an indirect measure of
maintainability and reusability. Here we consider the 8 validity

Kotrappa Sirbi et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 242-247

© 2010, IJARCS All Rights Reserved 246

properties suggested by Kitchenham[19]. The theoretical
criteria are split into two categories: (i) properties to be
addressed by all metrics; and (ii) properties to be satisfied by
metrics used as indirect measures. [3] has already used the first
criteria on AO metrics for AO programs. We offer some
alternative viewpoints here, and also evaluate the AO metrics
against properties that indirect measures should possess. When
we applied this framework to the 27 AO metrics found in our
review, we identified three potential violations of these
criteria, discussed below.

A valid measure must obey the ‘Representation Condition’.
This criterion states that there should be a homomorphism
between the numerical relation system and the measureable
entities. In other words a coupling metric should accurately
express the relationship between the parts of the system that it
claims to measure. It also implies that AO metrics should be
intuitive of our understanding of program coupling [20, 28].
For instance, a program with a CBC value of 6 should be more
coupled than a program with a CBC value of 5. This metric
holds true to its definition, however if a study is using CBC as
a representation of coupling within a system this validation
criteria becomes questionable. When measuring coupling we
often do not perceive each connection as equal. There are
different types and strengths of coupling. If we consider two
AO systems; the first with 5 coupling connections via
intertype declarations, and the second with 5 coupling
connections via advice. Even though both systems contain 5
coupling connections, they are not equivalent, and are not
equally interdependent. Various sources and types of coupling
may influence the interdependency of a system in multiple
ways. We found no metrics in the studies that took this finer
difference into account.

Each unit of an attribute contributing to a valid measure is
equivalent. We are assuming that units (modules) that are
measured alongside each other are equivalent.

There are some AO metrics that only consider coupling
from one language ‘unit’. For example, the CAE metric
satisfies this property as each connection counted by metric
value involves an advice method. However, many metrics
used in empirical studies of AOP assume that counting
coupling connections between AO modules is equivalent to
coupling connections between OO modules. As mentioned b,
classes and aspects are often measured together as equivalent
modules (e.g. in DIT), yet we do not have evidence that they
have the same effect upon maintainability, thus violating this
criteria[28].

There should be an underlying model to justify its
construction. To give good reason for the creation of coupling
metrics, there should be underlying evidence that the metric
will be an effective indicator of maintainability. Unfortunately,
this criterion definition is somewhat circular in the case of
maintainability; metrics are often already constructed and
applied before supporting this underlying theory and justifying
their construction. In OOP it is widely accepted that there is a
relationship between coupling and external quality attributes.
Because AOP and OOP share similarities, we could infer that
metrics that measure a specific form of coupling in OOP hold
a similar potential when adapted to AOP (such as DIT, CBC).
This however needs to be validated. This needs is even more
acute for metrics specific to AOP (e.g. CAE), as there is less
information on how coupling induced by AOP specific
mechanisms correlate with maintainability.

V. DISCUSSION

Most research in AOP is focused on new design processes,

languages and frameworks to support the new paradigm.

However, no strong empirical evaluation was conducted to

assess the effects of AOP adoption. The first step in this

direction consists of defining a metrics suite for AOP

software, designed so as to capture the novel features

introduced by this programming style. As per this review

many researchers contributed to the ongoing discussion on

such metrics by distinguishing among the different kinds of

coupling relationships that may exist between modules and by

proposing a new metric for the crosscutting degree of an

aspect (CDA). Moreover, we conducted a survey on some case

studies to evaluate the information carried by the proposed

metrics when applied to an OO system and to the same system

migrated to AOP. Results indicate that meaningful properties,

such as the proportion of the system impacted by an aspect and

the amount of knowledge an aspect has of the modules it

crosscuts, are captured by the proposed metrics (CDA and

CIM repsectively). We visualize the definition of a common

set of AOP metrics, to be adopted by the AOP community, in

order to simplify the comparison of the results obtained by

different research teams and to have a standard evaluation

method. This paper gave a systematic review on the necessary

steps for validating metrics that are to be used in an evaluation

process. These steps are well-known in software engineering.

The current state-of-the-art in AOSD is that one has started to

work on the definition of apparently useful metrics. Now it is

time to start with completing this research by providing

empirical results. This will enable a larger to community to

use AOSD metrics and more importantly, understand the

benefits of AOSD. The results may also give hints as to for

which purposes metrics extensions are useful and for which

purposes separate metrics are useful [26, 27].

VI. CONCLUSIONS

We made sincere efforts in conducting the systematic
review has presented valuable insights into current trends on
coupling metrics measurement for AOP. This has
consequently highlighted the need for fine-grained metrics that
consider specific AOP constructs. We agree with the statement
about existing metrics that are frequently used are therefore in
danger of overlooking key contributors to AOP programs and
designs [28].

We have also noticed that the AOP modularity metrics
(also reusability and maintainability) studies of AOP overly
concentrate on static design metrics. Dynamic AO metrics for
AOP programs and designs have been applied in few of the
analysed studies. This came as a surprise as many AO
composition mechanisms rely on the behavioural program
semantics. In fact, in this systematic review we found that it is
not validated AO metrics 100% extend the OO metrics which
was suggested by AOP metrics research.

VII. ACKOWLEDGMENTS

We place on records and wish to thank the author Rachel

Burrows et al., for his valuable contributions to this work and

for providing insight about AOP coupling metrics and

systematic review of maintainability studies.

VIII. REFERENCES

[1] Arisholm, E., Briand, L., Foyen, A.: Dynamic Coupling
Measurement for Object-Oriented Software. IEEE Trans.
Soft. Eng. 30(8) (2004) 491-506.

[2] The AspectJ Prog. Guide, http://eclipse.org/aspectj

Kotrappa Sirbi et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 242-247

© 2010, IJARCS All Rights Reserved 247

[3] Briand, L., Daly, J., Wüst, J.: A Unified Framework for
Coupling Measurement in Object-Oriented Systems. IEEE
Trans. Software Eng. 25(1) (1999) 91-121

[4] Briand, L., Wüst, J. Empirical Studies of Quality Models
in Object-Oriented Systems, Advances in Computers.
Academic Press (2002)

[5] Basili, V., et al.: GQM Paradigm. Comp. Encyclopedia of
Soft. Eng. JW&S 1 (1994) 528-532

[6] Cacho, N. et al.: Composing design patterns: a scalability
study of aspect-oriented programming. AOSD’06 (2006)
109 – 121

[7] CaesarJ homepage, http://caesarj.org

[8] Ceccato, M., Tonella P.: Measuring the Effects of
Software Aspectization. WARE cd-rom (2004)

[9] Chidamber, S., Kemerer, C.: A Metrics Suite for OO
Design. IEEE Trans. Soft. Eng. 20(6) (1994) 476-493

[10] Fenton, N. E., Pfleeger, S. L.: Software Metrics: a
Rigorous and Practical Approach. 2nd ed. PWS
Publishing Co Boston (1998)

[11] Filho, F.C., Garcia, A. and Rubira, C.M.F.: A quantitative
study on the aspectization of exception handling. In Proc.
ECOOP (2005)

[12] Garcia, A. et al.: Modularizing Design Patterns with
Aspects: A Quantitative Study. In Proc. AOSD (2005) 3-
14.

[13] Greenwood, P. et al.: On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study.
ECOOP (2007) 176-200

[14] Hyper/J home page,
http://www.research.ibm.com/hyperspace/HyperJ.htm

[15] JBoss AOP, http://labs.jboss.com/jbossaop

[16] Kastner, C., Apel, S., and Batory, D.: Case Study
Implementing Features Using AspectJ. In Proc. SPLC
(2007) 223-232.

[17] Kitchenham, B., et al.: Systematic Literature Reviews in
Software Engineering – A Systematic Literature Review.
Information and Software Technology (2008)

[18] Kitchenham, B.: Procedures for Performing Systematic
Reviews. Joint Tech. Rep. S.E.G.(2004)

[19] Kitchenham, B., Pfleeger, S.L., & Fenton, N.: Towards a
Framework for Software Validation Measures. IEEE TSE,
21(12) (1995) 929-944

[20] Kulesza, U. et al.: Quantifying the Effects of Aspect-
Oriented Programming: A Maintenance Study. In Proc.
ICSM (2006) 223-233

[21] Marchetto, A..: A Concerns-based Metrics Suite for Web
Applications. INFOCOMP journal of computer science 4
(3) (2004)

[22] Sant'Anna, C. et al.: On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework. In
Proc. SBES (2003) 19-34

[23] Sant’Anna, C. et al.: On the Modularity of Software
Architectures: A Concern-Driven Measurement
Framework. In Proc. ECSA (2008)

[24] Spring AOP, http://www.springframework.org

[25] Zhao, J.: Measuring Coupling in Aspect-Oriented
Systems. Int. Soft. Metrics Symp. (2004)

[26] Zimmermann, T., Nagappan, N.: Predicting defects using
network analysis on dependency graphs. ICSE (2008)
531-540

[27] K.G.Kouskouras, A.Chatzigeorgiou and G. Stephanides:
Facilitating software extension with design patterns and
Aspect-Oriented-Programming,
http://www.sciencedirect.com/science

[28] Burrows R,Garcia A, et. al, Coupling Metrics for Aspect-
Oriented Programming-A Systematic Review of
Maintainability Studies(Extended Version) Proceedings of
the 4th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2009), 9-
10 May 2009, Milan, Italy (12p)

[29] Open Source Aspect-Oriented Frameworks in Java
http://java-source.net/open-source/aspect-
orientedframeworks

[30] Laddad, R. ‘Enterprise AOP with Spring Applications:
AspectJ in Action’ 2nd Edition, Manning Publications,
2009, Manning Publications

[31] Kiczales, G. et al.: Aspect-Oriented Programming.
ECOOP (1997) 220-242

[32] Sirbi. K et al., Metrics for Aspect Oriented Programming-
An Empirical Study, International Journal of Computer
Applications (0975 – 8887), Volume 5– No.12, August
2010.

