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Abstract: Microstructure analysis system has an important role to play in qualitative and quantitative analysis in the gray cast iron industry. It is used 

to determine percent area of graphite inclusion in a given sample of gray cast iron. The ASTM A 247 standard has categorized graphite flake forms 

into types A, B, C, D and  E. A novel method for classification and quantification of the five types of graphite flakes (lamellar), namely, type A, B, 

C, D and E in gray cast iron microstructure images, has been proposed. The four Haralic textural features, namely, contrast, correlation, energy and 

homogeneity, are employed for characterization of different flake graphite in gray cast iron. An adaptive neuro-fuzzy inference system (ANFIS) is 

developed for classification.  The experimentation is done on actual gray cast iron microstructure images and the results are compared with the 

manual estimation results. The comparison indicates good correlation between manual estimation and automated estimation. Microstructure images 

of gray cast iron acquired from light microscope are used in the experimentation. 
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I. INTRODUCTION 

In the material science, there is a strong correlation 

between the properties, the graphite morphology, the 

chemical composition, and the cooling rate. The study of 

microstructure images of a material provides wealth of 

information about the material properties [1,15]. The gray 

cast iron is a widely used metal alloy. The flake graphite is 

characteristic of gray cast iron, and components such as 

aluminum, carbon, and silicon promote its formation. The 

name gray cast iron (or gray iron) is because of the color of 

the fracture face. It contains 1.5-4.3% carbon and 0.3-5% 

silicon plus manganese, sulfur and phosphorus. It is brittle 

with low tensile strength, but is easy to cast.  Silicon is 

important in making gray iron as opposed to white cast iron, 

because silicon is a graphite stabilizing element in cast iron, 

which means it helps the alloy produce graphite instead 

of iron carbides. Another factor affecting graphitization is 

the solidification rate; the slower the rate, the greater the 

tendency for graphite to form. A moderate cooling rate 

forms a more pearlitic matrix, while a slow cooling rate 

forms a more ferritic matrix. To achieve a fully ferritic 

matrix, the alloy must be annealed. Rapid cooling 

suppresses graphitization, partly or completely, and leads to 

formation of cementite, which is called white iron.  

Gray cast iron has wide range of applications in 

metallurgy. It is used for housings where tensile strength is 

non-critical, such as internal combustion engine cylinder 

blocks, pump housings, valve bodies, electrical boxes, and 

decorative castings, gears, flywheels, water pipes, engine 

cylinders, brake discs, gears etc. Gray cast iron's high 

thermal conductivity and specific heat capacity are often 

exploited to make cast iron cookware and disc brake rotors 

[1]. 

The classification and quantification of flake graphite 

grains is an important stage in quality control that provide 

vital information about the quality of the sample under 

inspection. The five types of graphite flake structures 

observed in gray cast iron are shown in the Figure 1. 

  
Type A                 Type B               Type C   

 

                              Type D               Type E 

Figure 1.  Five types of graphite flake structures in gray cast iron defined 

in ASTM A 247 standard. 
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The graphite flake type A is known as Random flake 

graphite, the type B as Rossette flake graphite, the type C as 

Kish graphite, the type D as Undercooled graphite, and the 

type E as Interdendritic graphite. The Figure 2 shows the 

sample microstructure images of gray cast iron used for 

training. 

        

     

Figure 2.  Microstructure images of type A,B,C,D, and E . 

In the manual method (visual chart inspection), the 

metallography expert compares each microstructure test 

image with the chart of five flake graphite shapes defined by 

ASTM A 247 committee, and classifies it accordingly. The 

manual method is always a challenging job. The 

characterization results are not consistent due to many 

physiological limits. In addition, the grain classification and 

quantification process is complicated by a number of 

factors; the size and shape of the grains are not constant and 

are found to vary from one sample to another. Hence, it is 

necessary to develop an digital image analysis system for 

classification and quantification of flake graphite forms 

from microstructure images.  

Generally, in an automated method, the objects of 

interest that are present in digital microstructure images are 

represented by using shape features [2,4]. There are many 

works reported in the literature using shape features for 

representing graphite grains. In [10], the average grain size 

of super-alloy micrographs has been discussed. In [5], 

geometric shape features and moment variant features for 

classfication of graphite grains based on ISO 945 defined 

grains morphology  are discussed. But the geometric shape 

features that are used for  ISO 945 based graphite grain 

classification are not suitable for flake structures when the 

flake structures are in connected or in a network structure. 

Flake graphite classification is done in [6] using lineal 

intercept measurements. In this work, vertical, horizontal 

and circular intercept lines are super imposed on image and 

intercept values are determined. In gray cast iron, such flake 

structures are common. In [7], for gray cast iron 

classification, three textural features, namely, fractal 

dimension, roughness, and two dimension are 

autoregression are used with ANN classifier. In [16], 

bordatz texture image classification is accomplished using 

textural features derived from gray level co-occurence 

propabilities.   Although there are many featurs discussed 

for representation of image objects, we found that graphite 

morphology of gray cast iron has strong textural 

characteristics. Hence, the textural features are employed for 

representing each type of flake graphite. In the present work, 

Haralic textural features derived from GLCM are used.  Out 

of twelve Haralic textural features [9], only four textural 

features, namely, contrast, correlation, energy and 

homogeneity are found to be suitable for effective 

classification of five types of flake graphite grains.  

Classifier that is used in classification has great influence 

on the classification rate. The selection of classifier needs 

thorough experimentation. For classification, there are many 

classifiers in practice. Artificial neural network (ANN) 

based classifiers are used in [5], and fuzzy rule based 

classifiers in [5, 8, 12, 13, 14]. It is observed from many 

works in the literature that the adaptive neuro-fuzzy 

inference system (ANFIS) can perform better than ANN 

even in the case of limited training data set. This has 

motivated us to choose the ANFIS as classifier for 

automation of gray cast iron classification and 

quantification. With this background and motivation, we 

propose a novel method of automatic classification and 

quantification of gray cast iron using neuro-fuzzy based 

classification. The experimental results are compared with 

the manual results obtained by metallurgical experts, and the 

results demonstrate the efficacy of the proposed method. 

A. Materials and Methods: 

The proposed method is evaluated and tested on 

micrographs of cast iron that are obtained by using light 

microscope. These images are drawn from microstructure 

libraries [3]. The microstructure images used in testing 

phase are of various compositions and magnifications. In the 

training phase, we have used various microstructure images 

of each type of flake graphite images that are pre classified 

by metallurgical experts based on ASTM A 247 standard.  

II. PROPOSED METHOD 

The proposed system has two phases, namely, training 

and testing. The common steps in both the phases are, 

preprocessing, segmentation and feature extraction. The 

other details of the two phases are discussed in the following 

sections. 

A. Preprocessing: 

Both training and testing microstructure images of gray 

cast iron images of various resolutions are converted to gray 

scale images and then segmented by active contours. This 

step helps in removal of background and noise from sample 

images. The black graphite grains get segmented from the 

white background. The segmented images are subjected to 

the extraction of Haralic textural features. The training set of 

images includes the expert identified class of images and 

testing images are of unknown class of gray cast iron 

samples. 
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B. Feature Extraction: 

In any classification system, the feature selection is a key 

process in object recognition and accurate classification. In 

the proposed system, a set of four Haralic features, out of 

fourteen defined features, namely, contrast, correlation, 

energy and homogeneity are used. Haralic features are 

determined using gray level co-occurrence matrix (GLCM). 

A GLCM is constructed with conditional-joint probabilities 

(Cij) of all pairwise combinations of gray levels for a fixed 

window size (N), given the two parameters: interpixel 

distance (δ) and interpixel orientation (θ). A different 

GLCM is required for each (δ, θ) pair. Each GLCM is 

dimensioned to the number of quantized gray levels (G). A 

GLCM is often defined to be symmetric. The textural 

features are extracted through the statistical calculations 

applied on GLCM. These features are shift-invariant and 

they are defined as following: 

a. Contrast:  It is the measure of the intensity contrast 

between a pixel and its neighbor over the whole image. 

Contrast is 0 for a constant image. 

 
b. Correlation: It is the measure of how correlated a pixel 

is to its neighbor over the whole image. 

 
Correlation is 1 or -1 for a perfectly positively or 

negatively correlated image.  

c. Energy: It is the sum of squared elements in the 

GLCM.  

 
Energy is 1 for a constant image. 

d. Homogeneity: It measures the closeness of the 
distribution of elements in the GLCM to the GLCM 
diagonal. 

 
Homogeneity is 1 for a diagonal GLCM. 

 The algorithm for feature extraction from the binarized 

microstructure images is given in the Algorithm 1. 

Algorithm 1: Feature extraction 

Step 1:  Input grayscale microstructure image (training  

 image). 

Step 2:  Apply active contours method to the input image  

 and obtain segmented binary image. 

Step 3: Construct the GLCM1 through GLCM8 with G=2 in  

eight angles (00,450,900,1350,1800, 2250,  2700, and  

3150) at a distance of 1 unit. 

Step 4:  Compute the Haralic textural features,f1,f2,f3 and  

 for f4 for each GLCM. 

Step 5:  Compute the mean values, µ1,µ2,µ3 and µ4 and  

standard deviation values, SD1, SD2, SD3 and SD4  

of features f1,f2,f3 and for f4,  respectively. 

Step 6:  Repeat Steps 1 through 5 for all the known class of  

 gray cast iron images. 

Step 7:  Compute  µ‟1,µ‟2,µ‟3 and µ‟4, the mean values of 

 µ1,µ2,µ3 and µ4, respectively,  of a class of images  

 and tabulate these values as in the Table I. 

Table I.  Mean values of features of all the five flake types 

Flake 

type 
Mean Feature values of individual classes 

Contrast Correlation Energy Homogeneity 

    
A 0.1045 0.6334 0.6450 0.9478 

B 0.1172 0.5948 0.6084 0.9414 

C 0.1923 0.5326 0.4349 0.9038 

D 0.1087 0.7750 0.4205 0.9457 

E 
0.1302 0.6203 0.5431 0.9349 

 

      The feature vector is formed using the  µ‟1,µ‟2,µ‟3 and 

µ‟4 

values computed in the Algorithm 1. The feature vector is 

used as input to ANFIS to build the Gaussian membership 

functions of fuzzy quantities. 

C. Adaptive Neuro-Fuzzy Inference System (ANFIS): 

ANFIS is one of hybrid neuro-fuzzy inference expert 

systems and it works as Takagi-Sugeno-type fuzzy inference 

system [11]. ANFIS has a similar structure to a multilayer 

feed forward neural network, but the links in an ANFIS only 

indicate the flow direction of signals between nodes and no 

weights are associated with the links. 

D. ANFIS Structure: 

ANFIS architecture consists of five layers of nodes. Out 

of the five layers, the first and the fourth layers consist of 

adaptive nodes while the second, third and fifth layers 

consist of fixed nodes. The adaptive nodes are associated 

with their respective parameters, get duly updated with each 

subsequent iteration while the fixed nodes are devoid of any 

parameters [16,17 and 18]. In general, for two-rule based 

system, the rules are defined as, 

Rule 1: If (a is A1) and (b is B1) then (O1 = p1x +q1y + r1) 

Rule 2: If (a is A2) and (b is B2) then (O2 = p2x +q2y + r2) 

where x and y are the inputs, Ai and Bi are the fuzzy sets; 

Oi are the outputs within the fuzzy region specified by the 

fuzzy rule; pi, qi and ri are the design parameters that are 

determined during the training process. The general 

architecture of ANFIS  to implement  the two if-then rules is 

shown in the Figure 3, in which a circle indicates a fixed 

node, whereas a square indicates an adaptive node. 

 
Figure 3.  ANFIS architecture 
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E. Classification using ANFIS: 

 The ANFIS uses a strategy of hybrid approach of 

adaptive neuro-fuzzy inferencing and yields good 

classification results. The objective of classification is to 

classify five types of grains. The feature vectors were 

applied as the input to an  ANFIS classifier. The ANFIS 

network has a total of 81 fuzzy rules and one output. The 

algorithm for classification of grains in a microstructure 

image by ANFIS is given in the Algorithm 2 and is 

implemented using MATLAB. The quantification of 

distribution of grains is also included in the algorithm after 

the classification step. 

F. Quantification: 

      After classifying each type of image, the computation of 

the stereological parameter, namely, graphite percent area is 

done. This parameter is one of the essential inputs in quality 

control process. 

Algorithm 2 : Classification and quantification 

Step 1:  Input grayscale microstructure image (training  

             image). 

Step 2:  Apply active contours method to the input image 

and obtain segmented binary image. 

Step 3:  Construct the GLCM1 through GLCM8 with G=2  

each in eight angles (00, 450, 900, 1350, 1800, 2250,  

               2700, and 3150) at a distance of 1 unit. 

Step 4:  Compute the Haralic texture features, f1,f2,f3 and  

 for f4 for each GLCM. 

Step 5:  Compute the mean values, µ1,µ2,µ3 and µ4 and  

standard deviation values, SD1, SD2, SD3 and SD4  

of features f1,f2,f3 and for f4,  respectively. 

Step 6.  Simulate the ANFIS with feature values computed  

 in the Step 5. 

Step 7:  The output of ANFIS is the constant membership  

 function value, which indicates the  

grain class to which the microstructure in the image  

belongs. 

Step 8:  (Quantification) 

Compute the stereological parameter, graphite  

percent area of each microstructure image. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 For the purpose of experimentation, 200 digital 

microstructure images of each of the five flake graphite 

forms, namely, type A through type E are considered. The 

implementation is done on a Pentium 4 computer system @ 

2.6 GHz using MATLAB software. In the training phase, 

the  gray cast iron images of known type (classified by the 

experts) are used. These images are of size 256x256 pixels 

and the sample images are shown in the Figure 2. The 

Haralic textural features are derived from the GLCM 

constructed with gray levels (G=2,4,8) and eight directions 

(00, 450, 900, 1350, 1800, 2250, 2700, and 3150) at a distance 

of 1 unit. The Table I shows the mean and standard 

deviation values of features that are computed using the  

Algorithm 1.  

 

In the testing phase, 100 microstructure images of each 

of the five flake forms with various resolutions and sizes are 

used. These images are drawn from the digital 

microstructure libraries [3] and these are directly taken from 

metal samples using optical microscope. Out of many 

Haralic texture features, only four textural features, which 

are defined in the section 2, are employed with ANFIS for 

classification. In the proposed system, the ANFIS is based 

on Takagi-Sugeno model with four inputs, one output and 

81 if-then rules. The ANFIS operates with „andMethod‟ as 

„product‟ function and „maximize‟ as „defuzzification‟ 

function.  

We have conducted the ten-fold experiments for flake 

classification using the proposed method by varying the 

number of gray levels (G=2,4, 8) and the number of 

directions (4 and 8) and the  results  are shown in the Table 

II. The better classification results are noticed in the case of 

GLCM with G=2 and 8 directions. The results and the 

corresponding confusion matrix are shown in the Table III.  

Table II.  Average classification rates for each of the five flake forms. 

Method  

Rate of classification of 

five flake forms(%) 

A B C D E 

Proposed  Method  (G=2 

and 8 directions) 
96 98 98 97 96 

Proposed  Method  (G=4 

and 8 directions) 
81.1 88.5 90 86 82 

Proposed  Method  (G=8 

and 8 directions) 
80.3 85 87 85 83 

Proposed  Method  (G=2 

and 4 directions) 
82.1 88 92.2 88 86 

Proposed  Method  (G=4 

and 4 directions) 
79 89 89 84 80 

Proposed  Method  (G=8 

and 4 directions) 
75 74 79 79.5 77 

Manual (by experts) 90.6 92 92 91 91 

Table III.  Confusion matrix for classification of the five forms of flake 
graphite images using proposed method (G=2 and 8 directions). 

Image 

type 

Image type 

 

Un- 

kno

wn 

Tot

al 

ima

ges 

Accu

racy 

(%) 

A B C D E 

A 96 1 2 1 0 0 100 96 

B 1 98 0 0 0 1 100 98 

C 0 0 98 0 0 2 100 98 

D 0  1 1 97 0 1 100 97 

E 0 0 0 1 96 3 100 96 

 

The sample images of the classification results are 

shown in Figure 4. The flake classification is performed 

separately by three metallurgical experts (manual method) 

and the average is computed. 
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Figure 4.  Sample images of the classification results. 

The Table II shows the comparison of the classification 

rate of the proposed method with the manual results 

obtained by metallurgical experts. The variations of 

microstructures are in terms of image magnifications, 

orientations and quality.  The quantification of the graphite 

flakes in terms of the stereological parameter, namely, 

graphite percent area, which is practically the main factor in 

quality control, is determined. This process comprises of the 

count of pixels that correspond to graphite flakes in samples.  

The distribution of graphite area (%) for flakes of type 

A,B,C,D and E is shown in the Figure 5. It is observed that 

the results obtained by the proposed method is in close 

agreement with the manual results obtained by the 

metallurgical expert. 

 
Figure 5.  Distribution of graphite area (%) for flakes of type A,B,C,D and 

E. 

IV. CONCLUSION 

In this paper, we have proposed an automated system for 

classification and quantification of graphite flake in gray 

cast iron. The experimental results are compared with the 

manual results obtained by metallurgy expert. The proposed 

method based on the Haralic textural features and the 

adaptive neuro-fuzzy inference system  yields better 

classification rates. The adaptive neuro-fuzzy logic 

addresses such applications perfectly as it resembles human 

decision making with an ability to generate precise solutions 

from certain or approximate information. The results 

demonstrate that the proposed system is efficient. The 

ANFIS permits use of incremental changes in the training 

dataset and the system learns adaptively. 

V.      REFERENCES 

[1]. Handbook Committee, Hand book of ASM International, Vol 

9, Metallography and  Microstructures, ISBN:0-87170-706-3. 

[2]. Milan Sonka, Vaclav Hlavac, Roger Boyle, “Image 

Processing, Analysis, and Machine Vision”, 2e. PWS 

Publishing, ISBN:81-315-0300-3, ISSN:978-81-315-0300-3, 

1999. 

[3]. Microstructures libraries: http://www.metalograf.de/start-

eng.htm, www.doitpoms.ac.uk 

[4]. G. Vander Voort Website: http://georgevandervoort.com 

[5]. Pattan Prakash, V.D.Mytri and P.S.Hiremath, “Classification 

of Cast Iron Based on Graphite   Grain Morphology using 

Neural Network Approach”, Proc. of  SPIE Vol 7546, Second 

Inter  National conference on Digital Image Processing  2010 

(ICDIP 2010), Singapore, Feb 26- 28, pp 75462S-1 – 75462S-

6, 2010. 

[6]. G.M. Lucas, T.P. Weber, and L.Barnard, “Characterization of 

Flake Graphite Forms in Gray Iron through Image Analysis”, 

J. Microsc Microanal, Vol 14, Issue 2, p 582, Jan 2008 

[7]. Hong Jiang , Yiyong Tan, Junfeng Lei, Libo Zeng Zelan 

Zhang & Jiming Hu, “Auto-analysis system for graphite 

morphology of gray cast iron”, J. of Automated methods and 

management in chemistry”, vol 25, no.4, pp 87-92, June-July 

2003. 

[8]. E.H. Mamdani and Assilian, “An Experiment in Linguistic 

Synthesis with a Fuzzy Logic Controller”, Intl. Journal on 

Man-Machine Studies, Vol 7, pp 1-13,1975. 

[9]. Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural 

Features for Image Classification", IEEE Transactions on 

Systems, Man, and Cybernetics, Vol. SMC-3, 1973, pp. 610-

621. 

[10]. Wanda Benesova, Alfred Rinnhofer, Gerhard Jacob, 

“Determining The Average Grain Size of Super-Alloy 

Micrographs”, Proceedings of  IEEE International conference 

on Image Processing (ICIP 2006), pp:2749-2752,2006. 

[11]. Jyh-shing and Rozer Jang, “ANFIS:Adaptive-Network-based 

Fuzzy Inference Systems”, IEEE Transactions on Systems, 

Man, and Cybernetics, Vol 23, No.3, pp. 665-685, May 1993. 



Pattan Prakash et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 141-146 

© 2010, IJARCS All Rights Reserved    146 

[12]. T.M. Nazmy, H. El-Messiry, B. Al-Bokhity, “Adaptive 

Neuro-Fuzzy Inference System for Classification of ECG 

Signals, J. of Theoretical and Applied Information 

Technology”, Vol 12, pp. 71-76, 2009. 

[13]. Dhaval Mehta, E.S.V.N.L. Diwakar and C.V. Jawahar, “A 

rule-based Approach to Image Retrieval”, Proc. of IEEE Conf. 

on Convergent Technologies (IEEE TENCON), Bangalore, 

India, pp  71-76,2003. 

[14]. Kulkarni,S.,Verma, B.,Sharma,P. and Selvaraj,H. Content 

Based Image Retrieval using a  Neuro-Fuzzy Technique. Proc. 

Intl., Joint Conf. Neural Networks (IJCNN‟99), Washington 

DC, USA, July, pp 846-850, 1999. 

[15]. L.Wojnar, Image Analysis, Applications in Materials 

Engineering, CRC Press,1999. 

[16]. Hong-Choon Ong, Hee-Kooi Khoo, “Improved Image Texture 

Classification using Gray Level Co-occurrence Probabilities 

with Support Vector Machines Post-processing”, European 

Journal of Scientific Research, Vol. 36, No. 1,pp 56-64, 2009. 

[17]. Tony F. Chan, Luminita A. Vese, “Active Contours without 

Edges”, IEEE Transactions on Image Processing, Vol. 10, No. 

2, Feb. 2001. 

 

 

 

 


