International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

Global Chaos Synchronization of T and Cai Systems by Nonlinear Control

Dr. V. Sundarapandian*
Professor, R & D Centre
Vel Tech Dr. RR & Dr. SR Technical University
Avadi, Chennai-600 062, INDIA
E-mail: sundarvtu@gmail.com

R. Suresh
Lecturer, Department of Mathematics
Vel Tech Dr. RR & Dr. SR Technical University
Avadi, Chennai-600 062, INDIA
E-mail: mrpsuresh83@gmail.com

Abstract: This paper investigates the global exponential synchronization of chaotic systems, viz. identical T systems (Tigan and Opris, 2008), identical Cai systems (Cai and Tan, 2007) and synchronization of T and Cai systems. Nonlinear feedback control is the method used to achieve the synchronization of the chaotic systems addressed in this paper and our theorems on global exponential synchronization for T and Cai systems are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the nonlinear feedback control method is effective and convenient to synchronize identical and different T and Cai systems. Numerical simulations are also given to illustrate and validate the synchronization results for T and Cai systems.

Keywords: Chaos Synchronization, Nonlinear Control, T System, Cai System, Feedback Control.

I. INTRODUCTION

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. This sensitivity is popularly referred to as the *butterfly effect* [1].

Chaos synchronization problem was first described by Fujisaka and Yemada [2] in 1983. This problem did not receive great attention until Pecora and Carroll ([3]-[4]) published their results on chaos synchronization in early 1990s. From then on, chaos synchronization has been extensively and intensively studied in the last three decades ([3]-[22]). Chaos theory has been explored in a variety of fields including physical [5], chemical [6], ecological [7] systems, secure communications ([8]-[10]) etc.

Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly effect which causes the exponential divergence of the trajectories of two identical chaotic systems started with nearly the same initial conditions, synchronizing two chaotic systems is seemingly a very challenging problem.

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is used. If a particular chaotic system is called the *master* or *drive* system and another chaotic system is called the *slave* or *response* system, then the idea of the synchronization is to use the output of the master system to control the slave system so that the output of the slave system tracks the output of the master system asymptotically.

Since the seminal work by Carroll and Pecora ([3]-[4]), a variety of impressive approaches have been proposed for the synchronization for the chaotic systems such as PC method ([3]-[4]), the sampled-data feedback synchronization method ([10]-11]), OGY method [12], time-delay feedback approach [13], backstepping design method [14], adaptive design method ([15]-[19]), sliding mode control method [20], Lyapunov stability theory method [21], hyperchaos [22], etc.

This paper has been organized as follows. In Section II, we give the problem statement and our methodology. In Section III, we discuss the chaos synchronization of two identical T systems ([23], 2008). In Section IV, we discuss the chaos synchronization of two identical Cai systems ([24], 2007). In Section V, we discuss the heterogeneous synchronization of T and Cai systems. In Section VI, we present the conclusions of this paper.

II. PROBLEM STATEMENT AND OUR METHODOLOGY

Consider the chaotic system described by the dynamics

$$\dot{x} = Ax + f(x) \tag{1}$$

where $x \in \mathbb{R}^n$ is the state of the system, A is the $n \times n$ matrix of the system parameters and $f : \mathbb{R}^n \to \mathbb{R}^n$ is the nonlinear part of the system. We consider the system (1) as the *master* or *drive* system.

As the *slave* or *response* system, we consider the following chaotic system described by the dynamics

$$\dot{y} = By + g(y) + u \tag{2}$$

where $y \in \mathbb{R}^n$ is the state vector of the response system, B is the $n \times n$ matrix of the system parameters, $g : \mathbb{R}^n \to \mathbb{R}^n$ is the nonlinear part of the response system and $u \in \mathbb{R}^n$ is the controller of the response system.

If A = B and f = g, then x and y are the states of two *identical* chaotic systems. If $A \neq B$ and $f \neq g$, then x and y are the states of two *different* chaotic systems.

In the nonlinear feedback control approach, we design a feedback controller u, which synchronizes the states of the master system (1) and the slave system (2) for all initial conditions $x(0), z(0) \in \mathbf{R}^n$.

If we define the synchronization error as

$$e = y - x, (3)$$

then the synchronization error dynamics is obtained as

$$\dot{e} = By - Ax + g(y) - f(x) + u \tag{4}$$

Thus, the global synchronization problem is essentially to find a feedback controller u so as to stabilize the error dynamics (4) for all initial conditions $e(0) \in \mathbb{R}^n$, i.e.

$$\lim_{t \to \infty} \left\| e(t) \right\| = 0 \tag{5}$$

For all initial conditions $e(0) \in \mathbb{R}^n$.

We use Lyapunov function technique as our methodology. We take as a candidate Lyapunov function

$$V(e) = e^T P e, (6)$$

where P is a positive definite matrix. Note that $V: \mathbb{R}^n \to \mathbb{R}^n$ is a positive definite function by construction. We assume that the parameters of the master and slave systems are known and that the states of both systems (1) and (2) are measurable.

If we we find a feedback controller u so that

$$\dot{V}(e) = -e^T Q e, \tag{7}$$

where Q is a positive definite matrix, then $\dot{V}: \mathbf{R}^n \to \mathbf{R}^n$ is a negative definite function.

Thus, by Lyapunov stability theory [26], the error dynamics (4) is globally exponentially stable and hence the condition (5) will be satisfied for all initial conditions $e(0) \in \mathbb{R}^n$. Then the states of the master system (1) and slave system (2) are globally exponentially synchronized.

III. SYNCHRONIZATION OF IDENTICAL T SYSTEMS

In this section, we apply the nonlinear control technique for the synchronization of two identical T systems [23] described by

$$\dot{x}_1 = a(x_2 - x_1)
\dot{x}_2 = (c - a)x_1 - ax_1x_3
\dot{x}_3 = -bx_3 + x_1x_2$$
(8)

which is the master or drive system and

$$\dot{y}_1 = a(y_2 - y_1) + u_1$$

$$\dot{y}_2 = (c - a)y_1 - ay_1y_3 + u_2$$

$$\dot{y}_3 = -by_3 + y_1y_2 + u_3$$
(9)

which is the slave or response system, where all the parameters a,b,c are positive real constants and

$$u = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$$

is the nonlinear controller to be designed.

The T system (8) is a new 3-D chaotic system derived from the Lorenz system by Tigan and Dumitru ([23], 2008). The T system (8) is chaotic when

$$a = 2.1$$
, $b = 0.6$ and $c = 30$.

Compared with the Lü system ([25], 2002), the T system (8) has a wider parameter range and it displays more complex behaviour.

Figure 1 illustrates the chaotic portrait of the T system (8).

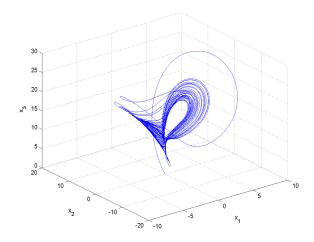


Figure 1. Chaotic Portrait of the T System (8)

The synchronization error e is defined by

$$e_i = y_i - x_i, \qquad (i = 1, 2, 3)$$
 (10)

The error dynamics is obtained as

$$\dot{e}_1 = a(e_2 - e_1) + u_1
\dot{e}_2 = (c - a)e_1 - a(y_1y_3 - x_1x_3) + u_2
\dot{e}_3 = -be_3 + y_1y_2 - x_1x_2 + u_3$$
(11)

In order to find the synchronizing controller, we first let

$$u_2 = u_{2a} + u_{2b}$$

$$u_3 = u_{3a} + u_{3b}$$
(12)

where

$$u_{2b} = a(y_1 y_3 - x_1 x_3)$$

$$u_{3b} = -y_1 y_2 + x_1 x_2$$
(13)

Substituting (12) and (13) into (11), we obtain

$$\dot{e}_1 = a(e_2 - e_1) + u_1
\dot{e}_2 = (c - a)e_1 + u_{2a}
\dot{e}_3 = -be_3 + u_{3a}$$
(14)

Next, we consider the candidate Lyapunov function

$$V(e) = \frac{1}{2}e^{T}e = \frac{1}{2}(e_1^2 + e_2^2 + e_3^2)$$
 (15)

A simple calculation gives

$$\dot{V}(e) = -ae_1^2 + e_1u_1 + ce_1e_2 + e_2u_{2a} - be_3^2 + e_3u_{3a}$$
 (16)

Therefore, we choose

$$u_1 = -ce_2, \ u_{2a} = -e_2, \ u_{3a} = -be_3$$
 (17)

Substituting (17) into (16), we obtain

$$\dot{V}(e) = -ae_1^2 - e_2^2 - 2be_3^2 \tag{18}$$

which is a negative definite function on \mathbf{R}^3 since a and b are positive constants.

Hence, by Lyapunov stability theory [26], the error dynamics (14) is globally exponentially stable.

Combining (12), (13) and (17), the synchronizing nonlinear controller u is obtained as

$$u_{1} = -ce_{2}$$

$$u_{2} = -e_{2} + a(y_{1}y_{3} - x_{1}x_{3})$$

$$u_{3} = -be_{3} - y_{1}y_{2} + x_{1}x_{2}$$
(19)

Thus, we have proved the following result.

Theorem 1. The identical T systems (8) and (9) are exponentially and globally synchronized for any initial conditions with the nonlinear controller u defined by (19). \blacksquare Numerical Results

For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the system using MATLAB.

For the T system (8), the parameter values are taken as those which result in the chaotic behaviour of the system, viz. a = 2.1, b = 0.6 and c = 30 [23].

The initial values of the master system (8) are taken as

$$x_1(0) = 1$$
, $x_2(0) = 7$, $x_3(0) = 6$

while the initial values of the slave system (9) are taken as

$$y_1(0) = -4$$
, $y_2(0) = 2$, $y_3(0) = -3$

Figure 2 shows that synchronization between the states of the master system (8) and the slave system (9) occur in 4 seconds.

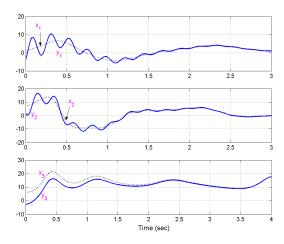


Figure 2. Synchronization of the States of (8) and (9)

IV. SYNCHRONIZATION OF IDENTICAL CAI SYSTEMS

In this section, we apply the nonlinear control technique for the synchronization of two identical Cai systems [24] described by

$$\dot{x}_1 = \alpha(x_2 - x_1)
\dot{x}_2 = \beta x_1 + \gamma x_2 - x_1 x_3
\dot{x}_3 = x_1^2 - h x_3$$
(20)

which is the master or drive system and

$$\dot{y}_1 = \alpha (y_2 - y_1) + u_1$$

$$\dot{y}_2 = \beta y_1 + \gamma y_2 - y_1 y_3 + u_2$$

$$\dot{y}_3 = y_1^2 - h y_3 + u_3$$
(21)

which is the slave or response system, where all the parameters α , β , γ , h are positive real constants and

$$u = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$$

is the nonlinear controller to be designed.

The Cai system (20) is a new 3-D chaotic system derived by Cai and Tan ([24], 2007). The Cai system (20) is chaotic when

$$\alpha = 20$$
, $\beta = 14$, $\gamma = 10.6$ and $h = 2.8$.

Figure 3 illustrates the chaotic portrait of the Cai system (20).

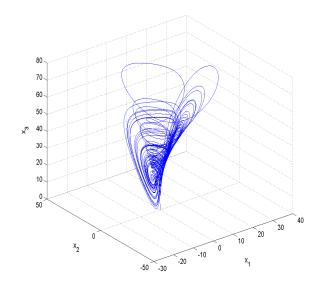


Figure 3. Chaotic Portrait of the Cai System (20)

The synchronization error e is defined by

$$e_i = y_i - x_i, \qquad (i = 1, 2, 3)$$
 (22)

The error dynamics is obtained as

$$\dot{e}_1 = \alpha(e_2 - e_1) + u_1
\dot{e}_2 = \beta e_1 + \gamma e_2 - (y_1 y_3 - x_1 x_3) + u_2
\dot{e}_3 = -he_3 + y_1^2 - x_1^2 + u_3$$
(23)

In order to find the synchronizing controller, we first let

$$u_2 = u_{2a} + u_{2b}$$

$$u_3 = u_{3a} + u_{3b}$$
(24)

where

$$u_{2b} = y_1 y_3 - x_1 x_3$$

$$u_{3b} = x_1^2 - y_1^2$$
(25)

Substituting (24) and (25) into (23), we obtain

$$\dot{e}_{1} = \alpha(e_{2} - e_{1}) + u_{1}
\dot{e}_{2} = \beta e_{1} + \gamma e_{2} + u_{2a}
\dot{e}_{3} = -he_{3} + u_{3a}$$
(26)

Next, we consider the candidate Lyapunov function

$$V(e) = \frac{1}{2}e^{T}e = \frac{1}{2}\left(e_{1}^{2} + e_{2}^{2} + e_{3}^{2}\right)$$
 (27)

A simple calculation gives

$$\dot{V}(e) = (\alpha + \beta)e_1e_2 - \alpha e_1^2 + e_1u_1 + \gamma e_2^2 + e_2u_{2a} - he_3^2 + e_3u_{3a}$$
(28)

Therefore, we choose

$$u_1 = -(\alpha + \beta)e_2, u_{2a} = -(\gamma + 1)e_2, u_{3a} = -he_3$$
 (29)

Substituting (29) into (28), we obtain

$$\dot{V}(e) = -\alpha e_1^2 - e_2^2 - h e_3^2 \tag{30}$$

which is a negative definite function on \mathbb{R}^3 since α and h are positive constants.

Hence, by Lyapunov stability theory [26], the error dynamics (26) is globally exponentially stable.

Combining (24), (25) and (26), the synchronizing nonlinear controller u is obtained as

$$u_{1} = -(\alpha + \beta)e_{2}$$

$$u_{2} = -(\gamma + 1)e_{2} + y_{1}y_{3} - x_{1}x_{3}$$

$$u_{3} = x_{1}^{2} - y_{1}^{2}$$
(31)

Thus, we have proved the following result.

Theorem 2. The identical Cai systems (20) and (21) are exponentially and globally synchronized for any initial conditions with the nonlinear controller u defined by (31). \blacksquare *Numerical Results*

For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the system using MATLAB.

For the Cai system (20), the parameter values are taken as those which result in the chaotic behaviour of the system, viz. $\alpha = 20$, $\beta = 14$, $\gamma = 10.6$ and h = 2.8 [24].

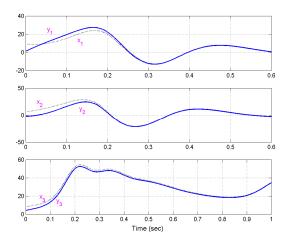
The initial values of the master system (20) are taken as

$$x_1(0) = 9$$
, $x_2(0) = 6$, $x_3(0) = 8$

while the initial values of the slave system (21) are taken as

$$y_1(0) = 1$$
, $y_2(0) = -2$, $y_3(0) = 4$

Figure 4 shows that synchronization between the states of the master system (20) and the slave system (21) occur in 1 second.



V. SYNCHRONIZATION OF T AND CAI SYSTEMS

In this section, we apply the nonlinear control technique for the synchronization of non-identical T and Cai chaotic systems. As the master system, we consider the T system [23] described by

$$\dot{x}_1 = a(x_2 - x_1)
\dot{x}_2 = (c - a)x_1 - ax_1x_3
\dot{x}_3 = -bx_3 + x_1x_2$$
(32)

As the slave system, we consider the Cai system [24] described by

$$\dot{y}_1 = \alpha (y_2 - y_1) + u_1$$

$$\dot{y}_2 = \beta y_1 + \gamma y_2 - y_1 y_3 + u_2$$

$$\dot{y}_3 = y_1^2 - h y_3 + u_3$$
(33)

where all the parameters α, β, γ, h are positive real constants and

$$u = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$$

is the nonlinear controller to be designed.

The synchronization error e is defined by

$$e_i = y_i - x_i, \qquad (i = 1, 2, 3)$$
 (34)

The error dynamics is obtained as

$$\dot{e}_{1} = \alpha(y_{2} - y_{1}) - a(x_{2} - x_{1}) + u_{1}$$

$$\dot{e}_{2} = \beta y_{1} + \gamma y_{2} - y_{1} y_{3}$$

$$- (c - a)x_{1} + ax_{1}x_{3} + u_{2}$$

$$\dot{e}_{3} = y_{1}^{2} - hy_{3} + bx_{3} - x_{1}x_{2} + u_{3}$$
(35)

In order to find the synchronizing controller, we first let

$$u_{1} = u_{1a} + u_{1b}$$

$$u_{2} = u_{2a} + u_{2b}$$

$$u_{3} = u_{3a} + u_{3b}$$
(36)

where

$$u_{1b} = (a - \alpha)(y_2 - y_1)$$

$$u_{2b} = -\beta y_1 - \gamma y_2 + y_1 y_3 + (c - a)y_1 - ax_1 x_3 \quad (37)$$

$$u_{3b} = -y_1^2 + (h - b)y_3 + x_1 x_2$$

Substituting (36) and (37) into (35), the error dynamics simplifies to

$$\dot{e}_1 = a(e_2 - e_1) + u_{1a}
\dot{e}_2 = (c - a)e_1 + u_{2a}
\dot{e}_3 = -be_3 + u_{3a}$$
(38)

Next, we consider the candidate Lyapunov function

$$V(e) = \frac{1}{2}e^{T}e = \frac{1}{2}\left(e_{1}^{2} + e_{2}^{2} + e_{3}^{2}\right)$$
(39)

A simple calculation gives

$$\dot{V}(e) = -ae_1^2 + e_1 u_{1a} + ce_1 e_2 + e_2 u_{2a} -be_3^2 + e_3 u_{3a}$$
 (40)

Therefore, we choose

$$u_{1a} = -ce_2, \ u_{2a} = -e_2, \ u_{3a} = -be_3$$
 (41)

Substituting (17) into (16), we obtain

$$\dot{V}(e) = -ae_1^2 - e_2^2 - 2be_3^2 \tag{42}$$

which is a negative definite function on \mathbb{R}^3 since a and b are positive constants.

Hence, by Lyapunov stability theory [26], the error dynamics (38) is globally exponentially stable.

Combining (36), (37) and (41), the synchronizing nonlinear controller u is obtained as

$$u_{1} = -ce_{2} + (a - \alpha)(y_{2} - y_{1})$$

$$u_{2} = -e_{2} - \beta y_{1} - \gamma y_{2} + y_{1}y_{3} + (c - a)y_{1} - ax_{1}x_{3}$$
(43)
$$u_{3} = -be_{3} - y_{1}^{2} + (h - b)y_{3} + x_{1}x_{2}$$

Thus, we have proved the following result.

Theorem 3. The non-identical T system (32) and Cai system (33) are exponentially and globally synchronized for any initial conditions with the nonlinear controller u defined by (43). \blacksquare *Numerical Results*

For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the system using MATLAB.

For the T system (32), the parameter values are taken as those which result in the chaotic behaviour of the system, viz. a = 2.1, b = 0.6 and c = 30 [23].

For the Cai system (33), the parameter values are taken as those which result in the chaotic behaviour of the system, viz. $\alpha = 20$, $\beta = 14$, $\gamma = 10.6$ and h = 2.8 [24].

The initial values of the T system (32) are taken as

$$x_1(0) = 6$$
, $x_2(0) = 7$, $x_3(0) = 2$

while the initial values of the Cai system (33) are taken as

$$y_1(0) = -3$$
, $y_2(0) = 2$, $y_3(0) = 10$

Figure 5 shows that synchronization between the states of the T system (32) and the Cai system (33) occur in 3 seconds.

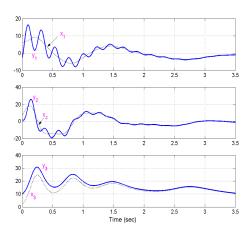


Figure 5. Synchronization of the States of (32) and (33)

VI. CONCLUSIONS

In this paper, we have used nonlinear control method based on Lyapunov stability theory to achieve global chaos synchronization for the following three cases:

- (A) Identical T systems.
- (B) Identical Cai systems.
- (C) Non-Identical T and Cai Systems.

Numerical simulations are also given to validate the proposed synchronization approach for the global chaos synchronization of the chaotic systems. Since the Lyapunov exponents are not required for these calculations, the nonlinear control method is very effective and convenient to achieve global chaos synchronization for the three cases of chaotic systems discussed in this paper.

VII. REFERENCES

- K.T. Alligood, T. Sauer and J.A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer, New York, 1997.
- [2] H. Fujisaka and T. Yamada, "Stability theory of synchronized motion in coupled-oscillator systems", Progress of Theoretical Physics, vol. 69, no. 1, pp. 32-47, 1983.
- [3] T.L. Carroll and L.M. Pecora, "Synchronization in chaotic systems", Phys. Rev. Lett., vol. 64, pp. 821-824, 1990.
- [4] T.L. Carroll and L.M. Pecora, "Synchronizing chaotic circuits", IEEE Trans. Circ. Sys., vol. 38, pp. 453-456, 1991.
- [5] M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore, 1996.
- [6] S.K. han, C. Kerrer and Y. Kuramoto, "D-phasing and bursting in coupled neural oscillators", Phys. Rev. Lett., vol. 75, pp. 3190-3193, 1995.
- [7] B. Blasius, A. Huppert and L. Stone, "Complex dynamics and phase synchronization in spatially extended ecological system", Nature, vol. 399, pp. 354-359, 1999.
- [8] J. Lu, X. Wu, X. Han and J. Lu, "Adaptive feedback synchronization of a unified chaotic sytem", Phys. Lett. A, vol. 329, pp. 327-333, 2004.
- [9] L. Kocarev and U. Parlitz, "General approach for chaotic synchronization with applications to communications", Phys. Rev. Lett., vol. 74, pp. 5028-5030, 1995.
- [10] K. Murali and M. Lakshmanan, "Secure communication using a compound signal using sampled-data feedback", Applied Mathematics and Mechanics, vol. 11, pp. 1309-1315, 2003.
- [11] T. Yang and L.O. Chua, "Generalized synchronization of chaos via linear transformations", International Journal of Bifurcation and Chaos, vol. 9, pp. 215-219, 1999.
- [12] E. Ott, C. Grebogi and J.A. Yorke, "Controlling chaos", Phys. Rev. Lett., vol. 64, pp. 1196-1199, 1990.
- [13] J.H. Park and O.M. Kwon, "A novel criterion for delayed feedback control of time-delay chaotic systems", Chaos, Solitons and Fractals, vol. 17, pp. 709-716, 2003.

- [14] X. Wu and J. Lü, "Parameter identification and backstepping control of uncertain Lu system", Chaos, Solitons and Fractals, vol. 18, pp. 721-729, 2003.
- [15] J. Lu, X. Wu, X. Han and J. Lu, "Adaptive feedback synchronization of a unified chaotic system", Phys. Lett. A, vol. 329, pp. 327-333, 2004.
- [16] Y.G. Yu and S.C. Zhang, "Adaptive backstepping synchronization of uncertain chaotic systems", Chaos, Solitons and Fractals, vol. 27, pp. 1369-1375, 2006.
- [17] J.H. Park, S.M. Lee and O.M. Kwon, "Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control", Physcs Letters A, vol. 371, no. 4, pp. 263-270, 2007.
- [18] J.H. Park, "Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters", J. Computational and Applied Math., vol. 213, no. 1, pp. 288-293, 2008.
- [19] J.H. Park, "Chaos synchronization of nonlinear Bloch equations", Chaos, Solitons and Fractals, vol. 27, no. 2, pp. 357-361, 2006.
- [20] H.T. Yau, "Design of adaptive sliding mode controller for chaos synchronization with uncertainties", Chaos, Solitons and Fractals, vol. 22, pp. 341-347, 2004
- [21] R. Suresh and V. Sundarapandian, "Synchronization of an optical hyper-chaotic system", International J. Comp. Applied Math., vol. 5, no. 2, pp. 199-207, 2010.
- [22] R. Vicente, J. Dauden, P. Colet and R. Toral, "Analysis and characterization of the hyperchaos generated by a semiconductor laser object", IEEE J. Quantum Electronics, vol. 41, pp. 541-548, 2005.
- [23] G. Tigan and D. Opris, "Analysis of a 3 D chaotic system," Chaos, Solitons and Fractals, vol. 36, pp.1315-1319, 2008.
- [24] G. Cai and Z. Tan, "Chaos synchronization of a new chaotic system via nonlinear control," Journal of Uncertain Systems, vol. 1, pp.235-240, 2007.
- [25] J. Lü and G. Chen, "A new chaotic attractor coined", International J. Bifurcation and Chao, vol. 12, pp. 659-661, 2002
- [26] W. Hahn, The Stability of Motion, Springer, New York, 1967.

Authors:

Dr. V. Sundarapandian is a Research Professor (Systems and Control Engineering) in the Research

and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University, Avadi, Chennai since September 2009. Previously, he was a Professor and Academic Convenor at the Indian Institute of Information Technology and Management-Kerala, Trivandrum. He earned his Doctor of Science Degree from the Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, USA in May 1996. He has published over 70 research papers in refereed International Journals and presented over 80 research papers in National Conferences in India and International Conferences in India and abroad. He is an Associate Editor of the International Journal on Control Theory and is in the Editorial Boards of the Journals - Scientific Research and Essays, International Journal of Engineering, Science and Technology, ISST Journal of Mathematics and Computing System, International Journal of Soft Computing and biofinformatics, etc. He is a regular reviewer for the reputed journals - International Journal of Control, Systems and Control Letters, etc. His research areas are: Linear and Nonlinear Control Systems, Optimal Control and Operations Research, Soft Computing, Mathematical Modelling and Scientific Computing, Dynamical Systems and Chaos, Stability Theory, Nonlinear Analysis etc. He has authored two text-books for PHI Learning Private Ltd., namely Numerical Linear Algebra (2008) and Probability, Statistics and Queueing Theory (2009). He has given several key-note lectures on Modern Control Systems, Mathematical Modelling, Scientific Computing with SCILAB, etc.

Mr. R. Suresh is a Lecturer in the Department of Mathematics at Vel Tech Dr. RR & Dr. SR Technical University, since June 2010. He previously held positions at Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College (Chennai), Maharaja Institute of Technology (Coimbatore) and Nanda Arts and

Science College (Erode). He earned his M.Sc. degree in Mathematics in 2005 from Bharathiar University, Coimbatore, Tamil Nadu, India and M.Phil in Mathematics in 2008 from Bharathiar University, Coimbatore, Tamil Nadu India. He is currently pursuing his Ph.D degree in Mathematics from Vel Tech Dr. RR & Dr. SR Technical University under the guidance of Prof. V. Sundarapandian. He has published four International journal papers, two contributed papers in Springer-Verlag Lecture Notes and over ten papers in National and International Conferences. His research areas are Chaos, Soft Computing and Control.