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Abstract— Video compression plays major role in multimedia industry in general. The rapid advances in the video compression algorithms aims 

at reducing redundancy without compromising the quality. A video captured   was encoded using the encoder with each frame processed by 

dividing it into several motion-blocks. In the encoder part, several motion estimation algorithms were applied.  The quality metric, Peak Signal 

to Noise Ratio (PSNR) for multiple frames was calculated for all available algorithms. From all these it is found that Adaptive Rood Pattern 

Search (ARPS) algorithm eliminates redundancy without compromising the image quality. This algorithm was used to generate the motion 

vectors to produce the compensated image, and this image was transformed using Discrete Cosine Transform (DCT) then quantized and encoded 

in the encoder.  For achieving better PSNR and to reduce the number of search points required to generate the motion vector ARPS algorithm is 

proved superior when compared to the other available searching algorithms. 
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I. INTRODUCTION 

With the advent of the multimedia age and the spread of 

internet, video storage on CD/DVD and streaming of video 

has been gaining a lot of popularity. Video compression 

becomes a direct need as video usage on the internet 

growing day by day.  So, video compressions address this 

problem by exploiting spatial and temporal redundancy. In 

spatial redundancy, redundancy is reduced by considering 

neighboring samples on a scanning line that are generally 

similar. In digital video, in addition to spatial redundancy, 

neighboring frames in a video sequence may be similar 

(temporal redundancy). 

Motion compensation is a predictive technique for      

exploiting the temporal redundancy between successive 

frames of video sequence. Motion estimation is a technique 

to eliminate temporal redundancy of image sequences and it 

is the central part of the Moving Pictures Expert Group     

(MPEG (1/2/4)) [1-3] and the video compression standards 

(H.261/H.263) [4]. However, motion estimation involves a 

lot of computational complexity in the video encoders and it 

occupies not less than 70-75 percent of the entire processing 

time of a video coder. 

Motion estimation is the process of determining motion 

vectors that describe the transformation from one 2D image 

to another, usually from adjacent frames in a video 

sequence. It is an ill-posed problem as the motion is in three 

dimensions but the images are projections of the 3D scene 

onto a 2D plane. The motion vectors may relate to the whole 

image (global motion estimation) or specific parts, such as 

rectangular blocks, arbitrary shaped patches or even per 

pixel. The motion vectors may be represented by a 

translational model or many other models that can 

approximate the motion of a real video camera, such as 

rotation and translation in all three dimensions. Optical flow 

reflects the image changes due to changes in motion during 

a small time gap. Optical flow field is the velocity field that 

represents the 3D motion of object points across a 2D 

image. It should not be sensitive to illumination changes and 

motion of unimportant objects. The optical flow field is  

 

represented in the form of velocity vector. The length, 

direction of this vector determines the magnitude of velocity 

and the direction of motion. The optical flow can be 

computed either globally or locally. In global flow 

estimation local constraints are propagated globally but the 

disadvantage is errors also propagate across the solution. In 

local flow the image is divided into smaller regions but it is 

inefficient in the areas where spatial gradients change 

slowly and in that case use global approach. 

This paper is organized as follows. A detailed review of 

various motion estimation algorithms available in the 

current literature is presented in section 2. Proposed 

Adaptive rood algorithm is discussed in section 3.  Results 

and discussion is presented in section 4. Conclusions are 

given in section 5. 

II. RELATED WORK 

Since motion estimation is the most computationally 

intensive portion of video encoding, efficient fast motion 

estimation algorithms are highly desired for video 

compressors subjected to diverse requirement on bit rate, 

and delay. For efficient handling of motions with variety of 

data, there are several algorithms were devised. In this, the 

optimal full search (FS) algorithm results in the best 

performance, but it is computationally very intensive. So the 

other fast search algorithms were developed namely-three 

step search  (TSS),simple and efficient three step search 

(SETSS) the new three step search (NTSS),the four step 

search (FSS)[9], the diamond search (DS), and adaptive 

rood pattern search (ARPS). One of the main research goals 

for the developing these algorithms were the reduction of 

computational complexity and the power consumption of the 

motion estimation while keeping quality of image. 

http://en.wikipedia.org/wiki/Motion_vector
http://en.wikipedia.org/wiki/Motion_vector
http://en.wikipedia.org/wiki/Motion_vector
http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Pixel
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Figure.1 Forward and backward motion estimation. 

 We consider the estimation of motion between two 

given frames, the MV at x between time t1 and t2 is defined 

as the displacement of this point from t1 to t2.We will call 

the frame at time t1 anchor frame and the frame at t2 tracked 

frame. Depending on the intended application the tracked 

frame can be either before or after the tracked frame in time. 

As illustrated in Fig.1 the problem is referred to as forward 

motion estimation, when t1<t2, and as backward motion 

estimation, when t1>t2. For example in this paper we use 

Rhinos video sequence which uses forward motion 

estimation has anchor frame and a tracked frame as shown 

in Fig.2.   

There are two mainstream techniques of motion 

estimation: pel-recursive algorithm (PRA) [5] and block-

matching algorithm (BMA). PRAs are iterative refining of 

motion estimation for individual pels by gradient methods. 

BMAs assume that all the pels within a block has the same 

motion activity[10]. BMAs estimate motion on the basis of 

rectangular blocks and produce one motion vector for each 

block. PRAs involve more computational complexity and 

less regularity.                    
               

               
 
           Frame (1)                                          Frame (2) 

        (Anchor frame)                                         (Tracked frame)               

Figure.2 Anchor and tracked frames of Rhino video sequence. 

The underlying supposition behind motion estimation is 

that the patterns corresponding to objects and background in 

a frame of video sequence move within the frame to form 

corresponding objects on the subsequent frame. The idea 

behind block matching is to divide the current frame into 

matrix of ‗macro blocks‘ (MB) that are then compared with 

corresponding block and its adjacent neighbors in the 

previous frame to create a vector that stipulates the 

movement of a macro block from one location to another in 

the previous frame. This movement calculated for all the 

macro blocks comprising a frame, constitutes the motion 

estimated in the current frame. The search area for a good 

macro block match is constrained up to p pixels on all fours 

sides of the corresponding macro block in previous frame.                  

This ‗p‘ is called as the search parameter. Larger motions 

require a larger p, and the larger the search parameter the 

more computationally expensive the process of motion 

estimation becomes. Usually the macro block is taken as a 

square of side 16 pixels, and the search parameter p is 7 

pixels. The idea is represented in Fig 3.   
 

           

Figure.3 Motion estimation and motion vector 

The matching of one macro block with another is based 

on the output of a cost function. The macro block that 

results in the least cost is the one that matches the closest to 

current block. There are various cost functions, of which the 

most popular and less computationally expensive is Mean 

Absolute Difference (MAD) given by equation 
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  Another cost function is Mean Squared Error (MSE) 

given by equation  
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Where N is the side of the macro bock, Cij and Rij are the 

Pixels being compared in current macro block and reference 

macro block, respectively. 

Peak-Signal-to-Noise-Ratio (PSNR) given by the below 

equation characterizes the motion compensated image that is 

created by using motion vectors and macro blocks from the 

reference frame. 
2

10

(Peak to peak value of original signal)
10log [ ]PSNR

MSE
 

There are various algorithms that have been 

implemented so far are Full Search (FS), Three Step Search 

(TSS), Simple and Efficient TSS (SES), New Three Step 

Search (NTSS), Four Step Search (SS4), Diamond Search 

(DS). These are discussed briefly in this section. 

A. Full Search (FS): 

Of all the algorithms, this algorithm is the most 

computationally expensive one .It calculates the cost 

function at each possible location in the search window. As 

a result, it finds the best possible match and gives the 

highest PSNR amongst all the block matching algorithms. 
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Fast block matching algorithms try to get the same PSNR 

doing little computations.  

B. Three Step Search (TSS): 

This is one of the earliest attempts at fast block matching 

algorithms. The general idea is represented in Fig 4. It starts 

with the search location at the center and sets the ‗step size‘ 

S = 4, for a usual search parameter value of 7. It then 

searches at eight locations +/- S pixels around location (0, 

0). From these nine locations searched so far it picks the one 

giving least cost and makes it the new search origin. It then 

sets the new step size S = S/2, and repeats similar search for 

two more iterations until S = 1. At that point it finds the 

location with the least cost function and the macro block at 

that location is the best match. The calculated motion vector 

is then saved for transmission. It gives a flat reduction in 

computation by a factor of 9. So that for p = 7, ES will 

compute cost for 225 macro blocks whereas TSS computes 

cost for 25 macro blocks [11]. 
 

 

Figure.4 The Three Step Search Procedure 

The idea behind TSS is that the error surface due to 

motion in every macro block is unimodal. A unimodal 

surface is a bowl shaped surface such that the weights 

generated by the cost function increase monotonically from 

the global minimum. 

 

 

Fig.5 Search patterns corresponding to each selected quadrant: (a) Shows 

all quadrants (b) quadrant I is selected (c) quadrant II is selected (d) 

quadrant III is selected (e) quadrant IV is selected. 

 

C. Simple and Efficient Search (SES): 

SES [6] is another extension to TSS and exploits the 

assumption of unimodal error surface. The main idea behind 

the algorithm is that for a unimodal surface there cannot be 

two minimums in opposite directions and hence the 8 point 

fixed pattern search of TSS can be changed to incorporate 

this and save on computations.    

The algorithm still has three steps like TSS, but the 

innovation is that each step has further two phases. The 

search area is divided into four quadrants and the algorithm 

checks three locations A, B and C as shown in Figure 5. A is 

at the origin and B and C are S = 4 locations away from A in 

orthogonal directions. Depending on certain weight 

distribution amongst the three the second phase selects few 

additional points (Fig 5). The rule for determining a search 

quadrant for seconds phase is as follows: 

If MAD A MAD B  and MAD A  MAD C  ,select b ;

If MAD A MAD B  and MAD A  MAD C  ,select ;c

If MAD A <MAD B  and MAD A < MAD C  ,select ;d

If MAD A <MAD B  and MAD A  MAD C  ,select ;e

 

Figure.6 The SES procedure. The motion vector is (3, 7). 

Once we have selected the points to check for in second 

phase, we find the location with the lowest weight and set it 

as the origin. We then change the step size similar to TSS 

and repeat the above SES procedure again until we reach = 

1.The location with the lowest weight is then noted down in 

terms of motion vectors and transmitted. An example 

process is illustrated in Fig 6.Although this algorithm saves 

a lot on computation as compared to TSS, it was not widely 

accepted for two reasons. Firstly, in reality the error surfaces 

are not strictly unimodal and hence the PSNR achieved is 

poor compared to TSS. Secondly, there was another 

algorithm, Four Step Search, that presentes low 

computational cost compared to TSS and gave significantly 

better PSNR. 

D. New Three Step Search (NTSS): 

NTSS [7] improves on TSS results by providing a center 

biased searching scheme and having provisions for half way 

stop to reduce computational cost. It was one of the first 

widely accepted fast algorithms and frequently used for 

implementing earlier standards like MPEG 1 and H.261. 

The TSS uses a uniformly allocated checking pattern for 

motion detection and is prone to missing small motions. The 
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NTSS process is illustrated graphically in Fig 7. In the first 

step 16 points are checked in addition to the search origin 

for lowest weight using a cost function. Of these additional 

search locations, 8 are a distance of S = 4 away (similar to 

TSS) and the other 8 are at S = 1 away from the search 

origin. If the lowest cost is at the origin then the search is 

stopped right here and the motion vector is set as (0, 0). If 

the lowest weight is at any one of the 8 locations at S = 1, 

then we change the origin of the search to that point and 

check for weights adjacent to it. Depending on which point 

it is we might end up checking 5 points or 3 points. The 

location that gives the lowest weight is the closest match 

and motion vector is set to that location. On the other hand if 

the lowest weight after the first step was one of the 8 

locations at S = 4, then we follow the normal TSS 

procedure. Hence although this process might need a 

minimum of 17 points to check every macro block, it also 

has the worst-case scenario of 33 locations to check. 
 

 

Figure.7 New Three Step Search block matching 

E. Four Step Search (4SS): 

Similar to NTSS, 4SS [8] also employs center biased 

searching and has a halfway stop provision. 4SS sets a fixed 

pattern size of S = 2 for the first step, no matter what the 

search parameter p value is. Thus it looks at 9 locations in a 

5x5 window. If the least weight is found at the center of 

search window the search jumps to fourth step. If the least 

weight is at one of the eight locations except the center, then 

we make it the search origin and move to the second step. 

The search window is still maintained as 5x5 pixels wide. 

 

Figure.8   Four Step Search procedure. The motion vector is (3,-7). 

Depending on where the least weight location was, we 

might end up checking weights at 3 locations or 5 locations. 

The patterns are shown in Fig 8. Once again if the least 

weight location is at the center of the 5x5 search window we 

jump to fourth step or else we move on to third step. The 

third is exactly the same as the second step. In the fourth 

step the window size is dropped to 3x3, i.e. S = 1. The 

location with the least weight is the best matching macro 

block and the motion vector is set to point at that location. A 

sample procedure is shown in Fig 8. This search algorithm 

has the best case of 17 checking points and worst case of 27 

checking points. 

F. Diamond Search (DS): 

Diamond search (DS) algorithm is exactly the same as 

4SS, but the search point pattern is changed from a square to 

a diamond, and there is no limit on the number of steps that 

the algorithm can take.DS uses two different types of fixed 

patterns, one is Large Diamond Search Pattern (LDSP)[14] 

and the other is Small Diamond Search Pattern (SDSP). 

These two patterns and the DS procedure are illustrated in 

Fig. 9. Just like in FSS, the first step uses LDSP and if the 

least weight is at the center location e jump to fourth step. 

The consequent steps, except the last step, are also similar 

and use LDSP, but the number of points where cost function 

is checked are either 3 or 5 and are illustrated in second and 

third steps of procedure shown in Fig.9.  

The last step uses SDSP around the new search origin 

and the location with the least weight is the best match. As 

the search pattern is neither too small nor too big and the 

fact that there is no limit to the number of steps, this 

algorithm can find global minimum very accurately. The 

end result should see a PSNR close to that of ES while 

computational expense should be significantly less. 

 

Figure.9   Diamond search procedure 

III. PROPOSED ADAPTIVE ROOD 

ALGORITHM 

The Speed and the accuracy of the motion estimation 

algorithms depends on the size of the search pattern and the 

magnitude of the target motion vector (MV), as the small 

search patterns are useful in detecting small motions but 

they tend to trap into the local minimum while detecting the 

large motions, on the other hand the large motion vectors 
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can easily detect the large motions but they tend to go for 

unnecessary searches when detecting the small motions. 

Hence it is desirable to use different search patterns 

according to the estimated motion behavior (in terms of the 

magnitude of motion) for the current block. This boils down 

to two issues required to be addressed: 1) How to 

predetermine the motion behavior of the current block for 

performing efficient motion estimation? and 2) what is the 

most suitable size and the shape of the search pattern(s).  

Regarding the first issue, in most cases adjacent MBs 

belonging to the same moving object have similar motions. 

Therefore the motion vector for the current MB can be 

reasonably predicted from the neighboring MB‘s motion 

vectors in the spatial or temporal domains. As for the second 

issue two types of search patterns are used. One is Adaptive 

Rood Pattern (ARP) with adjustable rood arm, which is 

dynamically determined for each MB according to the 

predicted motion behavior. Note that the ARP will be 

exploited only once in the beginning of the MB search. The 

objective is to find a good starting point for the remaining 

local search so as to avoid unnecessary intermediate search 

and reduce the risk of being trapped into the local minimum 

in case of long search path. The starting point identified is 

hopefully as close as to the global minimum as possible. If 

so then, a small fixed size search pattern will be able to 

complete the remaining local search quickly. 

Note also that this small search pattern will be used 

repeatedly unrestrictedly until the final MV is found. 

A. Prediction of the Target MV: 

In order to obtain the accurate MV prediction of the 

current block two factors need to be considered: 1) Choice 

of the Region of Support (ROS) that consists of the 

neighboring  

Blocks whose MVs are used to calculate the predicted 

MV, and 2) algorithm used to construct the predicted MV. 

In the temporal region the block in the reference frame at 

the same position as that of current block in the present 

frame is a straight forward choice as a temporal ROS 

candidate. However, the neighboring blocks from the same 

reference frame can also be used for prediction. However 

there would be a large requirement of memory if such a kind 

of operation is performed, as the MV information of the 

complete reference frame should be stored. So the choice of 

temporal prediction will be eliminated due to the huge 

memory requirement and computations.  

The other way possible is to go for the spatial prediction. 

Usage of the already calculated i.e. the neighboring blocks 

MVs as a source for prediction will be a good option. It is 

the only possible way to have less memory requirement. The 

concept of Region of Support (ROS) is used for the 

prediction of current block MV. There are 4 kinds of ROS 

possible. They are as follows. 

 

TYPE A            TYPE B                 TYPE C             TYPE D                                       

Figure.10 Types Of Region of Supports [16] 

TYPE A ROS covers all the four neighboring blocks and 

TYPE B is the prediction ROS that is adopted in some 

international standards such as H.263 for the differential 

coding of the MVs. TYPE C composed of the two directly 

adjacent blocks, TYPE D consists of only one adjacent 

block that is left of the current MB. Experiments on various 

types of ROCs is being done and it was observed that they 

yield fairly similar results with a difference of less than 0.1 

DB in PSNR and 5% in the number of search points. Hence 

it is wise to choose TYPE D kind of ROS hence it requires 

only one motion vector for prediction. 

B. Selection of Search Patterns: 

For initial Search: The shape of the rood pattern is 

symmetrical that is shown in the Fig 11. The main structure 

of ARP takes the rood shape, its size refers to the distance 

between center point and the any of the other vertex point. 

The shape of the rood pattern is determined on the basis of 

real world motion sequences. For most of the sequences it 

was observed that the motion vector distribution was mostly 

in horizontal and vertical direction than in other directions, 

since the camera movements are mostly in those directions. 

Since the rood pattern spreads in both the vertical and 

horizontal directions it can quickly detect the motion vectors 

and also can able to jump directly into the local region of the 

global minimum. Secondly, any MV can be decomposed 

into one vertical MV component and one horizontal MV 

component. For a moving object which may introduce 

motion in any direction the rood shaped pattern can atleast 

detect the major trend of the moving object which is the 

desired outcome of the initial search stage. 

In addition to the four search points it would be better to 

include the position of the predicted motion vector that aids 

in the termination in the initial search stage only if the 

predicted MV matches with the target MV. So in total there 

will be six search points in the initial search stage and then 

five search points for the further refinement process.The 

search pattern that will be used in the initial search stage is 

shown in the Fig.11. 

 
Figure.11 Adaptive Rood Pattern: The predicted motion vector is (2,-1), 

and the step size S = Max (|2|, |-1|) = 2. 

In this method the Rood Arm Length (RAL) will be 

equal to the and the four arms are of equal length. 

Mathematically it can be expressed as follows. 

The size of the ARP,    
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         Ѓ is  = Round (MV predicted)  

          =Round ( MV2
predicted(x) + MV2

predicted(y))  

Where the MVpredicted(x) is the x-component of the 

predicted motion vector and the MVpredicted(y) is the y-

component of the predicted motion vector. Operator Round 

performs the rounding operation to the nearest possible 

integer since the displacement can be in terms of the 

integers.  

It should be kept in mind that the TYPE D kind of ROS 

cannot be used for all MBs, because there will be some MBs 

where there will be no left neighbor. 

So, in that case the ARP with RAL of 2 (Ѓ = 2) is 

suggested, by taking the reference of LDSP, which has fairly 

a good amount of performance. Also larger MVs are not 

preferred as the boundary MVs mostly belong to the static 

background, which do not contribute larger MVs. 

C. Fixed Pattern: 

For Refined Local Search: In the initial search the 

adaptive rood pattern directly leads to the new search 

position which is somewhere around global minimum, 

which avoids the unnecessary search points in the 

intermediary search path. Since there is no chance of getting 

trapped into the local minimum we can use the fixed pattern 

for identifying the global minimum. The minimum error 

point in the first step is used to align as the centre of the 

fixed pattern in the second step. This process will be 

followed until the point of minimum error is the centre of 

the present iteration‘s search pattern. 

Two types of fixed patterns were proposed. The first one 

was the 3x3 square patterns as was proposed in the SDSP. 

The second pattern consists of a unit size rood arm pattern. 

The experimental results conducted by [16] showed that 

the 3x3 square pattern yields similar PSNR when compared 

to the Unit rood arm pattern but 40% to 80% more number 

of search points. This demonstrates the efficiency of the 

Unit Rood Arm Pattern. The proposed fixed patterns by [16] 

are shown in the figure 12. 

 

Figure.12 Fixed size Patterns [16] 

D. Proposed ARPS Algorithm: 

Step 1:- Compute the matching error (SAD centre) between 

the current block and the block at the same location in the 

reference frame (i.e. centre of the current search window). 

If the current block is the left most      Ѓ = 2;  

Else  

Ѓ =Max (|MVpredicted(x) |,| MVpredicted(y)|) 

Go to step 2 

Step 2:- Align the centre of ARP with the centre point of 

the search window and check its 4 points and the position of 

the predicted motion vector to find the minimum error 

point. 

Step3:- Set the centre point of the unit size rood pattern at 

the minimum error point found in the previous step and 

check its points. If the new minimum error point is not 

incurred at the centre of the unit rood pattern repeat this step 

otherwise, MV is found corresponding to the minimum error 

point in the current step. 

ARPS algorithm makes use of the fact that the general 

motion in a frame is usually coherent, i.e. if the macro 

blocks around the current macro block moved in a particular 

direction then there is a high probability that the current 

macro block will also have a similar motion vector[16]. This 

algorithm uses the motion vector of the macro block to its 

immediate left to predict its own motion vector. An example 

is shown in Fig.11, the predicted motion vector points to (2, 

-1). In addition to checking the location pointed by the 

predicted motion vector, it also checks at a rood pattern 

distributed points, as shown in Fig 11, where they are at a 

step size of S = Max (|X|, |Y|). X and Y are the x-coordinate 

and y-coordinate of the predicted motion vector. This rood 

pattern search is always the first step. 

It directly keeps the search in an area where there is a 

high probability of finding a good matching block. The 

point that has the least weight becomes the origin for 

subsequent search steps, and the search pattern is changed to 

SDSP. 

The procedure keeps on doing SDSP until least weighted 

point is found to be at the center of the SDSP. A further 

small improvement in the algorithm can be to check for 

Zero Motion Prejudgment [8], using which the search is 

stopped half way if the least weighted point is already at the 

center of the rood pattern. 

Care also needs to be taken when the predicted motion 

vector turns out to match one of the rood pattern location. 

We have to avoid double computation at that point. For 

macro blocks in the first column of the frame, rood pattern 

step size is fixed at 2 pixels. 

IV. SIMULATION RESULTS 

The efficiency of the proposed algorithm was tested by 

using two benchmark video sequences, Rhinos and 

Vipmosaicking.Consecutive 70 frames of size 320 240 

pixels in Rhinos and consecutive 70 frames of size 320  

240 pixels in Vipmosaicking are considered first. The block 

and search window sizes were fixed at 16  16 and 33 33 

respectively. 

‗Rhinos‘ and ‗Vipmosaicking‘ video sequences with a 

frame distance of 2 between current frame and reference 

frame was used to generate the frame-by-frame results of the 

algorithms. A plot of the PSNR comparison of the 

compensated images generated using these algorithms are 

shown in Fig.13 and 14 and the average number of searches 

required per macro block for these two sequences using the 

7 fast block matching algorithms are shown in Fig.15 and 16 

respectively. 
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Figure.13 PSNR performance of Fast Block Matching Algorithms. 

Rhinos Sequence was used with a frame distance of 2. 

 

Figure.13 PSNR performance of Fast Block Matching Algorithms. 

Vipmosaicking Sequence was used with a frame distance of 2. 

 

Figure.15 Number of computations of various algorithms compared with 

ARPS for Vipmosaicking sequence. 

As is shown by Fig. 13, 4SS, DS and ARPS come pretty 

close to the PSNR results of ES. While the ES takes on an 

average around 225 searches per macro block, DS and 4SS 

drop that number by more than an order of magnitude of 

DS. NTSS and TSS although do not come close in PSNR 

performance to the results of ES, but even they drop down 

the number of computations required per macro block by 

almost an order of magnitude. SES takes up less number of 

search point computations amongst all but ARPS. However, 

it also has the worst PSNR performance. Although PSNR 

performance of 4SS, DS, and ARPS is relatively the same, 

ARPS takes a factor of 2 less computations and hence is the 

best of the fast block matching algorithms studied in this 

paper. 

The main advantage of the ARPS algorithm over DS is 

that if the predicted motion vector is (0, 0), it does not waste 

computational time in doing LDSP; it rather directly starts 

using SDSP. Furthermore, if the predicted motion vector is 

far away from the center, then again ARPS save on 

computations by directly jumping to that vicinity and using 

SDSP, whereas DS takes its time doing LDSP. 

Table.1 PSNR performance of various motion estimation algorithms along with Adaptive Rood  Pattern Search, Rhinos Sequence was used with a frame distance 

of 2. 

Frames ES_PSNR TSS_PSNR NTSS_PSNR SESTSS_PSNR SS4_PSNR DS_PSNR ARPS_PSNR 

0 19.1816 18.9842 18.944 18.3745 18.7857 18.836 18.9487 

10 29.0757 28.4340 28.4315 24.9953 27.1993 27.1861 27.3256 

20 22.6957 22.5244 22.5086 21.4281 22.2785 22.1907 22.5721 

30 19.9814 19.8862 19.8825 19.5873 19.7173 19.7276 19.8131 

40 19.9239 19.8524 19.8512 19.445 19.7316 19.7428 19.8322 

50 20.2241 20.1652 20.1516 19.7422 20.0569 20.0796 20.0396 

60 21.8762 21.6787 21.6716 21.0378 21.6035 21.6521 21.7536 

70 24.6742 24.5204 24.5 23.4299 23.9621 23.9449 24.2215 
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Table.2 PSNR performance of various motion estimation algorithms along with Adaptive Rood Pattern Search Vipmosaicking Sequence was used with a frame 

distance of 2. 

Frames ES_PSNR TSS_PSNR NTSS_PSNR SESTSS_PSNR SS4_PSNR DS_PSNR ARPS_PSNR 

0 26.1276 25.1085 25.1017 21.1807 24.4313 23.7763 25.298 

10 25.4268 24.4815 24.1809 23.8878 24.435 24.556 25.3272 

20 24.5511 24.0288 23.562 23.2236 23.969 23.922 24.2797 

30 29.2803 28.491 27.4074 28.0707 28.9618 28.918 29.1483 

40 32.4371 30.6876 28.5425 30.3112 28.1771 27.7556 32.1894 

50 23.7483 23.3847 23.381 22.8618 23.1063 22.92 23.535 

60 26.6763 25.2653 25.1849 25.8246 25.0706 25.1363 26.424 

70 39.6937 39.7064 39.7064 39.6992 39.6935 39.7117 39.7102 

V. CONCLUSIONS 

The theory of all motion estimation algorithms are 

explored in this work and examined basic features of motion 

estimation algorithms. Even though more commonly linked 

to lossy video compression, motion estimation is infact a 

technique that goes beyond and allows for video processing 

and computational vision algorithms and applications.  

It allows a computer to detect movement as well as to 

perform comprehensive video sequence analysis, identifying 

scenes, camera and object movements. Motion estimation is 

one technique that allows for a simple, yet effective, object 

identification scheme. Seven different algorithms for motion 

estimation are tested and compared average number of 

search points and PSNR. It is concluded that Adaptive Rood 

Pattern Search Algorithm gives better result compared to all 

other existing algorithms in terms of achieving best PSNR 

and it also reduces the number of search points required for 

generating the motion vector. 
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