
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 410

ISSN No. 0976-5697

Adaptive Rood Algorithm for Motion compensation in video streams
Sanipini Venkata Kiran*1, P. Darwin2

1,2Department of ECE,

Godavari Institute of Engineering and Technology

Rajahmundry, Andhra Pradesh, India
1kiranyrpm@gmail.com, 2darwinp_25@yahoo.com

Ch. Srinivasa Rao
Department of ECE,

Sri Sai Aditya Institute of Engineering and Technology

Surampalem, Andhra Pradesh, India

ch_rao@rediffmail.com

Abstract— Video compression plays major role in multimedia industry in general. The rapid advances in the video compression algorithms aims

at reducing redundancy without compromising the quality. A video captured was encoded using the encoder with each frame processed by

dividing it into several motion-blocks. In the encoder part, several motion estimation algorithms were applied. The quality metric, Peak Signal

to Noise Ratio (PSNR) for multiple frames was calculated for all available algorithms. From all these it is found that Adaptive Rood Pattern

Search (ARPS) algorithm eliminates redundancy without compromising the image quality. This algorithm was used to generate the motion

vectors to produce the compensated image, and this image was transformed using Discrete Cosine Transform (DCT) then quantized and encoded

in the encoder. For achieving better PSNR and to reduce the number of search points required to generate the motion vector ARPS algorithm is

proved superior when compared to the other available searching algorithms.

Keywords - Adaptive Rood Pattern Search (ARPS), Discrete Cosine Transform (DCT), Peak Signal to Noise Ratio (PSNR), Motion

compensation.

I. INTRODUCTION

With the advent of the multimedia age and the spread of

internet, video storage on CD/DVD and streaming of video

has been gaining a lot of popularity. Video compression

becomes a direct need as video usage on the internet

growing day by day. So, video compressions address this

problem by exploiting spatial and temporal redundancy. In

spatial redundancy, redundancy is reduced by considering

neighboring samples on a scanning line that are generally

similar. In digital video, in addition to spatial redundancy,

neighboring frames in a video sequence may be similar

(temporal redundancy).

Motion compensation is a predictive technique for

exploiting the temporal redundancy between successive

frames of video sequence. Motion estimation is a technique

to eliminate temporal redundancy of image sequences and it

is the central part of the Moving Pictures Expert Group

(MPEG (1/2/4)) [1-3] and the video compression standards

(H.261/H.263) [4]. However, motion estimation involves a

lot of computational complexity in the video encoders and it

occupies not less than 70-75 percent of the entire processing

time of a video coder.

Motion estimation is the process of determining motion

vectors that describe the transformation from one 2D image

to another, usually from adjacent frames in a video

sequence. It is an ill-posed problem as the motion is in three

dimensions but the images are projections of the 3D scene

onto a 2D plane. The motion vectors may relate to the whole

image (global motion estimation) or specific parts, such as

rectangular blocks, arbitrary shaped patches or even per

pixel. The motion vectors may be represented by a

translational model or many other models that can

approximate the motion of a real video camera, such as

rotation and translation in all three dimensions. Optical flow

reflects the image changes due to changes in motion during

a small time gap. Optical flow field is the velocity field that

represents the 3D motion of object points across a 2D

image. It should not be sensitive to illumination changes and

motion of unimportant objects. The optical flow field is

represented in the form of velocity vector. The length,

direction of this vector determines the magnitude of velocity

and the direction of motion. The optical flow can be

computed either globally or locally. In global flow

estimation local constraints are propagated globally but the

disadvantage is errors also propagate across the solution. In

local flow the image is divided into smaller regions but it is

inefficient in the areas where spatial gradients change

slowly and in that case use global approach.

This paper is organized as follows. A detailed review of

various motion estimation algorithms available in the

current literature is presented in section 2. Proposed

Adaptive rood algorithm is discussed in section 3. Results

and discussion is presented in section 4. Conclusions are

given in section 5.

II. RELATED WORK

Since motion estimation is the most computationally

intensive portion of video encoding, efficient fast motion

estimation algorithms are highly desired for video

compressors subjected to diverse requirement on bit rate,

and delay. For efficient handling of motions with variety of

data, there are several algorithms were devised. In this, the

optimal full search (FS) algorithm results in the best

performance, but it is computationally very intensive. So the

other fast search algorithms were developed namely-three

step search (TSS),simple and efficient three step search

(SETSS) the new three step search (NTSS),the four step

search (FSS)[9], the diamond search (DS), and adaptive

rood pattern search (ARPS). One of the main research goals

for the developing these algorithms were the reduction of

computational complexity and the power consumption of the

motion estimation while keeping quality of image.

http://en.wikipedia.org/wiki/Motion_vector
http://en.wikipedia.org/wiki/Motion_vector
http://en.wikipedia.org/wiki/Motion_vector
http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Pixel

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 410-418

© 2010, IJARCS All Rights Reserved 411

Figure.1 Forward and backward motion estimation.

 We consider the estimation of motion between two

given frames, the MV at x between time t1 and t2 is defined

as the displacement of this point from t1 to t2.We will call

the frame at time t1 anchor frame and the frame at t2 tracked

frame. Depending on the intended application the tracked

frame can be either before or after the tracked frame in time.

As illustrated in Fig.1 the problem is referred to as forward

motion estimation, when t1<t2, and as backward motion

estimation, when t1>t2. For example in this paper we use

Rhinos video sequence which uses forward motion

estimation has anchor frame and a tracked frame as shown

in Fig.2.

There are two mainstream techniques of motion

estimation: pel-recursive algorithm (PRA) [5] and block-

matching algorithm (BMA). PRAs are iterative refining of

motion estimation for individual pels by gradient methods.

BMAs assume that all the pels within a block has the same

motion activity[10]. BMAs estimate motion on the basis of

rectangular blocks and produce one motion vector for each

block. PRAs involve more computational complexity and

less regularity.

 Frame (1) Frame (2)

 (Anchor frame) (Tracked frame)

Figure.2 Anchor and tracked frames of Rhino video sequence.

The underlying supposition behind motion estimation is

that the patterns corresponding to objects and background in

a frame of video sequence move within the frame to form

corresponding objects on the subsequent frame. The idea

behind block matching is to divide the current frame into

matrix of ‗macro blocks‘ (MB) that are then compared with

corresponding block and its adjacent neighbors in the

previous frame to create a vector that stipulates the

movement of a macro block from one location to another in

the previous frame. This movement calculated for all the

macro blocks comprising a frame, constitutes the motion

estimated in the current frame. The search area for a good

macro block match is constrained up to p pixels on all fours

sides of the corresponding macro block in previous frame.

This ‗p‘ is called as the search parameter. Larger motions

require a larger p, and the larger the search parameter the

more computationally expensive the process of motion

estimation becomes. Usually the macro block is taken as a

square of side 16 pixels, and the search parameter p is 7

pixels. The idea is represented in Fig 3.

Figure.3 Motion estimation and motion vector

The matching of one macro block with another is based

on the output of a cost function. The macro block that

results in the least cost is the one that matches the closest to

current block. There are various cost functions, of which the

most popular and less computationally expensive is Mean

Absolute Difference (MAD) given by equation

1 1

2
1 1

1
| |

N N

ij ij

i j

MAD C R
N

 Another cost function is Mean Squared Error (MSE)

given by equation

1 1

2

2
1 1

1
()

N N

ij ij

i j

MSE C R
N

Where N is the side of the macro bock, Cij and Rij are the

Pixels being compared in current macro block and reference

macro block, respectively.

Peak-Signal-to-Noise-Ratio (PSNR) given by the below

equation characterizes the motion compensated image that is

created by using motion vectors and macro blocks from the

reference frame.
2

10

(Peak to peak value of original signal)
10log []PSNR

MSE

There are various algorithms that have been

implemented so far are Full Search (FS), Three Step Search

(TSS), Simple and Efficient TSS (SES), New Three Step

Search (NTSS), Four Step Search (SS4), Diamond Search

(DS). These are discussed briefly in this section.

A. Full Search (FS):

Of all the algorithms, this algorithm is the most

computationally expensive one .It calculates the cost

function at each possible location in the search window. As

a result, it finds the best possible match and gives the

highest PSNR amongst all the block matching algorithms.

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,

© 2010, IJARCS All Rights Reserved 412

Fast block matching algorithms try to get the same PSNR

doing little computations.

B. Three Step Search (TSS):

This is one of the earliest attempts at fast block matching

algorithms. The general idea is represented in Fig 4. It starts

with the search location at the center and sets the ‗step size‘

S = 4, for a usual search parameter value of 7. It then

searches at eight locations +/- S pixels around location (0,

0). From these nine locations searched so far it picks the one

giving least cost and makes it the new search origin. It then

sets the new step size S = S/2, and repeats similar search for

two more iterations until S = 1. At that point it finds the

location with the least cost function and the macro block at

that location is the best match. The calculated motion vector

is then saved for transmission. It gives a flat reduction in

computation by a factor of 9. So that for p = 7, ES will

compute cost for 225 macro blocks whereas TSS computes

cost for 25 macro blocks [11].

Figure.4 The Three Step Search Procedure

The idea behind TSS is that the error surface due to

motion in every macro block is unimodal. A unimodal

surface is a bowl shaped surface such that the weights

generated by the cost function increase monotonically from

the global minimum.

Fig.5 Search patterns corresponding to each selected quadrant: (a) Shows

all quadrants (b) quadrant I is selected (c) quadrant II is selected (d)

quadrant III is selected (e) quadrant IV is selected.

C. Simple and Efficient Search (SES):

SES [6] is another extension to TSS and exploits the

assumption of unimodal error surface. The main idea behind

the algorithm is that for a unimodal surface there cannot be

two minimums in opposite directions and hence the 8 point

fixed pattern search of TSS can be changed to incorporate

this and save on computations.

The algorithm still has three steps like TSS, but the

innovation is that each step has further two phases. The

search area is divided into four quadrants and the algorithm

checks three locations A, B and C as shown in Figure 5. A is

at the origin and B and C are S = 4 locations away from A in

orthogonal directions. Depending on certain weight

distribution amongst the three the second phase selects few

additional points (Fig 5). The rule for determining a search

quadrant for seconds phase is as follows:

If MAD A MAD B and MAD A MAD C ,select b ;

If MAD A MAD B and MAD A MAD C ,select ;c

If MAD A <MAD B and MAD A < MAD C ,select ;d

If MAD A <MAD B and MAD A MAD C ,select ;e

Figure.6 The SES procedure. The motion vector is (3, 7).

Once we have selected the points to check for in second

phase, we find the location with the lowest weight and set it

as the origin. We then change the step size similar to TSS

and repeat the above SES procedure again until we reach =

1.The location with the lowest weight is then noted down in

terms of motion vectors and transmitted. An example

process is illustrated in Fig 6.Although this algorithm saves

a lot on computation as compared to TSS, it was not widely

accepted for two reasons. Firstly, in reality the error surfaces

are not strictly unimodal and hence the PSNR achieved is

poor compared to TSS. Secondly, there was another

algorithm, Four Step Search, that presentes low

computational cost compared to TSS and gave significantly

better PSNR.

D. New Three Step Search (NTSS):

NTSS [7] improves on TSS results by providing a center

biased searching scheme and having provisions for half way

stop to reduce computational cost. It was one of the first

widely accepted fast algorithms and frequently used for

implementing earlier standards like MPEG 1 and H.261.

The TSS uses a uniformly allocated checking pattern for

motion detection and is prone to missing small motions. The

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 410-418

© 2010, IJARCS All Rights Reserved 413

NTSS process is illustrated graphically in Fig 7. In the first

step 16 points are checked in addition to the search origin

for lowest weight using a cost function. Of these additional

search locations, 8 are a distance of S = 4 away (similar to

TSS) and the other 8 are at S = 1 away from the search

origin. If the lowest cost is at the origin then the search is

stopped right here and the motion vector is set as (0, 0). If

the lowest weight is at any one of the 8 locations at S = 1,

then we change the origin of the search to that point and

check for weights adjacent to it. Depending on which point

it is we might end up checking 5 points or 3 points. The

location that gives the lowest weight is the closest match

and motion vector is set to that location. On the other hand if

the lowest weight after the first step was one of the 8

locations at S = 4, then we follow the normal TSS

procedure. Hence although this process might need a

minimum of 17 points to check every macro block, it also

has the worst-case scenario of 33 locations to check.

Figure.7 New Three Step Search block matching

E. Four Step Search (4SS):

Similar to NTSS, 4SS [8] also employs center biased

searching and has a halfway stop provision. 4SS sets a fixed

pattern size of S = 2 for the first step, no matter what the

search parameter p value is. Thus it looks at 9 locations in a

5x5 window. If the least weight is found at the center of

search window the search jumps to fourth step. If the least

weight is at one of the eight locations except the center, then

we make it the search origin and move to the second step.

The search window is still maintained as 5x5 pixels wide.

Figure.8 Four Step Search procedure. The motion vector is (3,-7).

Depending on where the least weight location was, we

might end up checking weights at 3 locations or 5 locations.

The patterns are shown in Fig 8. Once again if the least

weight location is at the center of the 5x5 search window we

jump to fourth step or else we move on to third step. The

third is exactly the same as the second step. In the fourth

step the window size is dropped to 3x3, i.e. S = 1. The

location with the least weight is the best matching macro

block and the motion vector is set to point at that location. A

sample procedure is shown in Fig 8. This search algorithm

has the best case of 17 checking points and worst case of 27

checking points.

F. Diamond Search (DS):

Diamond search (DS) algorithm is exactly the same as

4SS, but the search point pattern is changed from a square to

a diamond, and there is no limit on the number of steps that

the algorithm can take.DS uses two different types of fixed

patterns, one is Large Diamond Search Pattern (LDSP)[14]

and the other is Small Diamond Search Pattern (SDSP).

These two patterns and the DS procedure are illustrated in

Fig. 9. Just like in FSS, the first step uses LDSP and if the

least weight is at the center location e jump to fourth step.

The consequent steps, except the last step, are also similar

and use LDSP, but the number of points where cost function

is checked are either 3 or 5 and are illustrated in second and

third steps of procedure shown in Fig.9.

The last step uses SDSP around the new search origin

and the location with the least weight is the best match. As

the search pattern is neither too small nor too big and the

fact that there is no limit to the number of steps, this

algorithm can find global minimum very accurately. The

end result should see a PSNR close to that of ES while

computational expense should be significantly less.

Figure.9 Diamond search procedure

III. PROPOSED ADAPTIVE ROOD

ALGORITHM

The Speed and the accuracy of the motion estimation

algorithms depends on the size of the search pattern and the

magnitude of the target motion vector (MV), as the small

search patterns are useful in detecting small motions but

they tend to trap into the local minimum while detecting the

large motions, on the other hand the large motion vectors

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,

© 2010, IJARCS All Rights Reserved 414

can easily detect the large motions but they tend to go for

unnecessary searches when detecting the small motions.

Hence it is desirable to use different search patterns

according to the estimated motion behavior (in terms of the

magnitude of motion) for the current block. This boils down

to two issues required to be addressed: 1) How to

predetermine the motion behavior of the current block for

performing efficient motion estimation? and 2) what is the

most suitable size and the shape of the search pattern(s).

Regarding the first issue, in most cases adjacent MBs

belonging to the same moving object have similar motions.

Therefore the motion vector for the current MB can be

reasonably predicted from the neighboring MB‘s motion

vectors in the spatial or temporal domains. As for the second

issue two types of search patterns are used. One is Adaptive

Rood Pattern (ARP) with adjustable rood arm, which is

dynamically determined for each MB according to the

predicted motion behavior. Note that the ARP will be

exploited only once in the beginning of the MB search. The

objective is to find a good starting point for the remaining

local search so as to avoid unnecessary intermediate search

and reduce the risk of being trapped into the local minimum

in case of long search path. The starting point identified is

hopefully as close as to the global minimum as possible. If

so then, a small fixed size search pattern will be able to

complete the remaining local search quickly.

Note also that this small search pattern will be used

repeatedly unrestrictedly until the final MV is found.

A. Prediction of the Target MV:

In order to obtain the accurate MV prediction of the

current block two factors need to be considered: 1) Choice

of the Region of Support (ROS) that consists of the

neighboring

Blocks whose MVs are used to calculate the predicted

MV, and 2) algorithm used to construct the predicted MV.

In the temporal region the block in the reference frame at

the same position as that of current block in the present

frame is a straight forward choice as a temporal ROS

candidate. However, the neighboring blocks from the same

reference frame can also be used for prediction. However

there would be a large requirement of memory if such a kind

of operation is performed, as the MV information of the

complete reference frame should be stored. So the choice of

temporal prediction will be eliminated due to the huge

memory requirement and computations.

The other way possible is to go for the spatial prediction.

Usage of the already calculated i.e. the neighboring blocks

MVs as a source for prediction will be a good option. It is

the only possible way to have less memory requirement. The

concept of Region of Support (ROS) is used for the

prediction of current block MV. There are 4 kinds of ROS

possible. They are as follows.

TYPE A TYPE B TYPE C TYPE D

Figure.10 Types Of Region of Supports [16]

TYPE A ROS covers all the four neighboring blocks and

TYPE B is the prediction ROS that is adopted in some

international standards such as H.263 for the differential

coding of the MVs. TYPE C composed of the two directly

adjacent blocks, TYPE D consists of only one adjacent

block that is left of the current MB. Experiments on various

types of ROCs is being done and it was observed that they

yield fairly similar results with a difference of less than 0.1

DB in PSNR and 5% in the number of search points. Hence

it is wise to choose TYPE D kind of ROS hence it requires

only one motion vector for prediction.

B. Selection of Search Patterns:

For initial Search: The shape of the rood pattern is

symmetrical that is shown in the Fig 11. The main structure

of ARP takes the rood shape, its size refers to the distance

between center point and the any of the other vertex point.

The shape of the rood pattern is determined on the basis of

real world motion sequences. For most of the sequences it

was observed that the motion vector distribution was mostly

in horizontal and vertical direction than in other directions,

since the camera movements are mostly in those directions.

Since the rood pattern spreads in both the vertical and

horizontal directions it can quickly detect the motion vectors

and also can able to jump directly into the local region of the

global minimum. Secondly, any MV can be decomposed

into one vertical MV component and one horizontal MV

component. For a moving object which may introduce

motion in any direction the rood shaped pattern can atleast

detect the major trend of the moving object which is the

desired outcome of the initial search stage.

In addition to the four search points it would be better to

include the position of the predicted motion vector that aids

in the termination in the initial search stage only if the

predicted MV matches with the target MV. So in total there

will be six search points in the initial search stage and then

five search points for the further refinement process.The

search pattern that will be used in the initial search stage is

shown in the Fig.11.

Figure.11 Adaptive Rood Pattern: The predicted motion vector is (2,-1),

and the step size S = Max (|2|, |-1|) = 2.

In this method the Rood Arm Length (RAL) will be

equal to the and the four arms are of equal length.

Mathematically it can be expressed as follows.

The size of the ARP,

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 410-418

© 2010, IJARCS All Rights Reserved 415

 Ѓ is = Round (MV predicted)

 =Round (MV2
predicted(x) + MV2

predicted(y))

Where the MVpredicted(x) is the x-component of the

predicted motion vector and the MVpredicted(y) is the y-

component of the predicted motion vector. Operator Round

performs the rounding operation to the nearest possible

integer since the displacement can be in terms of the

integers.

It should be kept in mind that the TYPE D kind of ROS

cannot be used for all MBs, because there will be some MBs

where there will be no left neighbor.

So, in that case the ARP with RAL of 2 (Ѓ = 2) is

suggested, by taking the reference of LDSP, which has fairly

a good amount of performance. Also larger MVs are not

preferred as the boundary MVs mostly belong to the static

background, which do not contribute larger MVs.

C. Fixed Pattern:

For Refined Local Search: In the initial search the

adaptive rood pattern directly leads to the new search

position which is somewhere around global minimum,

which avoids the unnecessary search points in the

intermediary search path. Since there is no chance of getting

trapped into the local minimum we can use the fixed pattern

for identifying the global minimum. The minimum error

point in the first step is used to align as the centre of the

fixed pattern in the second step. This process will be

followed until the point of minimum error is the centre of

the present iteration‘s search pattern.

Two types of fixed patterns were proposed. The first one

was the 3x3 square patterns as was proposed in the SDSP.

The second pattern consists of a unit size rood arm pattern.

The experimental results conducted by [16] showed that

the 3x3 square pattern yields similar PSNR when compared

to the Unit rood arm pattern but 40% to 80% more number

of search points. This demonstrates the efficiency of the

Unit Rood Arm Pattern. The proposed fixed patterns by [16]

are shown in the figure 12.

Figure.12 Fixed size Patterns [16]

D. Proposed ARPS Algorithm:

Step 1:- Compute the matching error (SAD centre) between

the current block and the block at the same location in the

reference frame (i.e. centre of the current search window).

If the current block is the left most Ѓ = 2;

Else

Ѓ =Max (|MVpredicted(x) |,| MVpredicted(y)|)

Go to step 2

Step 2:- Align the centre of ARP with the centre point of

the search window and check its 4 points and the position of

the predicted motion vector to find the minimum error

point.

Step3:- Set the centre point of the unit size rood pattern at

the minimum error point found in the previous step and

check its points. If the new minimum error point is not

incurred at the centre of the unit rood pattern repeat this step

otherwise, MV is found corresponding to the minimum error

point in the current step.

ARPS algorithm makes use of the fact that the general

motion in a frame is usually coherent, i.e. if the macro

blocks around the current macro block moved in a particular

direction then there is a high probability that the current

macro block will also have a similar motion vector[16]. This

algorithm uses the motion vector of the macro block to its

immediate left to predict its own motion vector. An example

is shown in Fig.11, the predicted motion vector points to (2,

-1). In addition to checking the location pointed by the

predicted motion vector, it also checks at a rood pattern

distributed points, as shown in Fig 11, where they are at a

step size of S = Max (|X|, |Y|). X and Y are the x-coordinate

and y-coordinate of the predicted motion vector. This rood

pattern search is always the first step.

It directly keeps the search in an area where there is a

high probability of finding a good matching block. The

point that has the least weight becomes the origin for

subsequent search steps, and the search pattern is changed to

SDSP.

The procedure keeps on doing SDSP until least weighted

point is found to be at the center of the SDSP. A further

small improvement in the algorithm can be to check for

Zero Motion Prejudgment [8], using which the search is

stopped half way if the least weighted point is already at the

center of the rood pattern.

Care also needs to be taken when the predicted motion

vector turns out to match one of the rood pattern location.

We have to avoid double computation at that point. For

macro blocks in the first column of the frame, rood pattern

step size is fixed at 2 pixels.

IV. SIMULATION RESULTS

The efficiency of the proposed algorithm was tested by

using two benchmark video sequences, Rhinos and

Vipmosaicking.Consecutive 70 frames of size 320 240

pixels in Rhinos and consecutive 70 frames of size 320

240 pixels in Vipmosaicking are considered first. The block

and search window sizes were fixed at 16 16 and 33 33

respectively.

‗Rhinos‘ and ‗Vipmosaicking‘ video sequences with a

frame distance of 2 between current frame and reference

frame was used to generate the frame-by-frame results of the

algorithms. A plot of the PSNR comparison of the

compensated images generated using these algorithms are

shown in Fig.13 and 14 and the average number of searches

required per macro block for these two sequences using the

7 fast block matching algorithms are shown in Fig.15 and 16

respectively.

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,

© 2010, IJARCS All Rights Reserved 416

Figure.13 PSNR performance of Fast Block Matching Algorithms.

Rhinos Sequence was used with a frame distance of 2.

Figure.13 PSNR performance of Fast Block Matching Algorithms.

Vipmosaicking Sequence was used with a frame distance of 2.

Figure.15 Number of computations of various algorithms compared with

ARPS for Vipmosaicking sequence.

As is shown by Fig. 13, 4SS, DS and ARPS come pretty

close to the PSNR results of ES. While the ES takes on an

average around 225 searches per macro block, DS and 4SS

drop that number by more than an order of magnitude of

DS. NTSS and TSS although do not come close in PSNR

performance to the results of ES, but even they drop down

the number of computations required per macro block by

almost an order of magnitude. SES takes up less number of

search point computations amongst all but ARPS. However,

it also has the worst PSNR performance. Although PSNR

performance of 4SS, DS, and ARPS is relatively the same,

ARPS takes a factor of 2 less computations and hence is the

best of the fast block matching algorithms studied in this

paper.

The main advantage of the ARPS algorithm over DS is

that if the predicted motion vector is (0, 0), it does not waste

computational time in doing LDSP; it rather directly starts

using SDSP. Furthermore, if the predicted motion vector is

far away from the center, then again ARPS save on

computations by directly jumping to that vicinity and using

SDSP, whereas DS takes its time doing LDSP.

Table.1 PSNR performance of various motion estimation algorithms along with Adaptive Rood Pattern Search, Rhinos Sequence was used with a frame distance

of 2.

Frames ES_PSNR TSS_PSNR NTSS_PSNR SESTSS_PSNR SS4_PSNR DS_PSNR ARPS_PSNR

0 19.1816 18.9842 18.944 18.3745 18.7857 18.836 18.9487

10 29.0757 28.4340 28.4315 24.9953 27.1993 27.1861 27.3256

20 22.6957 22.5244 22.5086 21.4281 22.2785 22.1907 22.5721

30 19.9814 19.8862 19.8825 19.5873 19.7173 19.7276 19.8131

40 19.9239 19.8524 19.8512 19.445 19.7316 19.7428 19.8322

50 20.2241 20.1652 20.1516 19.7422 20.0569 20.0796 20.0396

60 21.8762 21.6787 21.6716 21.0378 21.6035 21.6521 21.7536

70 24.6742 24.5204 24.5 23.4299 23.9621 23.9449 24.2215

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 410-418

© 2010, IJARCS All Rights Reserved 417

Table.2 PSNR performance of various motion estimation algorithms along with Adaptive Rood Pattern Search Vipmosaicking Sequence was used with a frame

distance of 2.

Frames ES_PSNR TSS_PSNR NTSS_PSNR SESTSS_PSNR SS4_PSNR DS_PSNR ARPS_PSNR

0 26.1276 25.1085 25.1017 21.1807 24.4313 23.7763 25.298

10 25.4268 24.4815 24.1809 23.8878 24.435 24.556 25.3272

20 24.5511 24.0288 23.562 23.2236 23.969 23.922 24.2797

30 29.2803 28.491 27.4074 28.0707 28.9618 28.918 29.1483

40 32.4371 30.6876 28.5425 30.3112 28.1771 27.7556 32.1894

50 23.7483 23.3847 23.381 22.8618 23.1063 22.92 23.535

60 26.6763 25.2653 25.1849 25.8246 25.0706 25.1363 26.424

70 39.6937 39.7064 39.7064 39.6992 39.6935 39.7117 39.7102

V. CONCLUSIONS

The theory of all motion estimation algorithms are

explored in this work and examined basic features of motion

estimation algorithms. Even though more commonly linked

to lossy video compression, motion estimation is infact a

technique that goes beyond and allows for video processing

and computational vision algorithms and applications.

It allows a computer to detect movement as well as to

perform comprehensive video sequence analysis, identifying

scenes, camera and object movements. Motion estimation is

one technique that allows for a simple, yet effective, object

identification scheme. Seven different algorithms for motion

estimation are tested and compared average number of

search points and PSNR. It is concluded that Adaptive Rood

Pattern Search Algorithm gives better result compared to all

other existing algorithms in terms of achieving best PSNR

and it also reduces the number of search points required for

generating the motion vector.

VI. REFERENCES

[1] MPEG, ―IS0 CD11172-2; Coding of moving pictures and
associated audio for digital storage media at up to about 1.5
Mbits/s,” Nov. 1991.

[2] ISO/IEC 11 172-2 (MPEG-1 Video), ―Information
technology-Coding of moving pictures and associated audio
for digital storage media at up to about 1.5 Mbit/s: Video,‖
1993.

[3] ISO/IEC 13818-2 I ITU-T H.262 (MPEG-2 Video),
―Information technology- Generic coding of moving pictures
and associated audio information: Video,‖ 1995.

[4] CCITT SGXV, ―Description of reference model 8 (RM8),‖
Document 525, Working Party XV/4, specialists Group on
Coding for Visual Telephony, Jun. 1989.

[5] A. N. Netravali and J. D. Robbins, ―Motion compensated
television coding: Part- I,‖ Bell Syst. Tech. J., vol. 58, pp.
631–670, Mar. 1979.

[6] Jianhua Lu, and Ming L. Liou, ―A Simple and Efficient
Search Algorithm for Block-Matching Motion Estimation‖,
IEEE Trans.Circuits And Systems For Video Technology,
vol 7, no. 2, pp. 429-433,April 1997.

[7] Renxiang Li, Bing Zeng, and Ming L. Liou, ―A New
Three-Step Search Algorithm for Block Motion Estimation‖,
IEEE Trans. Circuits And Systems For Video Technology,
vol 4., no. 4, pp. 438-442, August 1994.

[8] Jong-Nam Kim and Tae-Sun Choi, ―A Fast Three Step

Search Algorithm with Minimum Checking Points,‖ Proc. of
IEEE conference on Consumer Electronics,

[9] pp.132-133, 2-4 June 1998.

[10] Lai-Man Po and Wing-Chung Ma, ―A Novel Four-Step
Search Algorithm for Fast Block Motion Estimation‖, IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 6, no. 3, pp.313-317, June 1996

[11] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro,
―Motion compensated interframe coding for video
conferencing,‖ in Proc. Nat. Telecommun. Conf., New
Orleans, LA, pp. G5.3.1– G5.3.5, Nov. 29–Dec. 3 1981.

[12] Jong-Nam Kim and Tae-Sun Choi, ―A Fast Three Step
Search Algorithm with Minimum Checking Points,‖ Proc. of
IEEE conference on Consumer Electronics, pp.132-133, 2-4
June 1998.

[13] Th. Zahariadis and D. Kalivas ―A Spiral Search
Algorithm for Fast Estimation of Block Motion
Vectors,‖ Signal Processing VIII, theories and applications.
Proceedings of the EUSIPCO 96. Eighth European Signal
Processing Conference p.3 vol. lxiii + 2144, vol. 2, pp. 1079-
82, 1996.

[14] M.Porto, L.Agostini, S.Bampi and A.Susin, ―A high
throughput and low cost diamond search architecture for
HDTV Motion estimation,‖ IEEE International Conference
on Multimedia and Expo 2008, pp.1033-1036, 2008.

[15] Shan Zhu, and Kai-Kuang Ma, ― A New Diamond
Search Algorithm for Fast Block-Matching Motion
Estimation‖, IEEE Trans. ImageProcessing, vol 9, no. 2, pp.
287-290, February 2000.

[16] Y.Nie and K-k Ma, ―Adaptive Rood Pattern Search for fast
block matching algorithms,‖ IEEE Trans. on Image
Processing, vol 11, no. 12, pp.1442-1448,December 2002.

[17] C.-H. Hsieh, P. C. Lu, J.-S. Shyn, and E.-H. Lu, ―Motion
estimation algorithm using interblock correlation,‖ Electron.
Lett., vol. 26, no. 5, pp. 276–277, Mar. 1, 1990.

[18] K.K. Ma and G. Qiu, ―Adaptive Rood Pattern Search for
Fast Block Matching Motion Estimation in JVT/H.26L,‖
IEEE International Conference on Image Processing 2003,
pp. ii-708 – ii-711, 2003.

[19] J.-B. Xu, L.-M. Po, and C.-K. Cheng, ―Adaptive motion
tracking block matching algorithms for video coding,‖ IEEE
Trans. Circuits Syst. Video Technol., vol. 97, pp. 1025–1029,
Oct. 1999.

[20] J. Chana and P. Agathoklis, ―Adaptive motion estimating for
efficient video compression,‖ in Conf. Rec. 29th Asilomar
Conf. Signals, Systemsand Computers, vol. 1, 1996, pp. 690–
693,1996.

[21] D.-W. Kim, J.-S. Choi, and J.-T. Kim, ―Adaptive
motion estimation based on spatio–temporal
correlation,‖ Signal Process.: ImageCommun. vol. 13,
pp. 161–170, 1998.

[22] J. Chalidabhongse and C.-C. Jay Kuo, ―Fast motion
vector estimation using multiresolution-spatio–
temporal correlations,‖ IEEE Trans. CircuitsSyst.
Video Technol., vol. 7, pp. 477–488, 1997.

Sanipini Venkata Kiran et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,

© 2010, IJARCS All Rights Reserved 418

Short Biodata for the Author

S. VenkataKiran is currently pursuing his

M.Tech degree from ECE Department of

Godavari Institute of Engineering and

Technology, Rajahmundry, AP, India. He has

completed his B. Tech from Aditya Engineering College,

Surampalem, AP, India.

P. Darwin is currently working as Associate

Professor of ECE Department in Godavari

Institute of Engineering and Technology, Rajahmundry, AP,

India .He received his M. Tech. degree from University

College of Engineering, JNTUK, Kakinada, A.P, India. He

has seventeen years of experience in teaching and industry.

Ch. Srinivasa Rao is currently working as

Professor of ECE & Principal of Sri Sai Aditya Institute of

Science & Technology, Surampalem, AP, India. He has six

International Journal publications and four International

Conference papers to his credit. He obtained his Ph. D

degree from University College of Engineering, JNTUK,

Kakinada, A.P, India and received M. Tech. degree from the

same institute. He has twenty years of experience in

teaching. He is a fellow of IETE.

