
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 661

ISSN No. 0976-5697

Efficient Frequent Itemset Discovery Method in Uncertain Data
Sandhya Rawat* and Ajit Kumar Shrivastav

Department of C.S.E

Truba Engineering College

Bhopal, M.P, India

sandhya.turba@gmail.com, and ajit.s@trubainstitute.ac.in.

Sanjaydeep Singh Lodhi
Department of C.S.E (Software System)
Samrat Ashok Technological Institute

Vidisha, M.P., India
sanjayeng.mt@rediffmail.com

Abstract: Frequent itemset mining, the task of finding sets of items that frequently occur together in a dataset, has been at the core of the field of

data mining for the past sixteen years. In that time, the size of datasets has grown much faster than has the ability of existing algorithms to

handle those datasets. Consequently, improvements are needed. In this thesis, we take the classic algorithm for the problem, A Priori, and

improve it quite significantly by introducing what we call a vertical sort. We then use the large dataset, web documents to contrast our

performance against several state-of-the-art implementations and demonstrate not only equal efficiency with lower memory usage at all support

thresholds, but also the ability to mine support thresholds as yet un-attempted in literature. We also indicate how we believe this work can be

extended to achieve yet more impressive results.

Keywords- Uncertain Databases, Frequent Itemset Mining, Probabilistic Frequent Itemsets.

I. INTRODUCTION

The world around us is full of information and

contemporary computer systems are allowing us to gather

and store that information at an astounding rate. However,

our ability to process that information lags far beyond our

abilities as gatherers. Most of the truly amazing problems of

our time are rooted in extracting the meaningful patterns

from datasets so large as to have previously been

unfathomable. The human genome has been sequenced but

it is still uncertain which parts of it cause us to express

particular phenotypes. Hundreds of weather stations around

the world have been collecting information about local

climate for decades, but it is still difficult to predict the

effects of human activities. The universe beyond our

stratosphere and the Internet within it are mysterious places,

although we have terabytes of data collected from each. This

paper is about data mining: the process of extracting the

meaningful information from these massive datasets. Even

quite defining what is a meaningful relationship among data

is non-trivial; but, that said, determining sets of items that

co-occur frequently throughout the data is a very good start.

This task, frequent itemset mining, is a problem that was

suggested sixteen years ago and is still at the heart of the

field [1] and [2].

In particular, we have started with the classic algorithm

for this problem and introduced a conceptually simple idea

of sorting the consequences of which have permitted us to

outperform all of the available state-of-the-art

implementations. The A Priori algorithm naturally lends

itself to sorting because, without any loss in efficiency,

every step of it can be designed to either create or preserve

sort order. We have exploited this by introducing a sort at

the beginning and using it quite thoroughly throughout. This

allows us to improve every step of the original algorithm.

II. BACKGROUND

Before explaining the implications of our sorting, let us

first review the problem definition and the previous attempts

at addressing the problem especially including the task of

frequent itemset mining was first introduced. Informally

speaking, the objective of it is to detect those items in a

dataset that commonly co-occur, preferably indicating with

what frequency. To achieve this, one fixes a threshold, s,

and then strives to output all those sets of items that co-

occur at least s times. Consider the rows of Table below. If

one sets the threshold to be s = 2, then table: Example of a

dataset in which {a, c} is frequent, designed to illustrate the

frequent itemset mining problem

Transaction 0 a b c

Transaction 1 a d

Transaction 2 a c d e f

the sets {{}, {a}, {c}, {a, c}} are frequent because the

sets can be found in at least two rows of the table. To make

this more precise, we consider a universe, U (which is {a, b,

c, d, e, f} in Table). Then, a dataset, D, is defined to be a

multiset of transactions and a transaction, t, is defined to be

a subset of U.1 (In the example, Transaction 1 = {a, d} is

one such transaction and Transaction 0, Transaction 1, and

Transaction 2 make up the dataset.) An itemset is likewise

defined to be a subset of U. The support of an itemset i is

supp (i) = |{t ∈ D : i ⊆ t}|

With these definitions, the objective of frequent itemset

mining is to determine, given a dataset D and a fixed

support threshold, 0 < s ≤ |D|, the set of frequent itemsets: {i

: supp (i) ≥ s}.

These frequent itemsets potentially imply new

knowledge about the dataset. The task, although simple to

describe, is quite difficult for two primary reasons: |D| is

typically massive and the set of possible itemsets, |P (U)|, is

exponential in size, so the problem search space is likewise

exponential. In fact, given a fixed size k, even determining if

there exists a set of k items that co-occur in the dataset s

times is difficult: it was demonstrated to be NP-complete.

Here, we are trying to discover all frequent sets, regardless

of size, which is clearly at least as difficult (otherwise we

could use the output to determine if a frequent set of size k

exists). So, all algorithms for this problem need to emphasis

an effective search space pruning strategy or other heuristics

to address the NP-completeness of the problem.

javascript:void(0);

Sandhya Rawat et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,661-667

© 2010, IJARCS All Rights Reserved 662

Since the publication of A Priori, many subsequent ideas

have been proposed. However, the majority of these interest

us very little because they do not address the real trouble of

frequent itemset mining: scalability. There are lots of cute

ideas that use various novel data structures or some tricks to

try to reduce the scope of the problem, but if they merely

improve the execution time on a dataset that already fits in

memory, their value is questionable. Frequent itemset

mining is not a real-time system, so the precise speed of

execution is not especially important. What is important is

the ability to process datasets that are otherwise simply too

large from which to extract meaningful patterns. As such,

we focus our discussion on those proposals that are designed

to address the issue of scalability [2] and [5].

A. Tries:

The first of these advances on which we focus is the

idea, as introduced of storing candidates in a trie. A trie

(alternatively known as a prefix tree) is a data structure

developed which takes advantage of redundancies in the

keys that are placed in the tree.

This approach also has the potential to break down on

large datasets if the data structure no longer fits in main

memory. The depth of the trie is equal to the length of those

candidates. To fit all nodes into main memory requires those

candidates to overlap quite substantially. When they do not,

the effect of the trie’s heavily pointer-based makeup is very

poor localization and cache utilization. Consequently,

traversing it causes one to thrash on disk and the efficiency

of the structure is quickly consumed by I/O costs [1] and

[3].

B. Maximal Pruning:

As such, it became apparent that to make this trie idea

scalable, one would need to reduce the number of candidates

created. Precisely this was achieved where demonstrates the

sub-optimality of the A Priori Principle and shows that a

more rigorous study of the frequent itemsets can produce

pruning that is superior to that based strictly on the A Priori

Principle. However, perhaps because it is more costly or

perhaps rather just because of the timing of his publication,

the idea has not really taken off. So, it is still generally

accepted that the A Priori algorithm produces quite

excessively many candidates and the algorithm has mostly

fallen out of the forefront of literature in favour for

FPGrowth [3] and [6].

C. FPGrowth:

In recent, Han et al. introduce a quite novel algorithm to

solve the frequent itemset mining problem. They adapt the

idea of a trie to the set of transactions rather than candidates.

In so doing, they effectively compress the dataset D with the

hope that it will fit entirely in main memory. Each

transaction is inserted into the trie in its most-frequent-first

order and at each node of the trie is stored a support counter.

When a new transaction t is inserted, a path of size |t| is

traced; the count at each node along this path is

incremented. Thus, inserting the transaction involves

updating |t| support counts. Additionally, a linked list is

maintained between all nodes sharing the same label. In this

way, one can quickly find all paths that involve the same

item. Next, the trie is mined recursively to extract the

frequent itemsets. By following the linked-list of nodes

labeled by the least-frequent item, one retrieves all paths

involving that item. Then a new conditional prefix tree can

be built by copying and then modifying the original tree. All

paths whose leaves are not labeled with the least-frequent

item are removed, this least-frequent item is itself removed,

duplicate paths are merged, and the trie is resorted based on

the new conditional frequencies. This creates a trie with the

same structure as the original tree, but conditioned on the

presence of the least frequent item. So, the procedure can be

repeatedly recursively from here until the trie consists of

nothing but a root node denoting the empty set. This yields

all frequent itemsets involving the least-frequent item. The

procedure is then repeated for the second-least-frequent

item, third-least frequent item, and so on to extract from the

trie all frequent itemsets.

The data structure is quite cute and appears to eliminate

the construction of candidates entirely. Indeed, experimental

results have demonstrated consistently that it significantly

outperforms A Priori. However, the story changes when the

dataset is quite large because it suffers the same

consequences as did the trie of candidates.

Even building the trie becomes extremely costly, to the

point that it is remarked that the dominant percentage of

execution time is that of constructing the trie. Consequently,

on truly large datasets, the FPGrowth algorithm fails even to

initialize.

However, when first introduced, it was remarked that the

algorithm scales quite elegantly. Indeed, if one has already

constructed a trie, then the cost of mining it is roughly the

same independent of the support threshold (except that the

recursion produces more intermediate trees). However,

FPGrowth has a preprocessing step that prunes out all

infrequent 1-itemsets prior to building the trie.

Consequently, it does not scale quite in the same way as

described in literature because as the support threshold is

dropped, the number of items pruned from the dataset is

decreased and each of these newly unpruned items needs

appear in the trie. So the trie needs be reconstructed and the

size of it inflates. By what factor is dependent on the

distribution of the dataset and the amount by which the

support threshold is reduced. But since the algorithm has

performed so admirably when it fits in main memory, it has

been adopted for widespread study.

The result is that the algorithm has become highly

optimised, with recent advances that include 64-bit

processing and reconstructions of the data structure to

improve its locality on disk; cache consciousness; and

auxilliary data structures to speed-up the bottleneck of the

algorithm. As such, FPGrowth runs quite well on some

benchmarks datasets, but the potential for improvement is

likely somewhat limited. Also, the heavy reliance on the

trie’s underlying pointers limits how efficient the I/O can

become. Furthermore, despite the claim that FPGrowth does

not produce any candidates, Goethals demonstrates that it

can, in fact, be considered a candidate based algorithm and

later show that the probability of any particular candidate

being generated is actually higher in FPGrowth than in the

classical A Priori algorithm.

Another general problem with the FPGrowth algorithm

is that it lacks the incremental behaviour of A Priori,

something that builds fault tolerance into the algorithm.

Should A Priori crash after producing, say, its frequent 5-

itemsets, the algorithm can be easily restarted from that

point by beginning with the construction of candidate 6-

Sandhya Rawat et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,661-667

© 2010, IJARCS All Rights Reserved 663

itemsets, rather than starting from the beginning. However,

because FPGrowth operates by means of recursion, there are

very few points at which the program can save state in

anticipation of failure.

Should one wish to begin analysis of the frequent

itemsets as they are produced, it would be much more

difficult with the FPGrowth algorithm because the

preliminary results are all focussed on just the few particular

items that happen to be least frequent in the dataset.

Contrasted with the preliminary results of A Priori, frequent

itemsets up to a particular size but involving all items, this

offers one little analytical power until the algorithm has

entirely completed.

Consequently, despite its profound success on smaller

benchmark datasets, we call into question the scalability and

use on larger datasets of the FPGrowth algorithm [4] and

[7].

Attempts at Scaling A Priori introduced a variant that

partitions the dataset into components that can be mined

within main memory. The idea is that if one partitions the

dataset into m parts and an itemset appears in p% of all the

transactions, then it must appear in at least (p/m)% of the

transactions of at least one of the partitions. So, mining each

partition of the dataset with a threshold of p/m will produce

all the frequent itemsets. However, this approach incurs the

cost of falsely proclaiming some infrequent itemsets as

frequent.

Savasere et al. resolve this by, as a post-processing step,

verifying all the frequent itemsets that they have produced.

However, Buehrer et al. did a case study that demonstrated

the number of these falsely proclaimed frequent itemsets

grows exponentially as the support threshold is decreased.

Consequently, for large datasets this is not an effective

approach [8].

Another widely adopted approach is to mine a subset of

the frequent itemsets from which the entire set can be

derived. The most notable of these subsets is the set of

closed frequent itemsets. However, no implementation has

demonstrated a scope-reduced approach to be especially

effective on really large datasets. Therefore, we retain the

original problem definition.

The majority of algorithms and implementations that do

not use the above ideas including the demonstrably most

efficient implementations yet developed attempt to scale by

extending their data structures into virtual memory.

However, there are drawbacks to this. In executing the

implementations that rely on this strategy one sees that the

processor remains largely idle as it waits for the data

structure to be swapped in and out of main memory. As

such, it does not matter much how efficient the algorithm is

because the execution time is dominated by the cost of this

swapping. In addition, the virtual memory strategy is not

very robust in the scenario that there is another (user or

operating system) process running because they then need

compete for memory resources. As the competing processes

require more resources, less is left available for the frequent

itemset mining implementation and its performance is

further degraded [9] and [10] and [11].

Thus, we instead use explicit file handling to manage our

memory resources in our adaption of the A Priori algorithm.

III. PROPOSED TECHNIQUES

The proposed of our method is the classical A Priori

algorithm. Our contributions are in providing novel scalable

approaches for each building block. We start by counting

the support of every item in the dataset and sort them in

decreasing order of their frequencies. Next, we sort each

transaction with respect to the frequency order of their

items. We call this a horizontal sort. We also keep the

generated candidate itemsets in horizontal sort. Furthermore,

we are careful to generate the candidate itemsets in sorted

order with respect to each other. We call this a vertical sort.

When itemsets are both horizontally and vertically

sorted, we call them fully sorted. As we show, generating

sorted candidate itemsets (for any size k), both horizontally

and vertically, is computationally free and maintaining that

sort order for all subsequent candidate and frequent itemsets

requires careful implementation, but no cost in execution

time. This conceptually simple sorting idea has implications

for every subsequent part of the algorithm. In particular, as

we show, having transactions, candidates, and frequent

itemsets all adhering to the same sort order has the

following advantages:

i. Generating candidates can be done very efficiently

ii. Indices on lists of candidates can be efficiently

generated at the same time as are the candidates

iii. Groups of similar candidates can be compressed

together and counted simultaneously

iv. Candidates can be compared to transactions in

linear time

v. Better locality of data and cache-consciousness is

achieved

In addition to that, our particular choice of sort order

(that is, sorting the items least frequent first) allows us to

with minimal cost entirely skip the candidate pruning phase.

A. Candidate Generation:

Candidate generation is the important first step in each

iteration of A Priori. Typically it has not been considered a

bottleneck in the algorithm and so most of the literature

focusses on the support counting. However, it is worth

pausing on that for a moment. Modern processors usually

manage about thirty million elementary instructions per

second. We devote considerable attention to improving the

efficiency of candidate generation, too.

B. Efficiently Generating Candidates:

Let us consider generating candidates of an arbitrarily

chosen size, k + 1. We will assume that the frequent k-

itemsets are sorted both horizontally and vertically. The (k −

1) × (k − 1) technique generates candidate (k+1) itemsets by

taking the union of frequent k-itemsets. If the first k−1

elements are identical for two distinct frequent k-itemsets, fi

and fj , we call them near-equal and denote their near-

equality by fi = fj . Then, classically, every frequent itemset

fi is compared to every fj and the candidate fi ∪ fj is

generated whenever fi = fj. However, our method needs only

ever compare one frequent itemset, fi, to the one

immediately following it, fi+1.

A crucial observation is that near-equality is transitive

because the equality of individual items is transitive. So, if fi

= fi+1, . . . , fi+m-2 = fi+m-1 then we know that (∀ j, k) < m, fi+j =

fi+k.

Sandhya Rawat et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,661-667

© 2010, IJARCS All Rights Reserved 664

Recall also that the frequent k-itemsets are fully sorted

(that is, both horizontally and vertically), so all those that

are near-equal appear contiguously. This sorting taken

together with the transitivity of near-equality is what our

method exploits.

In this way, we successfully generate all the candidates

with a single pass over the list of frequent k-itemsets as

opposed to the classical nested-loop approach. Strictly

speaking, it might seem that our processing of

candidates effectively causes extra passes, but it can be

shown using the A Priori Principle that m is typically much

less than the number of frequent itemsets. First, it remains to

be shown that our one pass does not miss any potential

candidates. Consider some candidate c = {ia, . . . , ik}. If it is

a valid candidate, then by the A Priori Principle, fi = {i1, . . .

, ik-2, ik-1} and fj = {i1, . . . , ik-2, ik} are frequent. Then,

because of the sort order that is required as a precondition,

the only frequent itemsets that would appear between fi and

fj are those that share the same (k − 2)-prefix as they do.

The method described above merges together all pairs of

frequent itemsets that appear contiguously with the same (k

− 2)-prefix. Since this includes both fi and fj , c = fi ∪ fj

must have been discovered.

C. Candidate Compression:

Let us return to the concern of generating

candidates from each group of m near-equal frequent k-

itemsets. Since each group of candidates share in

common their first k−1 items, we need not repeat the

information. As such, we can compress the candidates into a

super-candidate. This new super-candidate still represents

all candidates, but takes up much less space in

memory and on disk. More importantly, however, we can

now count these candidates simultaneously. Suppose we

wanted to extract the individual candidates from a super-

candidate.

Ideally this will not be done at all, but it is necessary

after support counting if at least one of the candidates is

frequent because the frequent candidates need to form a list

of uncompressed frequent itemsets. Fortunately, this can be

done quite easily. The candidates in a super-candidate c =

(cw, cs) all share the same prefix: the first k − 1 items of cs.

They all have a suffix of size

(k + 1) − (k − 1) = 2

By iterating in a nested loop over the last cw-k+1 items of

cs, we produce all possible suffices in sorted order. These,

each appended to the prefix, form the

candidates in c.

D. Indexing:

There is another nice consequence of generating sorted

candidates in a single pass: we can efficiently build an index

for retrieving them. In our implementation and in the

following example, we build this index on the least frequent

item of each candidate (k + 1)-itemset.

The structure is a simple two-dimensional array.

Candidates of a particular size k+1 are stored in a sequential

file, and this array provides information about offsetting that

file. Because of the sort on the candidates, all those that

begin with each item I appear contiguously. The exact

location in the file of the first such candidate is given by the

ith element in the first row of the array. The ith element in

the second row of the array indicates how many bytes are

consumed by all (k + 1)-candidates that begin with item i.

E. On the Precondition of Sorting:

Most of our method is dependent on maintaining the

precondition that lists of frequent itemsets and lists of

candidates remain sorted, both vertically and horizontally.

This is a very feasible requirement. The first candidates that

are produced contain only two items. If one considers the

list of frequent items, call it F1, then the candidate 2-

itemsets are the entire cross-product F1 × F1. If we sort F1

first, then a standard nested loop will induce the order we

want. That is to say, we can join the first item to the second,

then the third, then the fourth, and so on until the end of the

list. Then, we can join the second item to the third, the

fourth, and so on as well. Continuing this pattern, one will

produce the entire cross-product in fully sorted order. This

initial sort is a cost we readily incur for the improvements it

permits.

After this stage, there are only two things we ever do:

generate candidates and detect frequent itemsets by counting

the support of the candidates. Because in the latter we only

ever delete never add nor will change itemsets from the

sorted list of candidates, the list of frequent itemsets retain

the original sort order. Regarding the former, there is a nice

consequence of generating candidates in our linear one pass

fashion: the set of candidates is itself sorted in the same

order as the frequent itemsets from which they were derived.

Recall that candidates are generated in groups of near-equal

frequent k-itemsets. Because the frequent k-itemsets are

already sorted, these groups, relative to each other, are too.

As such, if the candidates are generated from a

sequential scan of the frequent itemsets, they will inherit the

sort order with respect to at least the first k−1 items. Then,

only the ordering on the kth and (k+1) th items (those not

shared among the members of the group) need be ensured.

That two itemsets are near-equal can be equivalently stated

as that the itemsets differ on only the kth item. So, by

ignoring the shared items we can consider a group of near-

equal itemsets as just a list of single items. Since the

itemsets were sorted and this new list is made of only those

items which differentiated the itemsets, the new list inherits

the sort order. Thus, we use exactly the same method as with

F1 to ensure that each group of candidates is sorted on the

last two items. Consequently, the entire list of candidate (k +

1)-itemsets is fully sorted.

F. Candidate Pruning:

When A Priori was first proposed, its performance was

explained by its effective candidate generation. What makes

the candidate generation so effective is its aggressive

candidate pruning. We believe that this can be omitted

entirely while still producing nearly the same set of

candidates. Stated alternatively, after our particular method

of candidate generation, there is little value in running a

candidate pruning step.

In recent, the probability that a candidate is generated is

shown to be largely dependent on its best testset that is, the

least frequent of its subsets. Classical A Priori has a very

effective candidate generation technique because if any

itemset c \ {ci} for 0 ≤ i ≤ k is infrequent the candidate c =

{c0, . . . , ck} is pruned from the search space. By the A

Priori Principle, the best testset is guaranteed to be included

Sandhya Rawat et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,661-667

© 2010, IJARCS All Rights Reserved 665

among these. However, if one routinely picks the best testset

when first generating the candidate, then the pruning phase

is redundant.

In our method, on the other hand, we generate a

candidate from two particular subsets, fk = c \ {ck} and fk-1 =

c \ {ck-1}. If either of these happens to be the best testset,

then there is little added value in a candidate pruning phase

that checks the other k−2 size k subsets of c. Because of our

least-frequent-first sort order, f0 and f1 correspond exactly to

the subsets missing the most frequent items of all those in c.

We observed that usually either f0 or f1 is the best testset.

We are also not especially concerned about generating a

few extra candidates, because they will be indexed and

compressed and counted simultaneously with others, so if

we do not retain a considerable number of prunable

candidates by not pruning, then we do not do especially

much extra work in counting them, anyway.

G. Support Counting:

It was recognized quite early that A Priori would suffer a

bottleneck in comparing the entire set of transactions to the

entire set of candidates for every iteration of the algorithm.

Consequently, most A Priori -based research has focused on

trying to address this bottleneck. Certainly, we need to

address this bottleneck as well. The standard approach is to

build a prefix trie on all the candidates and then, for each

transaction, check the trie for each of the k-itemsets present

in the transaction. But this suffers two traumatic

consequences on large datasets. First, if the set of candidates

is large and not heavily overlapping, the trie will not fit in

memory and then the algorithm will thrash about exactly as

do the other tree-based algorithms. Second, generating every

possible itemset of size k from a transaction t = {t0, . . . , tw-

1} produces possibilities. Even after pruning

infrequent items with a support threshold of 10%, w still

ranges so high.

H. Index-Based Support Counting:

Instead, we again exploit the vertical sort of our

candidates using the index we built when we generated

them. To process that same transaction t above, we consider

each of the w − k first items in t. For each such item ti we

use the index to retrieve the contiguous block of candidates

whose first element is ti. Then, we compare the suffix of t

that is {ti, ti+1, . . . , tw-1} to each of those candidates.

I. Counting with Compressed Candidates:

This affords appreciable performance gains. All the

candidates compressed into a super-candidate c = (cw, cs)

share their first k−1 elements. So, for a transaction t, if the

first k−1 items of cs are not strictly a subset of t, then we can

immediately jump over candidates.

None could possibly be contained in t. Suppose instead

that the first k−1 items of cs are strictly a subset of a

transaction t. How do we increment the support counts of

exactly those candidates in c which are contained in t.

J. On Locality and Data Independence:

It is fair to assume that any efficient and complete

solution to the frequent itemset mining problem on a

general, very large dataset is going to require data structures

that do not fit entirely in memory. Recent work on FP-

Growth accepts this inevitability for very large datasets and

focusses on restructuring the trie and reordering the input

such that it anticipates relying heavily on a virtual memory

based solution. In particular, they aim to reuse a block of

data so much as possible before swapping it out again. Our

method naturally does this because it operates in a

sequential manner on prefaces of sorted lists. Work that is to

be done on a particular contiguous block of the data

structure is entirely done before the next block is used,

because the algorithm proceeds in sorted order and the

blocks are sorted. Consequently, we fully process blocks of

data before we swap them out. Our method probably also

performs decently well in terms of cache utilisation because

contiguous blocks of itemsets will be highly similar given

that they are fully sorted. Perhaps of even more importance

is the independence of itemsets.

The candidates of a particular size, so long as their order

is ultimately maintained in the output to the next iteration,

can be processed together in blocks in whatever order

desired. The lists of frequent itemsets can be similarly

grouped into blocks, so long as care is taken to ensure that a

block boundary occurs between two itemsets fi and fi+1

only when they are not near-equal. The indices can also be

grouped into blocks with the additional advantage that this

can be done in a manner corresponding exactly to how the

candidates were grouped. As such, all of the data structures

can be partitioned quite easily, which lends itself quite

nicely to the prospects of parallelization and fault tolerance.

K. Full View of Vertically-Sorted A Priori:

The changes that have come out of this sorting are far-

reaching and have impacted every phase of the algorithm.

Algorithm: The revised Vertically-Sorted A Priori

algorithm
INPUT: A dataset D and a support threshold s

OUTPUT: All sets that appear in at least s transactions of D F is set of

frequent itemsets

C is set of candidates

C ← U

Scan database to count support of each item in C

Add frequent items to F

Sort F least-frequent-first (LFF) by support (using quicksort)

Output F

for all f ∈ F, sorted LFF do

for all g ∈ F, supp(g) ≥ supp(f), sorted LFF do

Add {f, g} to C

end for

Update index for item f

end for

while |C| > 0 do

{Count support}

for all t ∈ D do

for all i ∈ t do

RelevantCans ← using index, compressed cans from file that start with i

for all CompressedCans ∈ RelevantCans do

if First k − 2 elements of CompressedCans are in t then

Use compressed candidate support counting technique to update

appropriate

support counts

end if

end for

end for

end for

Add frequent candidates to F

Output F

Clear C

{Generate candidates}

Start ← 0

for 1 ≤ i ≤ |F| do

if i == |F| OR fi is not near-equal to fi−1 then

Create super candidate from fstart to fi−1 and update index as necessary

Start ← i

Sandhya Rawat et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,661-667

© 2010, IJARCS All Rights Reserved 666

end if

end for

{Candidate pruning—not needed!}

Clear F

Reset hash

end while

IV. RESULTS

To test the ideas put forth here, we created an

implementation of making frequent itemset in uncertain

data. What is interesting in this study is really only the

performance on large datasets because the size of the dataset

is what makes this an interesting problem. The 2GB of web

documents data fits nicely into this category, being the

largest dataset commonly used throughout publications on

this problem. All other benchmark datasets are quite a lot

smaller and not relevant here. We could generate our own

large dataset against which to also run tests, but the value of

doing so is minimal. The data in the web documents set

comes from a real domain and so is meaningful.

Constructing a random dataset will not necessarily

portray the true performance characteristics of the

algorithms. At any rate, the other implementations were

designed with knowledge of web documents, so it is a fairer

comparison. For these reasons, we used other datasets only

for the purpose of verifying the correctness of our output.

We compare the performance of this implementation

against a wide selection of the best available

implementations of various frequent itemset mining

algorithms. In previous works are state-of-the-art

implementations of the A Priori algorithm which use a trie

structure to store candidates. In order to maximally remove

uncontrolled variability in the comparisons the choice of

programming language is important. The correctness of our

implementation’s output is compared to the output of these

other algorithms. Since they were all developed for the FIMI

workshop and all agree on their output, it seems a fair

assumption that they can serve correctly as an‖answer key‖.

But, nonetheless, boundary condition checking was a

prominent component during development.

Figure 1: Number of Itemsets in Web documents at Various Support

Thresholds

We test each implementation on webdocs with support

thresholds of 22%, 16%, 11%, 8%, and 6%. Reducing the

support threshold in this manner increases the size of the

problem as observed in Figure 1 and Figure 2.The number

of candidate itemsets is implementation-dependent and in

general will be less than the number in the figure.

Figure 2: Size of web documents dataset with noise (infrequent 1-itemsets)

removed, graphed against the number of frequent itemsets.

However, because our implementation uses explicit file-

handling instead of relying on virtual memory, the memory

requirements are effectively constant. However, those of all

the other algorithms grow beyond the limits of memory and

consequently cannot initialize. Without the data structures,

the programs must obviously abort.

V. CONCLUSION AND FUTURE WORKS

Frequent itemset mining is an important problem within

the field of data mining, but in previous years of algorithmic

development has yet to produce an implementation that can

mine sufficiently low support thresholds on even a modest-

sized the gigabytes of data in many real-world applications.

By introducing a vertical sort at the onset of the classic A

Priori algorithm, significant improvements can be made.

Besides simply having better localized data storage, the

candidate generation can be done more efficiently and an

indexing structure can be built on the candidates at the same

time. Candidates can be compressed to improve comparison

times as well as data structure size, and support counting is

thus speeded up. The cumulative effect of these

improvements is observable in the implementation that we

created.

Furthermore, whereas other algorithms in the literature

are being fully optimized already, we believe that this work

opens up many avenues for yet more pronounced

improvement. Given the locality and independence of the

data structures used, they can be partitioned quite easily. We

intend to do precisely that in parallelizing the algorithm.

Extending the index to more than one item to improve its

precision on larger sets of candidates will likely also yield

significant improvement. And, of course, all the

optimization tricks used in other implementations can be

incorporated here. The result of this research is that the

frequent itemset mining problem can now be extended too

much lower support thresholds (or, equivalently, larger

effective file sizes) than have even yet been considered.

Sandhya Rawat et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,661-667

© 2010, IJARCS All Rights Reserved 667

These improvements came at no cost to performance, as

evidenced by the fact that our implementation matched the

state of the art competitors while consuming much less

memory. Prior to this work, it has been assumed that the

performance of A Priori is inhibitively slow. But, in fact,

this work reestablishes it as the frontier algorithm.

VI. REFERENCES

[1]. Toon Calders, Calin Garboni and Bart Goethals,

―Approximation of Frequentness Probability of Itemsets in

Uncertain Data‖, 2010 IEEE International Conference on

Data Mining, pp-749-754.

[2]. Bin Fu, Eugene Fink and Jaime G. Carbonell, ―Analysis of

Uncertain Data: Tools for Representation and Processing‖,

IEEE 2008.

[3]. Mohamed Anis Bach Tobji, Boutheina Ben Yaghlane, and

Khaled Mellouli, ―A New Algorithm for Mining Frequent

Itemsets from Evidential Databases‖, Proceedings of

IPMU'08, pp. 1535{1542.

[4]. Biao Qin, Yuni Xia, Sunil Prabhakar and Yicheng Tu, ―A

Rule-Based Classification Algorithm for Uncertain Data‖,

IEEE 2009 International Conference on Data Engineering,

pp- 1633-1640.

[5]. Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz,

Florian Verhein, Andreas Zuefle, ―Probabilistic Frequent

Itemset Mining in Uncertain Databases‖, 15th ACM

SIGKDD Conf. on Knowledge Discovery and Data Mining

(KDD'09), Paris, France, 2009.

[6]. Gregory Buehrer, Srinivasan Parthasarathy, and Amol

Ghoting. Out-ofcore frequent pattern mining on a commodity

pc. In KDD ’06: Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data

mining, New York, NY, USA, 2006, pp 86–95.

[7]. Toon Calders. Deducing bounds on the frequency of

itemsets. In EDBT Workshop DTDM Database Techniques

in Data Mining, 2002.

[8]. DPVG06] Nele Dexters, Paul W. Purdom, and Dirk Van

Gucht. A probability analysis for candidate-based frequent

itemset algorithms. In SAC ’06: Proceedings of the 2006

ACM symposium on Applied computing, New York, NY,

USA, 2006. ACM, pp541–545.

[9]. Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–

499, 1960.

[10]. Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy,

Daehyun Kim, Anthony Nguyen, Yen-Kuang Chen, and

Pradeep Dubey. Cacheconscious frequent pattern mining on

a modern processor. In Klemens B¨ohm, Christian S. Jensen,

Laura M. Haas, Martin L. Kersten, Per-Ake Larson, and

Beng Chin Ooi, editors, VLDB ACM, 2005, pp 577–588.

[11]. Mohammed J. Zaki. Scalable algorithms for association

mining. IEEE Trans. on Knowl. and Data Eng., 12(3):pp

372–390, 2000.

Short Biodata of the Author

Miss. Sandhya Rawat presently pursuing M.Tech

of the department, Computer Science & Engineering at

Truba Engineering College, Bhopal, M.P., India. She has

received her B.E degree from ITM university, Gwalior

(M.P) in 2008 she has pursuing M.Tech(CSE) in Truba

Engineering College, Bhopal,(M.P), India. Research Interest

includes Data Mining Techniques, Clustering Techniques,

Cryptography and Network Security. Email:

sandhya.turba@gmail.com

Mr. Ajit Kumar Shrivastav presently working as

head of the department, Computer Science & Engineering at

Truba Engineering College, Bhopal, M.P., India. He has

more than 10 year teaching experience presenting he is a

Research interest in network security and data mining

includes Efficient Frequent Itemset Discovery Method in

Uncertain Data in data mining. Emial-

ajit.s@trubainstitute.ac.in.

Mr. Sanjaydeep Singh Lodhi presently pursuing

M.Tech of the department, Computer Application (Software

System) at Samrat Ashok Technological Institute, Vidisha,

M.P., India. He has received her B.E degree from ITM

university, Gwalior (M.P) in 2008. He has one year teaching

experience presenting he is a Research scholar in Computer

Application from SATI, Vidisha, (M.P) and Rajeev Gandhi

prodhyogiki Vishwavidhyalaya, university , (M.P), India.

Research Interest includes Data Mining Techniques, Web

Mining and Network Security. E-mail:

sanjayeng.mt@rediffmail.com.

