
Volume 2, No. 5, Sept-Oct 2011 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved    661 

ISSN No. 0976-5697 

Efficient Frequent Itemset Discovery Method in Uncertain Data 
Sandhya Rawat* and Ajit Kumar Shrivastav 

Department of C.S.E 

Truba Engineering College 

Bhopal, M.P, India 

sandhya.turba@gmail.com, and ajit.s@trubainstitute.ac.in. 

Sanjaydeep Singh Lodhi 
Department of C.S.E (Software System) 
Samrat Ashok Technological Institute 

Vidisha, M.P., India 
sanjayeng.mt@rediffmail.com 

Abstract: Frequent itemset mining, the task of finding sets of items that frequently occur together in a dataset, has been at the core of the field of 

data mining for the past sixteen years. In that time, the size of datasets has grown much faster than has the ability of existing algorithms to 

handle those datasets. Consequently, improvements are needed. In this thesis, we take the classic algorithm for the problem, A Priori, and 

improve it quite significantly by introducing what we call a vertical sort. We then use the  large dataset, web documents to contrast our 

performance against several state-of-the-art implementations and demonstrate not only equal efficiency with lower memory usage at all support 

thresholds, but also the ability to mine support thresholds as yet un-attempted in literature. We also indicate how we believe this work can be 

extended to achieve yet more impressive results. 
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I. INTRODUCTION 

The world around us is full of information and 

contemporary computer systems are allowing us to gather 

and store that information at an astounding rate. However, 

our ability to process that information lags far beyond our 

abilities as gatherers. Most of the truly amazing problems of 

our time are rooted in extracting the meaningful patterns 

from datasets so large as to have previously been 

unfathomable. The human genome has been sequenced but 

it is still uncertain which parts of it cause us to express 

particular phenotypes. Hundreds of weather stations around 

the world have been collecting information about local 

climate for decades, but it is still difficult to predict the 

effects of human activities. The universe beyond our 

stratosphere and the Internet within it are mysterious places, 

although we have terabytes of data collected from each. This 

paper is about data mining: the process of extracting the 

meaningful information from these massive datasets. Even 

quite defining what is a meaningful relationship among data 

is non-trivial; but, that said, determining sets of items that 

co-occur frequently throughout the data is a very good start. 

This task, frequent itemset mining, is a problem that was 

suggested sixteen years ago and is still at the heart of the 

field [1] and [2]. 

In particular, we have started with the classic algorithm 

for this problem and introduced a conceptually simple idea 

of sorting the consequences of which have permitted us to 

outperform all of the available state-of-the-art 

implementations. The A Priori algorithm naturally lends 

itself to sorting because, without any loss in efficiency, 

every step of it can be designed to either create or preserve 

sort order. We have exploited this by introducing a sort at 

the beginning and using it quite thoroughly throughout. This 

allows us to improve every step of the original algorithm. 

II. BACKGROUND 

Before explaining the implications of our sorting, let us 

first review the problem definition and the previous attempts 

at addressing the problem especially including the task of  

 

frequent itemset mining was first introduced. Informally 

speaking, the objective of it is to detect those items in a 

dataset that commonly co-occur, preferably indicating with 

what frequency. To achieve this, one fixes a threshold, s, 

and then strives to output all those sets of items that co-

occur at least s times. Consider the rows of Table below. If 

one sets the threshold to be s = 2, then table: Example of a 

dataset in which {a, c} is frequent, designed to illustrate the 

frequent itemset mining problem 
 

Transaction 0    a             b          c 

Transaction 1    a             d 

Transaction 2    a             c           d        e       f 
 

the sets {{}, {a}, {c}, {a, c}} are frequent because the 

sets can be found in at least two rows of the table. To make 

this more precise, we consider a universe, U (which is {a, b, 

c, d, e, f} in Table). Then, a dataset, D, is defined to be a 

multiset of transactions and a transaction, t, is defined to be 

a subset of U.1 (In the example, Transaction 1 = {a, d} is 

one such transaction and Transaction 0, Transaction 1, and 

Transaction 2 make up the dataset.) An itemset is likewise 

defined to be a subset of U. The support of an itemset i is 

supp (i) = |{t ∈  D : i ⊆ t}| 

With these definitions, the objective of frequent itemset 

mining is to determine, given a dataset D and a fixed 

support threshold, 0 < s ≤ |D|, the set of frequent itemsets: {i 

: supp (i) ≥ s}. 

These frequent itemsets potentially imply new 

knowledge about the dataset. The task, although simple to 

describe, is quite difficult for two primary reasons: |D| is 

typically massive and the set of possible itemsets, |P (U)|, is 

exponential in size, so the problem search space is likewise 

exponential. In fact, given a fixed size k, even determining if 

there exists a set of k items that co-occur in the dataset s 

times is difficult: it was demonstrated to be NP-complete. 

Here, we are trying to discover all frequent sets, regardless 

of size, which is clearly at least as difficult (otherwise we 

could use the output to determine if a frequent set of size k 

exists). So, all algorithms for this problem need to emphasis 

an effective search space pruning strategy or other heuristics 

to address the NP-completeness of the problem. 
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Since the publication of A Priori, many subsequent ideas 

have been proposed. However, the majority of these interest 

us very little because they do not address the real trouble of 

frequent itemset mining: scalability. There are lots of cute 

ideas that use various novel data structures or some tricks to 

try to reduce the scope of the problem, but if they merely 

improve the execution time on a dataset that already fits in 

memory, their value is questionable. Frequent itemset 

mining is not a real-time system, so the precise speed of 

execution is not especially important. What is important is 

the ability to process datasets that are otherwise simply too 

large from which to extract meaningful patterns. As such, 

we focus our discussion on those proposals that are designed 

to address the issue of scalability [2] and [5]. 

A. Tries: 

The first of these advances on which we focus is the 

idea, as introduced of storing candidates in a trie. A trie 

(alternatively known as a prefix tree) is a data structure 

developed which takes advantage of redundancies in the 

keys that are placed in the tree.  

This approach also has the potential to break down on 

large datasets if the data structure no longer fits in main 

memory. The depth of the trie is equal to the length of those 

candidates. To fit all nodes into main memory requires those 

candidates to overlap quite substantially. When they do not, 

the effect of the trie’s heavily pointer-based makeup is very 

poor localization and cache utilization. Consequently, 

traversing it causes one to thrash on disk and the efficiency 

of the structure is quickly consumed by I/O costs [1] and 

[3]. 

B. Maximal Pruning: 

As such, it became apparent that to make this trie idea 

scalable, one would need to reduce the number of candidates 

created. Precisely this was achieved where demonstrates the 

sub-optimality of the A Priori Principle and shows that a 

more rigorous study of the frequent itemsets can produce 

pruning that is superior to that based strictly on the A Priori 

Principle. However, perhaps because it is more costly or 

perhaps rather just because of the timing of his publication, 

the idea has not really taken off. So, it is still generally 

accepted that the A Priori algorithm produces quite 

excessively many candidates and the algorithm has mostly 

fallen out of the forefront of literature in favour for 

FPGrowth [3] and [6]. 

C. FPGrowth: 

In recent, Han et al. introduce a quite novel algorithm to 

solve the frequent itemset mining problem. They adapt the 

idea of a trie to the set of transactions rather than candidates. 

In so doing, they effectively compress the dataset D with the 

hope that it will fit entirely in main memory. Each 

transaction is inserted into the trie in its most-frequent-first 

order and at each node of the trie is stored a support counter. 

When a new transaction t is inserted, a path of size |t| is 

traced; the count at each node along this path is 

incremented. Thus, inserting the transaction involves 

updating |t| support counts. Additionally, a linked list is 

maintained between all nodes sharing the same label. In this 

way, one can quickly find all paths that involve the same 

item. Next, the trie is mined recursively to extract the 

frequent itemsets. By following the linked-list of nodes 

labeled by the least-frequent item, one retrieves all paths 

involving that item. Then a new conditional prefix tree can 

be built by copying and then modifying the original tree. All 

paths whose leaves are not labeled with the least-frequent 

item are removed, this least-frequent item is itself removed, 

duplicate paths are merged, and the trie is resorted based on 

the new conditional frequencies. This creates a trie with the 

same structure as the original tree, but conditioned on the 

presence of the least frequent item. So, the procedure can be 

repeatedly recursively from here until the trie consists of 

nothing but a root node denoting the empty set. This yields 

all frequent itemsets involving the least-frequent item. The 

procedure is then repeated for the second-least-frequent 

item, third-least frequent item, and so on to extract from the 

trie all frequent itemsets. 

The data structure is quite cute and appears to eliminate 

the construction of candidates entirely. Indeed, experimental 

results have demonstrated consistently that it significantly 

outperforms A Priori. However, the story changes when the 

dataset is quite large because it suffers the same 

consequences as did the trie of candidates. 

Even building the trie becomes extremely costly, to the 

point that it is remarked that the dominant percentage of 

execution time is that of constructing the trie. Consequently, 

on truly large datasets, the FPGrowth algorithm fails even to 

initialize. 

However, when first introduced, it was remarked that the 

algorithm scales quite elegantly. Indeed, if one has already 

constructed a trie, then the cost of mining it is roughly the 

same independent of the support threshold (except that the 

recursion produces more intermediate trees). However, 

FPGrowth has a preprocessing step that prunes out all 

infrequent 1-itemsets prior to building the trie. 

Consequently, it does not scale quite in the same way as 

described in literature because as the support threshold is 

dropped, the number of items pruned from the dataset is 

decreased and each of these newly unpruned items needs 

appear in the trie. So the trie needs be reconstructed and the 

size of it inflates. By what factor is dependent on the 

distribution of the dataset and the amount by which the 

support threshold is reduced. But since the algorithm has 

performed so admirably when it fits in main memory, it has 

been adopted for widespread study.  

The result is that the algorithm has become highly 

optimised, with recent advances that include 64-bit 

processing and reconstructions of the data structure to 

improve its locality on disk; cache consciousness; and 

auxilliary data structures to speed-up the bottleneck of the 

algorithm. As such, FPGrowth runs quite well on some 

benchmarks datasets, but the potential for improvement is 

likely somewhat limited. Also, the heavy reliance on the 

trie’s underlying pointers limits how efficient the I/O can 

become. Furthermore, despite the claim that FPGrowth does 

not produce any candidates, Goethals demonstrates that it 

can, in fact, be considered a candidate based algorithm and 

later show that the probability of any particular candidate 

being generated is actually higher in FPGrowth than in the 

classical A Priori algorithm. 

Another general problem with the FPGrowth algorithm 

is that it lacks the incremental behaviour of A Priori, 

something that builds fault tolerance into the algorithm. 

Should A Priori crash after producing, say, its frequent 5-

itemsets, the algorithm can be easily restarted from that 

point by beginning with the construction of candidate 6-
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itemsets, rather than starting from the beginning. However, 

because FPGrowth operates by means of recursion, there are 

very few points at which the program can save state in 

anticipation of failure. 

Should one wish to begin analysis of the frequent 

itemsets as they are produced, it would be much more 

difficult with the FPGrowth algorithm because the 

preliminary results are all focussed on just the few particular 

items that happen to be least frequent in the dataset. 

Contrasted with the preliminary results of A Priori, frequent 

itemsets up to a particular size but involving all items, this 

offers one little analytical power until the algorithm has 

entirely completed. 

Consequently, despite its profound success on smaller 

benchmark datasets, we call into question the scalability and 

use on larger datasets of the FPGrowth algorithm [4] and 

[7].  

Attempts at Scaling A Priori introduced a variant that 

partitions the dataset into components that can be mined 

within main memory. The idea is that if one partitions the 

dataset into m parts and an itemset appears in p% of all the 

transactions, then it must appear in at least (p/m)% of the 

transactions of at least one of the partitions. So, mining each 

partition of the dataset with a threshold of p/m will produce 

all the frequent itemsets. However, this approach incurs the 

cost of falsely proclaiming some infrequent itemsets as 

frequent. 

Savasere et al. resolve this by, as a post-processing step, 

verifying all the frequent itemsets that they have produced. 

However, Buehrer et al. did a case study that demonstrated 

the number of these falsely proclaimed frequent itemsets 

grows exponentially as the support threshold is decreased. 

Consequently, for large datasets this is not an effective 

approach [8]. 

Another widely adopted approach is to mine a subset of 

the frequent itemsets from which the entire set can be 

derived. The most notable of these subsets is the set of 

closed frequent itemsets. However, no implementation has 

demonstrated a scope-reduced approach to be especially 

effective on really large datasets. Therefore, we retain the 

original problem definition. 

The majority of algorithms and implementations that do 

not use the above ideas including the demonstrably most 

efficient implementations yet developed attempt to scale by 

extending their data structures into virtual memory. 

However, there are drawbacks to this. In executing the 

implementations that rely on this strategy one sees that the 

processor remains largely idle as it waits for the data 

structure to be swapped in and out of main memory. As 

such, it does not matter much how efficient the algorithm is 

because the execution time is dominated by the cost of this 

swapping. In addition, the virtual memory strategy is not 

very robust in the scenario that there is another (user or 

operating system) process running because they then need 

compete for memory resources. As the competing processes 

require more resources, less is left available for the frequent 

itemset mining implementation and its performance is 

further degraded [9] and [10] and [11]. 

Thus, we instead use explicit file handling to manage our 

memory resources in our adaption of the A Priori algorithm. 

 

 

III. PROPOSED TECHNIQUES 

The proposed of our method is the classical A Priori 

algorithm. Our contributions are in providing novel scalable 

approaches for each building block. We start by counting 

the support of every item in the dataset and sort them in 

decreasing order of their frequencies. Next, we sort each 

transaction with respect to the frequency order of their 

items. We call this a horizontal sort. We also keep the 

generated candidate itemsets in horizontal sort. Furthermore, 

we are careful to generate the candidate itemsets in sorted 

order with respect to each other. We call this a vertical sort.  

When itemsets are both horizontally and vertically 

sorted, we call them fully sorted. As we show, generating 

sorted candidate itemsets (for any size k), both horizontally 

and vertically, is computationally free and maintaining that 

sort order for all subsequent candidate and frequent itemsets 

requires careful implementation, but no cost in execution 

time. This conceptually simple sorting idea has implications 

for every subsequent part of the algorithm. In particular, as 

we show, having transactions, candidates, and frequent 

itemsets all adhering to the same sort order has the 

following advantages:  

i. Generating candidates can be done very efficiently 

ii. Indices on lists of candidates can be efficiently 

generated at the same time as are the candidates 

iii. Groups of similar candidates can be compressed 

together and counted simultaneously 

iv. Candidates can be compared to transactions in 

linear time 

v. Better locality of data and cache-consciousness is 

achieved 

In addition to that, our particular choice of sort order 

(that is, sorting the items least frequent first) allows us to 

with minimal cost entirely skip the candidate pruning phase. 

A. Candidate Generation: 

Candidate generation is the important first step in each 

iteration of A Priori. Typically it has not been considered a 

bottleneck in the algorithm and so most of the literature 

focusses on the support counting. However, it is worth 

pausing on that for a moment. Modern processors usually 

manage about thirty million elementary instructions per 

second. We devote considerable attention to improving the 

efficiency of candidate generation, too. 

B. Efficiently Generating Candidates: 

Let us consider generating candidates of an arbitrarily 

chosen size, k + 1. We will assume that the frequent k-

itemsets are sorted both horizontally and vertically. The (k − 

1) × (k − 1) technique generates candidate (k+1) itemsets by 

taking the union of frequent k-itemsets. If the first k−1 

elements are identical for two distinct frequent k-itemsets, fi 

and fj , we call them near-equal and denote their near-

equality by fi = fj . Then, classically, every frequent itemset 

fi is compared to every fj and the candidate fi ∪  fj is 

generated whenever fi = fj. However, our method needs only 

ever compare one frequent itemset, fi, to the one 

immediately following it, fi+1. 

A crucial observation is that near-equality is transitive 

because the equality of individual items is transitive. So, if fi 

= fi+1, . . . , fi+m-2 = fi+m-1 then we know that (∀ j, k) < m, fi+j = 

fi+k. 
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Recall also that the frequent k-itemsets are fully sorted 

(that is, both horizontally and vertically), so all those that 

are near-equal appear contiguously. This sorting taken 

together with the transitivity of near-equality is what our 

method exploits. 

In this way, we successfully generate all the candidates 

with a single pass over the list of frequent k-itemsets as 

opposed to the classical nested-loop approach. Strictly 

speaking, it might seem that our processing of  

candidates effectively causes extra passes, but it can be 

shown using the A Priori Principle that m is typically much 

less than the number of frequent itemsets. First, it remains to 

be shown that our one pass does not miss any potential 

candidates. Consider some candidate c = {ia, . . . , ik}. If it is 

a valid candidate, then by the A Priori Principle, fi = {i1, . . . 

, ik-2, ik-1} and fj = {i1, . . . , ik-2, ik} are frequent. Then, 

because of the sort order that is required as a precondition, 

the only frequent itemsets that would appear between fi and 

fj are those that share the same (k − 2)-prefix as they do. 

The method described above merges together all pairs of 

frequent itemsets that appear contiguously with the same (k 

− 2)-prefix. Since this includes both fi and fj , c = fi ∪  fj 

must have been discovered. 

C. Candidate Compression: 

Let us return to the concern of generating   

candidates from each group of m near-equal frequent k-

itemsets. Since each group of   candidates share in 

common their first k−1 items, we need not repeat the 

information. As such, we can compress the candidates into a 

super-candidate. This new super-candidate still represents 

all    candidates, but takes up much less space in 

memory and on disk. More importantly, however, we can 

now count these candidates simultaneously.  Suppose we 

wanted to extract the individual candidates from a super-

candidate. 

Ideally this will not be done at all, but it is necessary 

after support counting if at least one of the candidates is 

frequent because the frequent candidates need to form a list 

of uncompressed frequent itemsets. Fortunately, this can be 

done quite easily. The candidates in a super-candidate c = 

(cw, cs) all share the same prefix: the first k − 1 items of cs. 

They all have a suffix of size  

(k + 1) − (k − 1) = 2 

By iterating in a nested loop over the last cw-k+1 items of 

cs, we produce all possible suffices in sorted order. These, 

each appended to the prefix, form the 

candidates in c. 

D. Indexing: 

There is another nice consequence of generating sorted 

candidates in a single pass: we can efficiently build an index 

for retrieving them. In our implementation and in the 

following example, we build this index on the least frequent 

item of each candidate (k + 1)-itemset. 

The structure is a simple two-dimensional array. 

Candidates of a particular size k+1 are stored in a sequential 

file, and this array provides information about offsetting that 

file. Because of the sort on the candidates, all those that 

begin with each item I appear contiguously. The exact 

location in the file of the first such candidate is given by the 

ith element in the first row of the array. The ith element in 

the second row of the array indicates how many bytes are 

consumed by all (k + 1)-candidates that begin with item i. 

E. On the Precondition of Sorting: 

Most of our method is dependent on maintaining the 

precondition that lists of frequent itemsets and lists of 

candidates remain sorted, both vertically and horizontally. 

This is a very feasible requirement. The first candidates that 

are produced contain only two items. If one considers the 

list of frequent items, call it F1, then the candidate 2-

itemsets are the entire cross-product F1 × F1. If we sort F1 

first, then a standard nested loop will induce the order we 

want. That is to say, we can join the first item to the second, 

then the third, then the fourth, and so on until the end of the 

list. Then, we can join the second item to the third, the 

fourth, and so on as well. Continuing this pattern, one will 

produce the entire cross-product in fully sorted order. This 

initial sort is a cost we readily incur for the improvements it 

permits. 

After this stage, there are only two things we ever do: 

generate candidates and detect frequent itemsets by counting 

the support of the candidates. Because in the latter we only 

ever delete never add nor will change itemsets from the 

sorted list of candidates, the list of frequent itemsets retain 

the original sort order. Regarding the former, there is a nice 

consequence of generating candidates in our linear one pass 

fashion: the set of candidates is itself sorted in the same 

order as the frequent itemsets from which they were derived. 

Recall that candidates are generated in groups of near-equal 

frequent k-itemsets. Because the frequent k-itemsets are 

already sorted, these groups, relative to each other, are too.  

As such, if the candidates are generated from a 

sequential scan of the frequent itemsets, they will inherit the 

sort order with respect to at least the first k−1 items. Then, 

only the ordering on the kth and (k+1) th items (those not 

shared among the members of the group) need be ensured. 

That two itemsets are near-equal can be equivalently stated 

as that the itemsets differ on only the kth item. So, by 

ignoring the shared items we can consider a group of near-

equal itemsets as just a list of single items. Since the 

itemsets were sorted and this new list is made of only those 

items which differentiated the itemsets, the new list inherits 

the sort order. Thus, we use exactly the same method as with 

F1 to ensure that each group of candidates is sorted on the 

last two items. Consequently, the entire list of candidate (k + 

1)-itemsets is fully sorted. 

F. Candidate Pruning: 

When A Priori was first proposed, its performance was 

explained by its effective candidate generation. What makes 

the candidate generation so effective is its aggressive 

candidate pruning. We believe that this can be omitted 

entirely while still producing nearly the same set of 

candidates. Stated alternatively, after our particular method 

of candidate generation, there is little value in running a 

candidate pruning step. 

In recent, the probability that a candidate is generated is 

shown to be largely dependent on its best testset that is, the 

least frequent of its subsets. Classical A Priori has a very 

effective candidate generation technique because if any 

itemset c \ {ci} for 0 ≤ i ≤ k is infrequent the candidate c = 

{c0, . . . , ck} is pruned from the search space. By the A 

Priori Principle, the best testset is guaranteed to be included 
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among these. However, if one routinely picks the best testset 

when first generating the candidate, then the pruning phase 

is redundant. 

In our method, on the other hand, we generate a 

candidate from two particular subsets, fk = c \ {ck} and fk-1 = 

c \ {ck-1}. If either of these happens to be the best testset, 

then there is little added value in a candidate pruning phase 

that checks the other k−2 size k subsets of c. Because of our 

least-frequent-first sort order, f0 and f1 correspond exactly to 

the subsets missing the most frequent items of all those in c. 

We observed that usually either f0 or f1 is the best testset. 

We are also not especially concerned about generating a 

few extra candidates, because they will be indexed and 

compressed and counted simultaneously with others, so if 

we do not retain a considerable number of prunable 

candidates by not pruning, then we do not do especially 

much extra work in counting them, anyway. 

G. Support Counting: 

It was recognized quite early that A Priori would suffer a 

bottleneck in comparing the entire set of transactions to the 

entire set of candidates for every iteration of the algorithm. 

Consequently, most A Priori -based research has focused on 

trying to address this bottleneck. Certainly, we need to 

address this bottleneck as well. The standard approach is to 

build a prefix trie on all the candidates and then, for each 

transaction, check the trie for each of the k-itemsets present 

in the transaction. But this suffers two traumatic 

consequences on large datasets. First, if the set of candidates 

is large and not heavily overlapping, the trie will not fit in 

memory and then the algorithm will thrash about exactly as 

do the other tree-based algorithms. Second, generating every 

possible itemset of size k from a transaction t = {t0, . . . , tw-

1} produces  possibilities. Even after pruning 

infrequent items with a support threshold of 10%, w still 

ranges so high. 

H. Index-Based Support Counting: 

Instead, we again exploit the vertical sort of our 

candidates using the index we built when we generated 

them. To process that same transaction t above, we consider 

each of the w − k first items in t. For each such item ti we 

use the index to retrieve the contiguous block of candidates 

whose first element is ti. Then, we compare the suffix of t 

that is {ti, ti+1, . . . , tw-1} to each of those candidates. 

I. Counting with Compressed Candidates: 

This affords appreciable performance gains. All the 

candidates compressed into a super-candidate c = (cw, cs) 

share their first k−1 elements. So, for a transaction t, if the 

first k−1 items of cs are not strictly a subset of t, then we can 

immediately jump over  candidates. 

None could possibly be contained in t. Suppose instead 

that the first k−1 items of cs are strictly a subset of a 

transaction t. How do we increment the support counts of 

exactly those candidates in c which are contained in t. 

J. On Locality and Data Independence: 

It is fair to assume that any efficient and complete 

solution to the frequent itemset mining problem on a 

general, very large dataset is going to require data structures 

that do not fit entirely in memory. Recent work on FP-

Growth accepts this inevitability for very large datasets and 

focusses on restructuring the trie and reordering the input 

such that it anticipates relying heavily on a virtual memory 

based solution. In particular, they aim to reuse a block of 

data so much as possible before swapping it out again. Our 

method naturally does this because it operates in a 

sequential manner on prefaces of sorted lists. Work that is to 

be done on a particular contiguous block of the data 

structure is entirely done before the next block is used, 

because the algorithm proceeds in sorted order and the 

blocks are sorted. Consequently, we fully process blocks of 

data before we swap them out. Our method probably also 

performs decently well in terms of cache utilisation because 

contiguous blocks of itemsets will be highly similar given 

that they are fully sorted. Perhaps of even more importance 

is the independence of itemsets.  

The candidates of a particular size, so long as their order 

is ultimately maintained in the output to the next iteration, 

can be processed together in blocks in whatever order 

desired. The lists of frequent itemsets can be similarly 

grouped into blocks, so long as care is taken to ensure that a 

block boundary occurs between two itemsets fi and fi+1 

only when they are not near-equal. The indices can also be 

grouped into blocks with the additional advantage that this 

can be done in a manner corresponding exactly to how the 

candidates were grouped. As such, all of the data structures 

can be partitioned quite easily, which lends itself quite 

nicely to the prospects of parallelization and fault tolerance. 

K. Full View of Vertically-Sorted A Priori: 

The changes that have come out of this sorting are far-

reaching and have impacted every phase of the algorithm. 

Algorithm: The revised Vertically-Sorted A Priori 

algorithm 
INPUT: A dataset D and a support threshold s 

OUTPUT: All sets that appear in at least s transactions of D F is set of 

frequent itemsets 

C is set of candidates 

C ← U 

Scan database to count support of each item in C 

Add frequent items to F 

Sort F least-frequent-first (LFF) by support (using quicksort) 

Output F 

for all f ∈  F, sorted LFF do 

for all g ∈  F, supp(g) ≥ supp(f), sorted LFF do 

Add {f, g} to C 

end for 

Update index for item f 

end for 

while |C| > 0 do 

{Count support} 

for all t ∈  D do 

for all i ∈  t do 

RelevantCans ← using index, compressed cans from file that start with i 

for all CompressedCans ∈  RelevantCans do 

if First k − 2 elements of CompressedCans are in t then 

Use compressed candidate support counting technique to update 

appropriate 

support counts 

end if 

end for 

end for 

end for 

Add frequent candidates to F 

Output F 

Clear C 

{Generate candidates} 

Start ← 0 

for 1 ≤ i ≤ |F| do 

if i == |F| OR fi is not near-equal to fi−1 then 

Create super candidate from fstart to fi−1 and update index as necessary 

Start ← i 
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end if 

end for 

{Candidate pruning—not needed!} 

Clear F 

Reset hash 

end while 

IV. RESULTS 

To test the ideas put forth here, we created an 

implementation of making frequent itemset in uncertain 

data.  What is interesting in this study is really only the 

performance on large datasets because the size of the dataset 

is what makes this an interesting problem. The 2GB of web 

documents data fits nicely into this category, being the 

largest dataset commonly used throughout publications on 

this problem. All other benchmark datasets are quite a lot 

smaller and not relevant here. We could generate our own 

large dataset against which to also run tests, but the value of 

doing so is minimal. The data in the web documents set 

comes from a real domain and so is meaningful.  

Constructing a random dataset will not necessarily 

portray the true performance characteristics of the 

algorithms. At any rate, the other implementations were 

designed with knowledge of web documents, so it is a fairer 

comparison. For these reasons, we used other datasets only 

for the purpose of verifying the correctness of our output. 

We compare the performance of this implementation 

against a wide selection of the best available 

implementations of various frequent itemset mining 

algorithms. In previous works are state-of-the-art 

implementations of the A Priori algorithm which use a trie 

structure to store candidates. In order to maximally remove 

uncontrolled variability in the comparisons the choice of 

programming language is important. The correctness of our 

implementation’s output is compared to the output of these 

other algorithms. Since they were all developed for the FIMI 

workshop and all agree on their output, it seems a fair 

assumption that they can serve correctly as an‖answer key‖. 

But, nonetheless, boundary condition checking was a 

prominent component during development. 
 

 

Figure 1: Number of Itemsets in Web documents at Various Support 

Thresholds 

We test each implementation on webdocs with support 

thresholds of 22%, 16%, 11%, 8%, and 6%. Reducing the 

support threshold in this manner increases the size of the 

problem as observed in Figure 1 and Figure 2.The number 

of candidate itemsets is implementation-dependent and in 

general will be less than the number in the figure. 
 

 

Figure 2: Size of web documents dataset with noise (infrequent 1-itemsets) 

removed, graphed against the number of frequent itemsets. 

However, because our implementation uses explicit file-

handling instead of relying on virtual memory, the memory 

requirements are effectively constant. However, those of all 

the other algorithms grow beyond the limits of memory and 

consequently cannot initialize. Without the data structures, 

the programs must obviously abort. 

V.    CONCLUSION AND FUTURE WORKS 

Frequent itemset mining is an important problem within 

the field of data mining, but in previous years of algorithmic 

development has yet to produce an implementation that can 

mine sufficiently low support thresholds on even a modest-

sized the gigabytes of data in many real-world applications. 

By introducing a vertical sort at the onset of the classic A 

Priori algorithm, significant improvements can be made. 

Besides simply having better localized data storage, the 

candidate generation can be done more efficiently and an 

indexing structure can be built on the candidates at the same 

time. Candidates can be compressed to improve comparison 

times as well as data structure size, and support counting is 

thus speeded up. The cumulative effect of these 

improvements is observable in the implementation that we 

created. 

Furthermore, whereas other algorithms in the literature 

are being fully optimized already, we believe that this work 

opens up many avenues for yet more pronounced 

improvement. Given the locality and independence of the 

data structures used, they can be partitioned quite easily. We 

intend to do precisely that in parallelizing the algorithm. 

Extending the index to more than one item to improve its 

precision on larger sets of candidates will likely also yield 

significant improvement. And, of course, all the 

optimization tricks used in other implementations can be 

incorporated here. The result of this research is that the 

frequent itemset mining problem can now be extended too 

much lower support thresholds (or, equivalently, larger 

effective file sizes) than have even yet been considered.  
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These improvements came at no cost to performance, as 

evidenced by the fact that our implementation matched the 

state of the art competitors while consuming much less 

memory. Prior to this work, it has been assumed that the 

performance of A Priori is inhibitively slow. But, in fact, 

this work reestablishes it as the frontier algorithm. 
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