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Abstract: Software reliability plays a vital role in the emerging field of digitalization. Everyone wants cost and time-efficient software along with 
reliability which is achieved using CBS. In CBS, if the individual components are computed for a large or complicated system, then integration 
becomes complex which results in difficulty in predicting CBSR. To solve this problem several computational intelligence techniques such as 
SVM, ACO, PSO, ABC, GA, Neural network, are used but in our paper, we have focused on optimization techniques Fuzzy, ACO, ABC, PSO. 

These techniques help in estimating and predicting reliability models for CBS. Also, we have done, an assessment and comparat ive analysis 
based on a literature review of ABC, ACO, and PSO that have also been presented, for choosing suitable parameters for software reliability 
modeling.  
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1 INTRODUCTION 

The evolution of technology has led to the increasing 

complexity and size of software systems. As a consequence, 

the earlier approach of designing software from scratch has 

become inefficient from cost, quality, and productivity 
perspective. This has necessitated the need for different 

development methodologies that are reusable, flexible, and 

reliable. One such methodology is Component-based 

software development. It focuses on the creation and use of 

individual components that are independent and reusable. 

Individual components with different functionalities are 

integrated to develop software. This approach offers the 

advantages of cost efficiency, time efficiency, increased 

reliability, modularity, and performance.  

According to ISO/IEC 9126-1, the quality of software 

systems is estimated parameters like functionality, efficiency, 
testability, usability, reliability, etc. Reliability is one such 

critical aspect and can be defined as the ability of software to 

tolerate faults during the lifetime of its use. Apart from 

ISO/IEC 9126-1, some other reliability evaluation models 

like Boehm’s Model, FURPS model, and Dromey’s model 

have also been developed. Most of these models focus on 

common parameters like fault tolerance, reliability 

compliance, recoverability, and maturity for reliability 

estimation. Software reliability focuses on three main 

activities: 

1. Error prevention 

2. Fault detection and removal 

3. Other reliability increasing measures 

The traditional reliability estimation methods focused on 

software as a single monolithic structure. Hence, it is difficult 

to apply the same principles as these ignore the interactions 

between components of a software system in a Component-

Based Software (CBS) system. The traditional methods are 

unable to incorporate the operational and integration 
uncertainty of a CBS environment. This requires the 

inclusion of factors like an individual component failure, 

component behavior, and interaction between components. 

The interdependencies between components increase system 

complexity leading to difficulties in reliability estimation. 

Hence, CBS systems emphasize on two major elements: 

1. Individual component reliability 

2. Integrated system reliability 

1.1 Individual component selection and component 

assembly 

The process of component selection is used to determine the 

‘fitness’ of an existing component for use in a new system. 

This problem arises when some components with the same 

functionality already exist and the developers need to choose 

one that best suits their requirement. A systematic approach 

for component selection was proposed by Wanyama and 

Homayoun: 

1. Defining the evaluation criteria, including 

functionality and component interaction, after 

incorporating stakeholder requirements. 

2. Searching COTS products 
3. Applying a filter to search results using the set of 

stakeholder requirements to develop a list of suitable 

COTS components. 

4. Evaluating shortlisted COTS components in detail, 

including their properties and other criteria-based 

assessments 

5. Analyzing evaluation results and selecting the 

COTS components with the best fit 

 

Component assembly 

The process of component assembly involves the integration 
of components according to a defined architecture. The 

architecture defines how independently developed 

components can be integrated to work coherently while 

fulfilling requirements. Sometimes, the architect may not be 

able to access the source code and needs to work with only 

the interfaces supplied by the component developer. Hence, 

assembly becomes a challenging task with uncertainties about 
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interaction patterns, behaviors, and unexpected results arising 

out of complex integration. 

 

The architecture used for component assembly is one of the 

most important factors while designing real-world 
applications, as even best-designed components may not be 

able to deliver a world-class system if the architecture isn’t 

able to utilize them cohesively. However, the benefits offered 

by reliable, reusable components are still helpful in reducing 

the design, implementation, and deployment time for a 

software system. 

 

The reliability of large software systems relies on 

interconnection parameters like data translation, resource 

sharing, and synchronization. As the size of software systems 

grows, developers and architects need to identify and handle 

these dependencies to resolve the complexity and 
mismatches. Most programming languages haven’t 

recognized these interconnection issues and the need to 

separate functional and integration aspects of components. 

Integration techniques should be able to handle software 

reconfiguration dynamically and flexibly [1]. 

 

1.2 Factors affecting the reliability of CBS 

The performance of a reliability estimation model is 

contingent on its ability to consider the appropriate 

parameters for measurement. Hence, we have curated a list of 

relevant factors that affect the reliability of CBS systems, 
after careful consideration of available research in the field 

and unique characteristics of CBS systems. 

1. Complexity: Complexity of an application is closely tied 

to the complexity of individual components in CBS 

systems and their interdependencies. It increases with 

the increase in number of components invariably and it 

becomes difficult to estimate reliability. This can lead to 

unreliable, cumbersome systems and causes a drag on 

operations of organizations that manage multiple 

applications with a multi-layered infrastructure.  

2. Reusability: As individual components are reused across 

multiple systems with slight or no modifications, the 
component becomes more reliable due to repeated 

testing of the component throughout the development of 

multiple systems. Components with high cohesion and 

low coupling are highly recommended for reuse. It can 

be concluded that higher reusability results in higher 

quality and performance predictability. 

3. Flexibility: This can be viewed as the software’s ability 

to adapt to conditions and requirements and can be 

measured as the number of changes that can be made 

without altering the basic functionality of the software. 

This plays a major role in CBS development as existing 
components are often reused with slight modifications to 

adapt to the requirements of different systems. The 

higher the flexibility of a component, the lower is the 

maintenance cost. Flexibility also safeguards against 

future changes in architecture and requirements, thereby 

increasing reliability. 

4. Inter-operability: A component can communicate with 

other components and share information without major 

user intervention. As the technology industry develops 

new tools and technologies at a rapid pace, this is 

increasingly important for the seamless integration of 
components. It is directly related to the cost of a system 

and can be determined by the interfaces and 

communication methods used for component 

interactions [2].   

From above, we can conclude that number of reusable 

components is vital to Component-Based Software 

Reliability (CBSR). In CBS systems, if the individual 

components are computed for a large or complicated system, 

then integration becomes complex which results in difficulty 

in predicting CBSR. To solve this problem several 

computational intelligence techniques such as SVM, ACO, 

PSO, ABC, GA, Neural network, are used. These techniques 

help in estimating and predicting reliability models for CBS. 

 
The usefulness of a reliability model is dependent upon a 

number of factors, including the methodology used and 

parameters considered for evaluation. It is imperative to 

identify what methodology is most effective for different 

types of software systems. A reliability prediction model that 

worked well for traditional monolithic development 

approaches is not suited for reliability estimation of software 

developed using component-based software development 

approach. Soft computing based reliability estimation models 

have shown promising results for small and large scale 

systems in computer, medical and mechanical software. 
Further, within models used for CBS reliability prediction, 

there is a need to identify the right parameters that have a 

larger impact. 

 

A literature review of reliability prediction using soft 

computing methods shows that it is being increasingly used 

for CBS development. Soft computing algorithms like Ant 

Colony Optimization (ACO), Particle Swarm Optimization 

(PSO) and Fuzzy logic have shown promising results while 

increasing response time and reducing errors. Further 

research on estimating Component-based software reliability 

(CBSR) using soft computing techniques may help in 
improving the understanding of relationship between 

software reliability and component-based factors like 

complexity, reusability, dependency etc. 
 

2 RELATED WORK 

Section 2 is focused on review of previous work carried out 

by researchers in the field of various optimization approaches 

for the estimation of reliability. In the field of CBS, there is a 

dearth of successful reliability prediction models, to get rid of 

this problem, computational intelligence techniques are 

introduced to get accurate results. Some of the previous work 

of researchers is shown below based on computational 
techniques like Fuzzy Logic, ACO, ABC, PSO, GA, etc.   

Diwaker et al. [3] assessed different computational 

techniques such as Neural-Network, Fuzzy Logic, Particle 

Swarm Optimization, Genetic Algorithm, Support Vector 

Machine, Ant Colony Optimization, and Artificial Bee 

Colony and their ability to predict reliability using various 

parameters. According to the author, the concepts discussed 

can be used to predict the reliability of software as well as 

hardware. 

Diwaker et al. [4] suggested a new, soft computing based 

model for predicting the reliability of Component-based 
software using parallel and series reliability models. The 

model is evaluated against Fuzzy Logic and Particle Swarm 

Optimization. The authors show that their proposed model 
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can predict reliability with a lower error rate than Fuzzy 

Logic and Particle Swarm Optimization. 

Wolski et al. [5] proposed a quality measurement framework 

based on Boehm and McCall models within GEANT research 

and innovation project. The project was started and funded by 
the EU to make it self-financing in the future. The framework 

emphasizes the reuse of existing data and takes an innovative, 

research-oriented perspective to projects while applying 

specific characteristics of the networking environment. 

Authors’ hybrid approach of combining process and product-

related measurements stems from basic quality models and 

enables comparison between internal and external projects in 

a broad view.  

Singh et al. [6] used object-oriented (OO) metrics, given by 

Chidamber and Kemerer, to examine ANN’s applicability for 

software quality prediction. A testing effort was predicted 

using ANN and publically available NASA data was used to 
find testing effort’s relationship with object-oriented metrics. 

In more than 72.5% of the cases, an estimated testing effort 

was within 35% of actual effort, with a MARE of 0.25. 

According to the author, studies with large data sets need to 

be carried out to determine the model’s relevance. 

Khoshgoftaar et al. [7] focused on neural network-based 

software quality models by training two neural networks, one 

with the set of components selected by multiple regression 

model selection and other with the entire set of principal 

components. A big commercial system was used to select 

multiple regression quality models from principal 
components of software metrics. According to the author, two 

quality measures were selected from five software systems 

for comparing the models and understanding the relationship 

between software quality and complexity metrics. 

Sedigh-Ali et al. [8] suggested a graph-based model for 

component selection from a family of components. The 

system formed from the selected components should satisfy 

non-functional requirements. According to the author, it was 

ensured by identifying the set of components which can 

together provide the best tradeoff among desire metrics. It 

was found to minimize uncertainty in the cost and quality of 

component-based systems. 
Feurer et al. [9] used Bayesian optimization to develop an 

Automated Machine Learning (autoML) framework for data 

and feature preprocessing, algorithm choice, and 

hyperparameters tuning. Existing autoML methods were 

refined for robustness using i) a meta-learning component 

that uses past data sets for Bayesian optimization and ii) an 

ensemble construction component for combining the most 

suitable methods from Bayesian optimizer. The meta-learning 

feature ensures that the system improves over time as the 

number of datasets increases. According to the author, the 

proposed framework outperformed an existing autoML 
system in most cases and different variations of the 

framework with and without the two key additions showed 

that meta-learning had a bigger impact on optimization. 

Mendoza et al. [10] developed AutoNet for providing feed-

forward neural networks that could tune itself automatically. 

According to the author, results obtained from combining 

Auto-sklearn and Auto-Net were better than when using each 

of them alone. 

Sagar et. al [11] defined reusability metrics for black-box 

components in component-based development by identifying 

relevant factors and their relationships. According to the 
author, reusability was estimated using Fuzzy logic on real-

time applications. Developers can reduce maintenance efforts 

by using highly reusable components. 

Sangwan et al. [12] described a model based on soft 

computing for measuring software reusability levels. They 

used soft computing techniques like neural networks, fuzzy 
logic, and neuro-fuzzy. The model used four parameters, 

namely i) Interface Complexity, ii) Understandability of 

software, iii) Documentation quality, and iv) Changeability. 

According to the author, the model trained using the neuro-

fuzzy technique predicted good results with MARE 22% and 

MRE 0.007% in comparison to purely fuzzy logic or purely 

neural network-based techniques. 

Diwaker and Tomar [13] used metrics like efficiency, 

dependency, and density of components for an assessment of 

the Ant Colony Optimization methodology to determine 

reusable components that lead to increased reliability. 

According to the author, MATLAB results showed that 
increase in component efficiency was accompanied by 

increase in component density. 

 

Diwaker and Tomar [14] defined a Particle Swarm 

Optimization based fitness function using functionality, 

average execution time, interface complexity, which can be 

considered as CBS system metrics. According to the authors, 

sub-parameters like interaction among components, 

reusability, and resource usage were also used. 

 

Diwaker and Tomar [15] evaluated Artificial Bee Colony 
(ABC), Ant Colony Optimization (ACO), and Particle Swarm 

Optimization (PSO) based models, using CBS system 

reusability metrics to determine the approach which yields 

best results. According to the author, parameters like the 

number of functions, lines, and reusable components were 

used for evaluation using MATLAB. 
  

3 COMPUTATIONAL INTELLIGENCE 

TECHNIQUES 
 

Several computational techniques are used these days to get 

an accurate and cost-efficient result with CBSE. For solving 

large and complicated problems, optimization applications 

are incorporated with optimization techniques such as Fuzzy 

logic, SVM, ABC, ACO, and PSO. This paper mainly focuses 

on the introduction of techniques fuzzy logic, ACO, ABC, 

PSO, and their assessment concerning CBSRe   

Fuzzy Logic 

Fuzzy Logic when combined with mining helps in predicting 

software reliability. The working of fuzzy logic is divided 

into 4 four parts: “fuzzifier, inference engine, rules, and 
defuzzifier”. Fuzzy logic represents the analytic result based 

on faults depicted in failed software.  The system takes faulty 

data from faulty software as input data to predict faults in the 

future as output. In predicting software reliability, fuzzy logic 

plays a vital role as these models can be applied with ease at 

different complex stages with varied failed data in the form 

of sets [16].  

Ant Colony Optimization 

The ant colony algorithm was proposed by Dorigo[35] to 

optimize the problems using a real example of ants. Ants’ life 

was considered due to their extraordinary ability in searching 
for food at the nearest location and they traverse that path 

with releasing one chemical named as a pheromone. 

Pheromone helps other ants to reach the same destination by 
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traversing the same path. Using this concept, researchers 

have applied many problems to get optimize solutions. Ant 

colony algorithm is applied to many concepts like TSP, 

network model problem, graph coloring problem, image 

processing, VRP, etc [17,18,19].      

Artificial Bee Colony Algorithm  

Karaboga[20] introduced the concept of an artificial bee 

colony algorithm that resembles a real bee's role in 

“foraging”. ABC algorithm follows their own rule and duties 

are provided to all the groups of bees which are classified 

into employed, onlooker, and scout bees. All these bees 

perform different tasks like, employed bees handle the 

process after a new source identified by the scout bees and 

the onlooker bees are attracted by employed bees through 

dance to company them for food exploitation. These bees 

change their duty intelligently according to the hive 

condition. ABC algorithm uses the concept of fluctuation, 
negative feedback, positive feedback, and multiple-

interactions.  The location of food correlates to feasible 

results to solve the problem of optimization. Hence, the 

algorithm helps in achieving optimum results through 

classified bees in search space and this algorithm is very 

helpful in predicting software defects [21]. 

Particle Swarm Optimization (PSO)  

Particle Swarm Optimization technique was proposed in 

1995, by Doctor Eberhart and Kennedy. It is a heuristic 

global optimization method based on bird and fish flock 

movement behavior research. 
In their search for food, birds travel from one place to 

another, either as a group or in a scattered manner. The bird 

with a good perception of food smell can locate the place 

where food can be found and transmit it to the rest of the 

flock, who converge at the food location. Applying the same 

principles for developing the particle swarm optimization 

algorithm, a model was developed, where bird movement 
between spaces corresponds to the solution swarm. In such a 

scenario, useful information is considered equivalent to 

optimal local solution and food equals global optimal 

solution. The solution swarm so obtained, is then compared 

to bird swarm and global optimal solution is worked out 

using PSO through cooperation of birds. PSO model has been 

found useful in solving complex optimization problems in the 

field of model classification, neural network training, signal 

processing, vague system control, machine study, automatic 

adaptation control etc., due to its ease of implementation and 

relative simplicity [22].  

 

Table 1 indicates the main computational intelligence 

techniques which are used by researchers and practitioners 

for predicting the reliability of CBS. As shown in Table 1, 

ACO, PSO, ABC, and fuzzy logic are used for predicting 

CBSRe due to the utilization of CBSE factors. Therefore, 

there is a need to assess the optimization techniques such as 

ACO, PSO, ABC, and Fuzzy logic. The assessment of these 

techniques provides the component interface, components 

integration, and reusability in Fuzzy logic, PSO, ACO, and 

ABC. 

 

Table 1 Assessment of Computational Intelligence Techniques to Predict CBSRe 

 

S. No. 
Computational Intelligence 

Techniques 
Parameters Used 

1 Fuzzy Logic 

KDLOC, effort multipliers, performance, fault density, usability, 

serviceability, availability, adaptability, maintainability, capability, 

interface complexity 

2 PSO 
Reliability, fitness value, component interface complexity, average 

execution time, computational time 

3 ACO 
Probability, time interval, number of intervals, ants, failure rate, fitness 

function 

4 ABC Adaptability, computational time, waggle dance 

 

The attributes like component interface, components 

integration, reusability in any techniques provide an idea for 
the suitability for predicting software reliability. 

 

4 ASSESSMENT OF PSO 

In this part, the evaluation of PSO is evaluated by utilizing 

CBSE metrics. Numbers of cycles/iterations of elements are 

produced or updated with considered fitness capacity that 

assists in discovering optimal values. Few CBSE metrics are 

contrasted that are well-matched for examining PSO with 

new fitness capacity and Standard PSO assessment of 

enhanced algorithm is done on MATLAB. 
 

In PSO, every element comprises of its nearby best cost and 

locality cost figured by wellness capacity. An effort has been 

prepared to determine the cost of elements of PSO by 

utilizing CBSE measurements. The associated CBS reliability 

measurement has already been discussed in the previous 

section and metrics like Average Execution Time (AET) and 

Degree of Reuse of Inheritance Methods (DRIM) can also be 

utilized for assessment of PSO.  

 

Table 2.   A Comparison between Various CBSE Metrics w.r.t PSO 

 

Metrics Used  

 

Optimization Techniques 

CICM AET CFM DRIM CRUM CSM CCM CRM 

PSO √ √ √ X X X X √ 
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The utilization of AET is to discover the normal carrying out 

time of elements cooperation [23]. The degree of Reuse of 

Inheritance Methods/ the Proportion of Potential (PP): It 

characterizes the proportion of potential techniques utilizes 
factual reused techniques [24]. Table 2 shows a relative study 

of different metrics that are well-suited with PSO. This 

analysis is based on the work of different researchers 

presented in their work. They provide various case studies for 

the description of each metric. From Table 3 CICM, AET, 

CFM is chosen by analyzing different real case studies for 

analysis. 

 
Table 3 shows the suitability of the interaction of elements 

that support PSO. Various costs are monitored using the 

imitation of PSO by using CICM, CFM, and AET metrics.

  

Table 3 Analysis of CBSE Metrics with Various Parameters 

Metrics Used Reusability Interface of Components Complexity Resource Utilization 

CICM High High High High 

AET - Low High Medium 

CFM - High High - 

 

Table 4 presents the most select normal cost of these 
measurements monitored for the above-mentioned 

measurements. In Table 4, various costs of suitable metrics 

have been purposed to determine the element interface based 

on the past study made in this area. 

 

Table 4 Evaluation of Modified PSO with CICM, CFM, 

and AET Metrics 

 

Metrics 

Used 

Standard 

PSO 

PSO utilizing new Fitness 

Capacity 

CICM 51% 58.5% 

CFM 65.2% 74.8% 

AET 73.3% 79.21% 

 

Table 5 Values of Multiple Iterations of PSO 

CICM Standard PSO PSO utilizing New Fitness 
Capacity 

Generation1 16000 16038 

Generation 2 16800 17254 

Generation 3 17025 18452 

Generation 4 17078 18490 

Generation 5 21410 21492 

CICM: Table 5 presents the cost of Standard PSO and 

modified PSO by using new wellness capacity with CICM 

generations. 

 

Figure 1 presents, when new wellness capacity is considered 

for PSO, and then the amount of interface of elements is 
improved, the outcome in raise in reliability. 

 

 

Figure 1 CICM vs. Generation 

CFM: Table 6 presents the cost of Standard PSO and changed 

PSO utilizing new wellness with different CFM cycles. 

 
 

Table 6 Different Cycles for CFM among Standard PSO 

and Modified PSO using New Wellness Capacity 

 

CFM Standard 

PSO 

PSO utilizing New Fitness 

Capacity 

Generation1 2999 3320 

Generation 2 3292 3774 

Generation 3 3345 4113 

Generation 4 3398 4123 

Generation 5 4112 4157 

 

Figure 2 shows that the precision of elements interface is 

soaring in the planned proposal, which assists in reliability 
approximation. 
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Figure 2 CFM vs. Generation 

AET: Table 7 presents the cost of both Standard PSO and 

changed PSO with modified wellness capacity utilizing AET 

generations. 

 

Table 7 Number of Generations for AET with Standard 

PSO and Modified PSO using Modified Fitness Capacity 

 

AET Standard PSO PSO utilizing 

New Fitness 

Capacity 

Generation1 468.27 511.38 

Generation 2 551.31 592.28 

Generation 3 585.64 751.23 

Generation 4 722.33 771.51 

Generation 5 738.62 742.50 

 

Figure 3 shows that AET provides a higher value when 

modified PSO is evaluated. The execution time increases by 

increasing accuracy. 

 

PSO having a new wellness capacity utilizes few CBSE 

measurements that hold up the interface between elements, 
reusability of elements, and successful consumption of 

resources by using new wellness capacity. 

 

The outcome demonstrates that the changed proposal has 

provides improved outcomes as contrasted with established 

PSO, as CBSE measurements are utilized for evaluation. In 

advance research, CBSE measurements can be utilized for 

assessment of various soft computing methods for assessment 

of CBS reliability. 

 

 

Figure 3 AET vs. Generation 

5 ASSESSMENT OF ACO 

One of the challenges in Component-based Systems (CBS) is 

finding an optimal path between the components. One such 

method that has been used to determine optimal path between 

components is a soft computing technique called Ant Colony 
Optimization (ACO). Metrics like component dependency 

and component density are pivotal in the assessment of ACO. 

Results have shown the efficiency of component interaction 

when ACO is used for optimization. Hence, it is suggested 

that real data sets be used in the future for proposing a new 

reliability framework. 

 

The efficiency of Component: Efficiency can be represented 

as the number of required components divided by total 

number of components. The improvement achieved for 

optimal selection of retrieved components, with target search, 
by using ACO can be seen in Table 8 and Figure 4. 

 

Table 8 Efficiency Value with and without ACO 

S. No. Search Value Efficiency  with ACO 

Efficiency 

without 

ACO 

1 5 75% 62% 

2 8 71% 58% 

3 9 55% 19% 

4 4 31% 49% 

5 10 24% 8% 

 

Figure 4 Efficiency vs. Generations 

The results predict that after applying ACO the efficiency of 

interaction between components increases. 

Component Density: It is the ratio of a definite number of 

interfaces to access a number of interfaces. 

 

Table 9 Component Density Values 

S. No. Without using ACO With using ACO 

1 0.2447 0.4264 

2 0.2625 0.4626 

3 0.2753 0.5101 

4 0.2615 0.5589 

5 0.2743 0.5327 
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Table 9 and Figure 5, shows that the component density is 

decreased when the interfaces between components is low.  

 

 

Figure 5 Component Density vs. Generations 

 Component Dependency: The dependency represents the 

influence of one component interaction to another. An 

individual component can be used as a function/module 

which is needed at the time of component/system integration. 

 

6 COMPARISON OF ASSESSMENT OF ACO, ABC 

and PSO 

Table 10 below shows the comparison between ACO, ABC 

and PSO over different parameters 

 

 

Table 10 Comparison of PSO, ACO, and ABC 

Parameters 
Optimization Techniques 

PSO ACO ABC 

Movement 
Movement in search space for optimal 

solution 
Activities of ant colonies. Activities of bee colonies 

Selection of Path 

Global optimal value for each particle 
is taken as the optimal solution. 

Based on the quantity of 
Pheromone on track. The path 

with the highest quantity is 

selected. 

Waggle Dance (WD) provides 
both quality and direction of 

food. 

Enrollment Methods 
Indirect - Particle velocity is calculated 

using fitness function  
Indirect – Use of pheromones by 

Ants based on food type and 
quantity 

Direct – WD gives target 
direction and distance 

 

Navigation Method 
Random walk to the target and 

collection of path details  
Random walk while laying down 

pheromones  
 

Random walk and collection of 
path details 

Adaptability Less adaptive More adaptive Less adaptive 

Computational Time Higher than ABC Higher than ABC Least out of the three 

Steps Requirement for  

Computing Result 

Requires more Steps than ABC. 
 

Requires more steps than ABC. 
 

Least number of steps out of 
the three 

Scalability Least scalable. More scalable. More scalable. 

Advantages 

i) Less calculations vis-à-vis other 
methods. 

 
ii) Provides choice of fitness function 

selection for minimization and 
maximization. 

i) robustness 
ii) distributed 

computation avoids premature 
convergence 

i) Natural parallelism. 
ii) The quick finding of the good 

quality result. 
iii) Can be applied to components 
with difficult to predict behavior 

Team job: Scout and hunter 
bees work jointly for getting 

healthy food. 

Limitations 

i) Lower accuracy owing to difference 
in particle motion and direction 

ii) Difficult to use in non-coordinate 
and contact scattered particle 

environment 

i) Early convergence  
ii) identification of design 

parameters is difficult 

i) WD mapping to outcome is 
complex 

ii) Prior knowledge is required 
about some factors 

Applications 

 

Telecom, Power Systems, Signal 

Processing, Combinatorial 
Optimization 

 etc. 

Scheduling problems, Assignment 

problems, vehicle routing, TSP, 
image processing,  network model 

problem 

TSP, Planning, Spam 

identification, 
etc. 

 

Each optimization technique comes with its own set of 

costs, contingent upon factors like fitness functions, 

iterations, number of interactions etc. A mathematical 
solution to calculate this cost is [27]:             

Cs=Cnr – Cr    ….  eq 1 

 

Where,  

Cs = saving cost or mean cost,  

Cnr = software development cost without reusable 
components, and 

Cr = software development cost with reusable components  

 



Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22 

© 2020-2022, IJARCS All Rights Reserved       21 

Table 11 show data about lines of code (including duplicate 

statements and multi-usage functions), functions which have 

been used repeatedly and functions with single time usage. 

 

Table 11 LOC and Function used in Optimization 

Techniques using MATLAB 

 

Optimization 
Techniques 

Line of 
Code 

Function 
used  

Repeatedly 

Function not 
used  

Repeatedly 

PSO 232 8 4 

ACO 123 9 5 

ABC 142 7 4 

 

Table 12 summarizes the parameters that have been used for 

comparison of ABC, ACO and PSO. Iterations can be 

increased or decreased according to the requirements.  

 

Table 12 Simulation Parameters 

No. of Iterations 150 

Optimization Techniques ABC, ACO and PSO 

Simulation Time 25000 seconds 

Fitness Function Used Y= x1
2- 3x2+10 Where 0<=x1, 

x2<=8 

Operating System Windows 10 

Platform Matrix Laboratory 2009 v2 

 

6.1 Evaluating the Best Cost of PSO and ACO algorithm 

The following work compares the performance of PSO, 

ACO, and ABC by simulating these techniques w.r.t the best 

cost and number of iterations. 

 

The best cost presents the mean cost as mentioned in the 

reusability metric that is estimated using a line of code and 
functions used in the program for several iterations as shown 

in Table 12. From the analysis, it can be observed that ACO 

shows higher reusability factor as compared to PSO and 

ABC. The MATLAB output shows the relationship between 

iteration and cost. It can vary depending upon the analysis 

required to obtain optimal results.   

 

It depends on the user fitness function and user requirement 

that whether ACO is better or PSO is better. When it is 

necessary to complete the problem or solve a problem 
within the time then ACO may be chosen but it affects the 

reliability of components. If the problem is on a large scale 

then the PSO algorithm can show better performance 

compared to other techniques. CBSE reliability factors can 

be utilized using PSO. The momentum effect on particle 

movement in Particle Swarm Optimization (PSO) provides 

variety in search trajectories along with faster convergence. 

It has been observed that Fuzzy Logic and PSO provide 

minimum error results when the space is small, and may be 

used for further research in reliability prediction. Other 

techniques like GA, NN, ACO, and SVM can be used for 

optimization in large spaces. 

 

Software reliability prediction is an important research area 

due to the challenges associated with it. This study reviews 
different computational intelligence techniques, considering 

various parameters, for reliability prediction in Component-

Based Systems (CBS). 
 

7 CONCLUSION 

This paper focuses on factors affecting the reliability of CBS 

and importance of CBS using computational intelligence 

techniques for optimization. There are many computational 

techniques such as NN, GA, SVM, Cuckoo, Tabu search, etc 

but we focused on Fuzzy logic, ABC, ACO, and PSO. It is 

analyzed that optimization techniques PSO, ACO, ABC, and 
Fuzzy rationale have been utilized for anticipating CBSRe. 

These advancement methods utilized those components that 

influence the CBS framework. This paper presents the 

examination and evaluation of ACO, ABC, and PSO 

methods dependent on an audit of the writing. It is seen that 

PSO and Fuzzy rationale might be used where a reaction is 

quick and yield with fewer mistakes is required. ACO might 

be utilized where the shortest path’s length is processed. In 

the future, further research on these techniques may yield a 

model for improving CBS reliability prediction using CBS 

specific parameters. 
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