
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 426

ISSN No. 0976-5697

Operation Sequencing Using Genetic Algorithm with Greedy Crossover

Gurpreet Singh
Assistant Professor

Mechanical Engineering Department,
University College of Engineering,
Punjabi University Patiala, India

Amrinder Singh*
M-tech Student

Mechanical Engineering Department,
University College of Engineering,
Punjabi University Patiala, India

er.amrinderchahal@yahoo.com

Abstract: Operation Sequencing Problem (OSP) is a typical NP complete problem, of which the search space increases with the number of
operations. Genetic Algorithm (GA) is an efficient optimization algorithm characterized with explicit parallelism and robustness, applicable to
OSP. In this paper, we will solve a problem of operation sequencing using GA. But, we will not use simple GA; will use Greedy Crossover
instead of simple crossover. Finally experimental results show that the new Greedy Crossover algorithms perform much better than the other
techniques.
Keywords: Operation; Sequencing; Problem; Genetic Algorithm

I. INTRODUCTION

Genetic Algorithm (GA) is a kind of optimization
algorithm which is based on the natural group evolution
genetic mechanism; it depends on search algorithms [1][2].
It is very robust for problems of different types, with
desirable characteristics such self-organization, self-learning
and self adaption in optimization. Also, GAs have the
advantages that do not need to describe all the
characteristics of the problem in advance and thus can solve
complex and unstructured problems [3]. Due to the
advantages above, GA has attracted the interests of experts
in various fields. Widely used for optimization problems in
automatic, social and economic areas, GA has also
infiltrated into many other disciplines, such as engineering
design, aerospace, electronics and power systems. For the
combinatorial optimization problems which are difficult to
adopt traditional methods, such as the nonlinear, multi-
model, multi-objective function problems, GA method has
become a significant alternative. It's popular to solve
travelling Salesman Problem (TSP) with GA [4][5]. Given a
set of N cities and each of the distance between two cities,
we need to find a close journey to travel every city once and
make the total distance shortest for a TSP. Usually the
satisfactory solution for a combinatorial optimization
problem may not be unique, which means, there might be a
number of solutions meeting the conditions which make the
objective function to achieve the optimal value larger than
the predetermined threshold, but the largest (or smallest)
value of the objective function is always unique[6][7]. The
searching space of a TSP increases with the number of
cities, N. And the combination number of all the road trips is
(N-1)!. We will convert our problem into travel salesman
problem. Different cities will be the different operations and
the path of travel salesman will be the sequencing of the
operations. In travel salesman problem we find an optimum
path to reduce the cost of travel in operation sequencing will
find an optimum sequence to reduce the cost of production.

II. RELATED WORK

A permutation of all operations is represented as a
chromosome when solving OSP. Assuming there are n
operations, a possible sequence can be encoded as an integer
vector (1, 2, 3, 4, 5…..n,) with the length of n. Each integer
in the vector just appears once in a path. For a TSP with n
operations, this paper uses 0 ~ n-1 different integer encoding
to express sequence of these n operations, a permutation of
which is a possible solution. The data structure is as follows:

 // the definition of Gene (a operation)
 struct Gene
 {
 int ID // the number of the
opeartions
 map<Gene*,float> linkCost //the overhead of cost
of one operation to another
 };
 // the definition of Chrom (a permutation
of all the operations)
 struct Chrom
 {
 Vector <Gene*> chrom_gene // the
definition of
 chrom_gene (a sequence of all the
operations)
 float varible // the total cost overhead
 float fitness // individual fitness
 };

This is one of the simplest expression methods logically
corresponding to the operation sequencing, which meets
restrictive conditions of OSP. It can not only guarantee that
every operation is added into the sequence once and only
once, but also ensure that any subset of these operations
would not form a loop [8].

A. Selection
The selection of individuals to produce successive

generations plays an extremely important role in a GA. A
probabilistic selection is performed based upon the
individual’s fitness such that the better individuals have an
increased chance of being selected. An individual in the

Amrinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,426-431

© 2010, IJARCS All Rights Reserved 427

population can be selected more than once with all
individuals in the population having a chance of being
selected to reproduce into the next generation. Lee et al.
(2001) [9] developed the roulette wheel, which was the first
selection method. In addition, there are se-lection methods,
such as roulette wheel’s extensions, scaling techniques,
tournaments, elitist models, and ranking methods. These
selection operators were presented for numerical
optimization and the main objective is to reduce the
sampling error and improve calculation precision. When
using GAs for operations sequencing, the natural number is
used for coding. The fitness value of individual is only a
relative concept (only used for value comparing and the
value itself is not concerned). So the problem of sampling
error does not exist. Compared with other selection
operators, the ‘‘tournament selection’’ is more suitable for
the problem of operations sequencing. In order to guarantee
the astringency of GAs, the optimal individual in one
generation must be kept to the next generation. Other
individuals in population are selected using the ‘‘tournament
selection’’ operator. Suppose there are W individuals to be
selected, selecting two individuals randomly from the
population and keeping the better one for the next
generation. Repeating this process W-1 times and then at
last all individuals in the next generation are obtained [10].

B. Simple Crossover
In this work, a partially mapped crossover (PMX)

operator (Gorges-Schleuter, 1985) [11] is modified to
produce offspring. After two parents are selected from the
population, based on the string length (i.e., number of
elements in the string), a crossover point is randomly
generated and a segment of the string from that point to end
of the string is selected. The offspring, child 1, is generated
by arranging the elements of the selected segment in this
parent according to the order in which they appear in the
other parent with the order of the remaining elements the
same as in the first parent [12]. The role of these parents is
to generate another off- spring, namely, child 2. The
crossover operator can be illustrated as follows:
Select two strings from the current population and denote
them as parent 1 and parent 2:
Parent 1 : (1,4,6,3,5,2) Parent 2 : (4,5,6,1,2,3)

Consider a random crossover site as X=2 and the
segment from parent 1 from the crossover site till the end of
the string (6, 3, 5, 2)

Arrange the selected elements in the order of parent 2
and obtain (5, 6, 2, 3).
Then the offspring, child 1 from parent 1 is generated as:
(1,4,5,6,2,3).

a. Problems with Simple Crossover
A portion of one parent’s string is mapped onto a

portion of the other parents string and the remaining
information is exchanged [13][14]. Consider for example
the following two parent tours:

 (12345678) and (37516824)

Figure 1. Simple crossover

First, it selects uniformly at random two cut points
along the strings, which represent the parent’s tours. The sub
strings between the cut points are called the mapping
sections. In the above example they define the mapping 4-1,
5-6, 6-8.Now the mapping section of the first parent is
copied into the second offspring and the mapping section of
the second parent is copied into the first offspring offspring1
(xxx168xx) and offspring2: (xxx456xx)

Then offspring ‘i’ (‘i’=1, 2) is filled up by copying the
elements of the I-th parents. In case an operation is already
present in the offspring it is replaced according to the
mapping. For example the first element of offspring 1 would
be a 1 like the first element of the first parent. However
there is already a 1 present in offspring1. Hence, because of
the mapping 1-4 we choose the first element of the offspring
1 to be a 4.the second, third and seventh elements of
offspring1 can be taken from the first parent. However, the
last element of the offspring 1 would be an 8, which is
already present. Because of the mapping 6-6 and 6-5, it is
chosen to be a 5. Hence Offspring1=(42316875) similarly
Offspring2=(37846521). Due to this problem we can’t use
this simple crossover. For the solution of this problem we
had used Greedy crossover.

b. Greedy Crossover
In the design of the crossover operator, we first

absorbed ideas from two previous studies. One was by
Grefenstetts et al. (1985) [15] who used a heuristic
crossover which constructs an offspring by choosing the
better of two parental edges [16]. Another was by
Starkweather et al. (1991) [17] who designed the edge
recombination operator. One of their findings was that it is
very important to preserve common edges between the two
parents [18]. After studying the above work, we developed
the following crossover operator, which is different from the
previous two algorithms but combines the good ideas from
both. Given two parent tours in the normalized path
representation, P1 and P2, the first offspring is constructed
as follows: start with a random city c, then check whether
either the edge leading to c or from c (i.e., the edge <c,
C,ight> or <cleft, c>) is used in both P1 and P2. If so, the
common edge is chosen. Otherwise, we compare c’s right
side edge in each of P1 and P2. The shorter one is chosen,
unless it would introduce a cycle, in which case the longer
one is chosen. If the longer one would also introduce a
cycle, then we extend the tour by a carefully selected edge
(details later). The second offspring will be constructed in a

Amrinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,426-431

© 2010, IJARCS All Rights Reserved 428

similar way, but we compare c’s two left side edges instead
of its right side edges.

 parent 1: 1 3 4 2 5 6
 parent 2: 1 2 3 6 5 4

 Offspring 1: (if randomly starting from city 6)

 6 5 4 2 3 1 1 3 2 4 5 6

Offspring 2: (if randomly starting from city 3)

 3 2 1 6 5 4 1 6 5 4 3 2

Figure. 2. An example of greedy crossover

Figure 1 shows a simple example of our crossover

operation. Assume that we have two parents as shown in
Figure 1. To generate the first offspring, we randomly start
from city 6. The two right side edges are <6,1> in P1 and
<6,5> in P2. The distance table shows that <6,1> and <6,5>
have exactly the same length. In this situation, the edge in
P1 would normally be selected first for offspring 1; the edge
in P2 for offspring 2. However, in our example, edge <6,5>
is a common edge between the two parents, so <6,5> is
chosen. Next, from city 5, we have two right side edges:
<5,6> and <5,4>. This time, we choose <5,4> because the
common edge <5,6> would create a cycle. From city 4, the
edges are <4,2> and <4,1>: the shorter one <4,2> is chosen.
Then from city 2, there are <2,5> and <2,3>: the shorter one
<2,3> is chosen. Finally, we only have city 1 left, which has
to be the last one in the tour. The second offspring is
generated starting from a different random city, 3. This time,
the left edges are compared. Luckily, all of the best edges in
P1 and P2 have been inherited by offspring 2. The criterion
of selecting a new edge to prevent a cycle is based on the
same idea as used in our selective initialization. That is,
edges not belonging to the k-nearest neighbor sub graph are
most likely to be excluded from the optimal tour. Thus, we
try to select from the k-nearest neighbor list first; (only if
they are all used do we select randomly from the other,
longer, edges. The actual selection rule implemented is a bit
more sophisticated in how to choose from the k-nearest
neighbour list. Assuming that c is the current city, we
examine all unused cities in e’s k-nearest neighbour list,
then choose the one which has the fewest k-nearest
neighbour cities available. The idea behind this is that the
fewer k-nearest-neighbours c has, the more likely it is to
become an isolated city in the knearest neighbour subgraph.
So we should choose it, to avoid the danger of using a non-
k-nearest-neighbour city [19].

C. Mutation.
A mutation operator is used to investigate some of the

unvisited points in the search space, and also to avoid
premature convergence of the entire feasible space caused
by sequences GAs, and only the main compulsive
constraints are given in the formula [20]. Other constraints
can be also added behind it. The explanation of each item in
the formula is shown in the following section: some super
chromosomes. This operator makes random changes in one
or more elements of the string. Mutation is done with a
small probability, called mutation probability or rate. This is
done to protect loss of some potentially useful strings. Some

individuals of the next generation, which are obtained
through the two above-mentioned operators, are selected
and then the positions of two codes in each individual are
exchanged randomly to realize the mutation operation. For
example, if the third and sixth positions are the selected
mutation positions in individual O1, new individual O2 will
be obtained as follows:
 O1 : (1,4,5,6,2,3) O2 : (1,4,3,6,2,5)

The chromosomes resulting from these operators are
often known as offspring or children and these form the next
generation’s population. This process is repeated for
generating feasible solutions. A feasible solution is a
sequence of operations that considers all of the compulsive
constraints. The fitness value for a feasible solution is zero.
Therefore, when the fitness value for some of solutions is
zero, the genetic algorithm stops and selects these solutions
as feasible solutions [21]. This process is repeated until the
enough feasible solutions are generated.

D. List Of Operations with Codes

Table 1. List and coding of operations

Serial No. Code for
Operation

Name of
Operation 1. 1 Rough Turning

2. 2 Finish Turning

3. 3 External Groove
Cutting

4. 4 External Threading

5. 5 Internal Threading

6. 6 Drilling

7. 7 Boring

E. Fitness Function

The fitness function, which is a measure function used
to express the adaptability of a string, is used to connect the
problem and the algorithm. The adaptability is expressed by
the fitness value. In this stage, additive constraints can be
implemented. The optimization constraint is often
considered as an additive constraint. This constraint means
that some target functions should be met in the technological
sequence decision, such as minimum processing times,
minimum production cost and soon. In this research, the
minimum production cost is employed to calculate the
fitness of each operation sequence, and to measure the
efficiency of a manufacturing system.

F. Cost Matrix
To make cost matrix, as shown below in the matrix,

write the cost of operations in the matrix, if we perform
operation 2 after operation 1 than its cost is 10 rupees, we
will write this in box 1,2. The cost of operation 3 after 1 is
rupees 7, so it is written into the box 1,3. All the costs will
be written in corresponding boxes as shown below.

Amrinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,426-431

© 2010, IJARCS All Rights Reserved 429

Table 2. Cost Matrix

Operations 1 2 3 4 5 6 7

1 ∞ 10 7 9 5 4 3

2 2 ∞ 7 4 6 9 2

3 4 ∞ ∞ 5 7 9 2

4 8 ∞ ∞ ∞ 6 4 7

5 9 4 6 5 ∞ 8 3

6 2 7 4 5 8 ∞ 6

7 4 3 5 5 ∞ 2 ∞

a. Fitness Function in our Problem (α)
Where α is a positive number as large as it can be. The

value of this fitness is calculated by adding the values of
production cost of different operations (from cost matrix)
according to operation sequence string generated by GA.
Example:
 String: 3-4-5-2-1-6-7.

 Cost (boxes):(5)(6)(4)(2)(4)(6)=27(α)

Figure.3. Calculation of Fitness function.
The chromosomes resulting from the three operators,

namely selection, crossover and mutation, are often known
as off spring or children and these form the next
generation’s population. This process is repeated for a
desired number of generations, usually up to a point where
the system converges to significant well-performing
sequences and the value of fitness function is minimum.

G. Methodology
a. First randomly create 20 strings with the given

operations.
b. Carry on top 10 sequences to the next generation

leaving the other 10 sequences.
c. From the best 10 tours randomly select parents and

producing 10 more children by performing the all three
steps of GA.

d. Append these 10 children’s to the previous best 10
parents to make them to total 20 strings.

e. Again sort the strings and take best 10 strings among
them for next generation

f. Repeat the above operations to create 10 more
children’s and again sorting the combined 20 tours.

g. Repeat these steps until the value of fitness function get
constant and it do not decreases further by more
iteration.
III. RESULTS AND DISCUSSIONS

For the described example, the operation information is
shown in Table 1. The cost of Operations is given into Table
2. According to first step of the genetic algorithm randomly
created 10 strings are shown in Table 3.

Table 3. (10 strings selected from the randomly selected 20 strings)

String No. String Fitness
value

1 1-2-4-3-6-7-5 29

2 1-4-6-2-7-3-5 34

3 1-6-4-7-3-5-2 32

4 4-3-1-2-6-7-5 29

5 4-1-6-2-7-5-3 27

6 4-6-1-2-3-7-5 25

7 4-1-6-2-3-7-5 28

8 6-4-7-5-1-3-2 28

9 6-1-4-7-2-3-5 35

10 6-1-4-7-5-3-2 24

After performing the all three steps on these 10 strings
or parents, we will get 10 new strings or children and got
new value of fitness function according to these new
children as shown in Table 4. In Table 3. ,the least value of
fitness function is 24 for the string 6-1-4-7-5-3-2. In Table
4., least value of fitness function is 16 for string 6-4-3-1-7-
5-2.

Table 4. String generated by GA.

String No. String Fitness
value

1 6-4-3-1-7-5-2 16

2 6-4-3-1-7-2-5 21

3 1-6-4-7-5-3-2 22

4 4-6-1-2-7-5-3 24

5 6-1-4-7-5-3-2 24

6 4-6-1-2-3-7-5 25

7 1-6-4-7-3-2-5 27

8 4-1-6-2-7-5-3 27

9 1-4-6-2-7-5-3 28

10 6-4-7-5-1-3-2 28

Since the performance of GAs is not guaranteed and

can never be assessed on the basis of a single run, in this
case, the program will be repeatedly run for 10 times, and
the production cost or fitness function of every optimal
process plan is generated and it can be seen that the
production cost varies from 35 to 11 and it can not be
reduced more by further iterations, so final least cost is 11
and the most optimal sequence is 1-6-4-3-2-7-5. As shown
in Table 5.

Amrinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,426-431

© 2010, IJARCS All Rights Reserved 430

Table 5. String generated by GA after 10 iterations.

String No String Fitness
Value

1 1-6-4-3-2-7-5 11

2 1-6-4-3-7-5-2 15

3 4-6-1-7-5-3-2 15

4 6-4-3-1-7-5-2 16

5 4-6-3-1-7-5-2 19

6 1-6-4-3-7-2-5 20

7 6-4-3-17-2-5 21

8 6-4-3-1-2-7-5 21

9 4-6-3-1-2-7-5 24

10 4-6-3-1-7-2-5 24

In this work, we used a different genetic algorithm for
the OSP. The algorithm applies a greedy crossover and
mutation. A selective initialization operator is also proposed.
The results show that combining the greedy crossover and
genetic algorithms is a promising approach for solving the
large OSP. Two concluding remarks are as follows.

From the point of view of genetic algorithms, by
Combination of greedy crossover with GA it becomes a very
effective tool to solve the problem of OSP. Moreover, it
makes small population sizes sufficient to solve large
problems.

From the point of view of this method, by incorporating
the genetic algorithms technique, we can escape from local
optima in many cases, so that much better results can be
obtained than by using heuristic methods alone. We can also
achieve very high stability.

IV. CONCLUSION & FUTURE SCOPES

There are two interesting directions for future work.
One is to further improve the algorithm by introducing a
simplified form of the Lin-Kernighan heuristic. Another
direction is to parallelize the algorithm. We would like to
investigate whether the algorithm can be factorized
efficiently. We are also interested in modifying the
algorithm to a coarse-grained parallel genetic algorithm.

V. REFERENCES

[1] D. E. Goldberg and J. R. Lingle, “Alleles, Loci, and the
Traveling Salesman Problem,”.1st International
Conference on Genetic Algorithms (ICGA 85), 1985,
pp. 154–159.

[2] J. H. Holland, Adaptation in Natural and Artificial
Systems, MIT Press, 1975.

[3] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza.
and S. Dizdarevic. “Genetic Algorithms for the
Traveling Salesman Problem: A Review of

Representations and Operators,” Artificial Intelligence
Review, Apr. 1999, pp. 129–170.

[4] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
1989.

[5] L. Davis, “Applying Adaptive Algorithms to Epistatic
Domains,” 9th International Joint Conference on
Artificial Intelligence (IJCAI 85), 1985, pp.162–164.

[6] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study
of permutation crossover operators on the traveling
salesman problem,”2nd

[7] B. A. Julstrom, “Very greedy crossover in a genetic
algorithm for the traveling salesman problem,” 10th
Symposium on Applied Computing(SAC 95), 1995, pp.
324–328.

 International Conference on
Genetic Algorithms(ICGA 87), 1987, pp. 224–230.

[8] Y. Mu. “The application of Genetic Algorithm solving
TSP (In Chinese),” master’s thesis, Dept. Computer
Sciences, Tianjin Normal University, Tianjin, China,
2004

[9] Lee, D.-H., Kiritsis, D., Xirouchakis, P., “Branch and
fathoming algorithms for operation sequencing in
process planning”, International Journal of Production
Research (39),2001, pp. 1649–1669.

[10] Guo, Y.W., Mileham, A.R., Owen, G.W., Li, W.D.,
“Operation sequencing optimization using a particle
swarm optimization approach”, Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 220 (B12), 2006, pp. 1945–
1958

[11] Gorges-Schleuter, M., “An asynchronous parallel
genetic optimization strategy”, First International
Conference on Genetic Algorithms. Lawrence Erlbaum
Associates, Hillsdale, NJ”, 1985, pp. 422–427.

[12] Li, W.D., Ong, S.K., Nee, A.Y.C., “Optimization of
process plans using a constraint-based tabu search
approach”, International Journal of Production Research
42 (10), 2004, pp. 1955–1985.

[13] Reddy, S.V.B., Shunmugam, M.S., Narendran, T.T.,
“Operation sequencing in CAPP using genetic
algorithm”, International Journal of Production
Research 37, 1999, pp. 1063–1074.

[14] Lin, C.-J., Wang, H.-P., “Optimal operation planning
and sequencing: minimization of tool changeovers”,
International Journal of Production Research 31, 1993,
pp. 311–324.

[15] J. J. Grefenstetts, R. Gopal, B. Rosmaita, and D. Van
Gucht ,”Genetic Algorithms for the Traveling Salesman
problem”, International Conference on Genetic
Algorithms and Their Applications, 1985, pp. 160-168.

[16]C. R. Reeves, “Using Genetic Algorithms with Small
Populations”, Fifth intenational Conference on Genetic
Algorithms, 1993, pp. 92- 99.

[17] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley,
and C. Whitley, “A Comparison of Genetic Sequencing
Operators”, Fourth Intemational Conference on Genetic
Algorithms, 1991, pp. 69-76.

[18] D. Whitley, T. Starkweather, and D. Shaner, “The
Traveling Salesman and Sequence Scheduling: Quality
Solutions Using Genetic Edge Recombination”,
Lawrence Davis, editor, Handbookof Genetic
Algorithms, 1990.

Amrinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,426-431

© 2010, IJARCS All Rights Reserved 431

[19] A. Homaifar, S. Guan, and G. E. Liepins, “A New
Approach on the Traveling Salesman Problem by
Genetic Algorithms”, Fifth International Conference on
Genetic Algorithms, 1993, pp. 460-466.

[20] Ding, L., Yue, Y., Ahmet, K., Jackson, M., Parkin, R.,
“Global optimization of a feature-based process
sequence using GA and ANN techniques”, International
Journal of Production Research 43 (15), 2005, pp.
3247–3272.

