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Abstract: Software testing is an important step in the creation of software products. Automation is critical in the software industry because it 

enables software testing firms to increase their test efficiency. Researchers have worked on a variety of automated ways for producing test data 

to evaluate generated software with various disadvantages. This paper therefore, presented Genetic Algorithm (GA)-based test techniques to 

automate the development of structural-oriented test data. In this work, random test cases are first generated, then, mutates testing is applied to 

check it. If satisfied, then process stops. Genetic Algorithms are utilized, since they offered a technique of automatically generating test cases. 
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1.0 INTRODUCTION 

 

Software testing is a process that gathers data on the product 

or service being tested. Methods of testing include running 

programmes or apps to look for and fix flaws [1]. To get the 

most out of the system and to catch as many faults as 

possible early, the process of creating test cases is essential. 

Cost-wise, this is the best use of time and resources across 

the entire software development process. Automated testing 

does not have the capability to perform thorough testing. 

The Intelligent Security and Automation System (ISAS) 

architecture was recently utilised in the development of a 

new application. Robotic testing drastically reduces the cost 

and duration of trials, which is essential for keeping tabs on 

the progress of a project [3]. In order to build the finest test 

suites, it is important to follow the methodology that is 

being used to evaluate measurements. For any product, 

testing is the most critical stage. The testing phase is the 

final stop for any rejections or commission oversights. It's a 

little more difficult to test computer programmes than it is to 

practise a framework to guarantee it works properly. It's 

important to remember that any investigation, audit, survey 

or walkabout is a test when in doubt. There will be less 

difficulties with dynamic testing if more successful static 

attempts have been made. IT has repeatedly shown that the 

more quickly a problem is discovered and corrected, the 

lower the incremental cost of fixing it. The technique for 

testing begins with the depiction of an object [3]. In 

comparison to the Genetic Algorithm, all evolutionary 

algorithms achieve a near-optimal result. Tests are used to 

ensure that a product or service meets certain standards 

when exposed to a specific set of environmental conditions. 

This goal is made up of two parts. In this fragment, the 

primary goal is to verify that the item's requirements point 

of interest is accurate. The second section demonstrates that 

the settings and code are perfect matches for all of the 

criteria. All of the affirmation criteria must be met in order 

for a task to be considered precise [3]. 

Software testing, as defined by IEEE, is the process of 

executing and observing a system or component to assess its 

performance [3]. Manual or automated testing methods are 

also acceptable. Testing an application manually entails 

providing all possible inputs and producing the related 

outputs. As a result, it's both physically and mentally taxing. 

Automatic testing relies on design models, which allow 

testers to focus on more creative work instead of tedious 

tasks [4]. 

Effective automation provides a stronger link between the 

two than traditional testing methods, which separate 

verification and validation into separate tasks. As part of a 

comprehensive testing plan that includes both automated 

and human procedures, these real-time application 

automation techniques are essential. By using test cases, 

manual testing is a way to verify the design of the system 

and find problems [4]. A testing developer's expertise is 

required for this labor-intensive process. Automated testing 

environments are built with a wide range of diversity criteria 

and abstraction levels across a wide range of disciplines in 

order to overcome the problems inherent in manual testing. 

Automated testing's ultimate goal is to reduce the amount of 

time and money it takes to run a test. Figure 1 [4] depicts the 

entire software testing process. 

Whether or whether a piece of software can be used in a 

variety of contexts is a measure of its quality. Customers' 

requirements guide the work of software engineers in the 

software development industry. The program's reliability, 

portability, usability, flexibility, testability, and efficiency 

are all evaluated and confirmed in a testing environment 

after it is designed utilising these characteristics [4]. A 

product's dependability is measured by how well it performs 

its functions. Customers and developers must have a 

mutually acceptable level of trust in a product's performance 

and reliability. A product's "testability" refers to how well it 

can be tested, while "usability" describes how well it can be 

used and how environmentally friendly it is. It is important 

to know if a product can be improved upon in the future by 

looking at how flexible it is. The product's efficiency is 

influenced by the aforementioned performance criteria. 
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Figure 1: Software test cycle [4] 

 
Figure 2: Software Testing Types[4] 

 

Software testing enables product design to be improved via 

standard verification in both static and dynamic 

environments. Verification is carried out using formal 

methods and techniques in a static environment, but in a 

dynamic context, verification is carried out at any point 

using test cases. In comparison to static analysis, dynamic 

analysis is far more efficient and effectively detects design 

flaws. The numerous kinds of testing processes used in 

software test engineering are shown in Figure 2. Early stage 

testing minimizes product difficulties by finding flaws and 

minimizing product failure during implementation. Software 

testing refers to simple test and coding processes that help 

eliminate mistakes at each step of the application's 

development. In the case of verification and validation, the 

verification process analyzes the appropriate product 

selection, whilst the validation process analyzes the product 

attributes. It enables the user or client to validate the 

produced application in order to ensure that it meets their 

requirements by resolving any errors. 

Software testing's objective is to minimise problems at the 

lowest feasible cost, as the majority of the testing process 

consumes almost 45-60 percent of the development budget. 

Software testing is frequently divided into human and 

automated testing, depending on the circumstances. The 

automated process cycle begins with a decision regarding 

the technique of product evaluation. Following that, an 

acquisition tool such as automation studio, Experitest, or 

Testcomplete is used to specify the testing tool. After 

selecting the suitable tool, the complete script is integrated 

into the tool, which provides a design plan for constructing 

the testing method. The final level of automation is 

execution; it runs the scripts defined in the design and 

assesses the results. Software testing is further classified into 

black box and white box testing based on the developers' 

knowledge of the scripts. When testing is undertaken within 

the script itself, it is referred to as white box testing, and it 

requires the testing engineer to be familiar with the scripts. 

White box testing utilises a number of elements to evaluate 

the underlying structure of test case data. Figure 3 depicts a 

categorization structure for white box testing, an extensively 

used approach in business.
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Figure 3: White Box Testing Classification [4] 

 

Execution testing and its many variants are commonly used 

in white box testing. A key benefit of branch coverage is 

that it offers comprehensive test results for each branch, 

allowing for a rapid evaluation of the final programme. 

Tests of the path coverage kind cover all of the steps in the 

path, making them ideal for small-scale projects. Accurate 

results are achieved when the script's statements are covered. 

Due to the fact that it is static, white box testing raises the 

cost function, offers formal assessment, ignores developer 

requirements, and is not ideal for all testing engineers. 

While white box testing requires a deep understanding of the 

testing script, black box testing may be performed by 

anyone. A variety of third-party technologies are used to run 

tests in different applications. These include Selenium, UI 

test builder, and applitools eyes Analyzing a vast number of 

box values, the Black Box only outputs the ones that are 

necessary. The main testing technique is the correlation 

between the black box interface and the engineer's 

expectations. Figure 4 [4] depicts the methods used in black 

box testing. 

 

 
Figure 4: Black Box Testing [4] 

 

2.0 AIM AND OBJECTIVES 

 

The aim of this study is to improve software test automation 

using Genetic Algorithm. The objectives is to; 

i. Generate random test cases 

ii. Apply mutates testing to check the generated test cases.  

iii. If (ii) is satisfied, then stop 

 

3.0 LITERATURE REVIEW 

 

3.1 Genetic Algorithm 

 

This is the natural selection process through which the best 

entities are picked to reproduce or develop progeny. Natural 

selection begins with the selection of the best and fittest 

individuals within a population. They produce offspring that 

inherit their parents' characteristics and are incorporated into 

the next generation [5]. If the parents are more fit, their 

children will fare better than the parents. Five stages are 

taken into account in a genetic algorithm: 

1. Initial population 

2. Fitness function 

3. Selection 
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4. Crossover 

5. Mutation 

a) Initial Population: The operation is initiated by a 

population of entities. Each entity provides a solution 

to the problem on ground. Each entity is defined by a 

collection of gene-related parameters (variables). A 

chromosome is constructed by stringing together genes 

(solution). The genetic algorithm of an entity is its 

alphabet string. Binary values that are frequently 

utilised (string of 1s and 0s). This is referred to as 

chromosomal gene transcription [5],[6]. 

b) Fitness Function: This term refers to an entity's fitness 

level (the ability of an individual to compete with other 

individuals). Each individual is assigned a fitness score. 

The fitness level of an individual has an effect on his 

or her likelihood of being selected for reproduction. 

c) Selection: The selection stage's objective is to identify 

the most suitable individuals and allow them to pass on 

their genes to the next generation. Two pairs of persons 

(parents) are chosen based on their fitness levels. 

Fitness-oriented entities are more likely to be chosen 

[5]. 

Crossover: A genetic algorithm's main phase is crossover. 

For each pair of parents to be mating, a crossover point 

is selected randomly from inside the DNA. 

d) Mutation: Certain genes, particularly those in newly 

generated individuals, can be mutated with a low 

random frequency. This indicates that some bits in the 

bit string can be flipped. 

e) Termination: If the population converges, the 

algorithm terminates (it produces offspring that are not 

materially different from the preceding generation) [6]. 

Genetic algorithms' benefits are as follows: They have a 

random pattern that can be statistically evaluated but cannot 

be anticipated exactly; (i.e stochastic). Big data is another 

area where it excels. Probabilistic and non-deterministic 

rules function well with it. It's a great tool for optimising 

numerous goals at once. There are some drawbacks to this 

approach. It can be time consuming and expensive in terms 

of computer resources, and creating objective functions can 

be challenging. 

An algorithm based on the idea that the best chromosomes 

have a "menu" of options is known as a genetic algorithm. 

[3],[5]. The population of chromosomes can be represented 

using binary, real integers, and permutation in genetic 

algorithms. Chromosomes can be manipulated via genetic 

operators (such as selection, crossover, and mutation) to 

generate more identical copies of themselves. Large and 

adequate goal functions define a chromosome's fitness. 

Genetic algorithms, a subclass of stochastic methods, are 

formed from random searches. In contrast to a genetic 

algorithm, random actions comprised of iterative and basic 

random search stages are more likely to yield an answer to a 

given problem. [7, 8]. 

In order to identify the problems with the current software 

testing method, a complete analysis focused on 

dependability and categorization accuracy. However, due to 

its computational power, machine learning has received 

increased attention in software testing. [7] Predicted 

software flaws using various machine learning algorithms. 

In the suggested survey, object-oriented criteria such as the 

learning function, features, and efficiency are used to 

evaluate machine learning algorithms. It explains how 

software engineering uses machine learning models. 

[8] also studies software engineering automation in great 

detail. Traditional methods to modern machine learning 

approaches are covered in this discussion of software 

engineering automation. 

Using an artificial intelligence model, [9] examined the 

drawbacks of the traditional software testing approach. 

Traditional models have a lower level of reliability 

compared to the recommended model. However, there are 

some drawbacks to the proposed method, such as the time it 

takes to examine complex script errors. 

In a discussion of the difficulties in forecasting software 

flaws using a hybrid machine learning technique[10]. An 

efficient and reliable failure prediction model can be created 

by combining relational association rules and artificial 

neural networks. Defect avoidance is much easier to 

compute than software engineering defect prediction. 

Defect avoidance in software testing is based on notions of 

human error, as shown in a paper by [11]. Preventative 

measures and guidance based on the most common human 

errors are used in the study to improve the product's 

performance. 

Multi-objective optimization of software performance was 

devised by [12]. The proposed model improves on previous 

models in terms of dependability, efficiency, and 

classification accuracy, to name a few multi-objective 

criteria. 

By [13], they developed a study model for software testing 

that relies on fault tree analysis. This fault tree analysis is 

more clear and efficient than standard methods, resulting in 

a faster calculation time. When compared to fault tree 

models, the proposed method performs better than machine 

learning models, however it falls short. 

RNN encoder and decoder [14] discussed the difficulties 

with software reliability models.. The proposed model is 

more reliable when dealing with large and complex datasets. 

Based on component-based software, [15] set up a paradigm 

for reliability analysis. The issues in the product are found 

by dissecting the script to its component parts and looking 

for errors in the suggested model. Because of the division 

operation, this method gives more accurate results but takes 

longer to calculate. 

Failure prediction using neurofuzzy data has been proposed 

by [16]. In order to increase testing efficiency, the proposed 

Inter-version and Inter-project assessment models are 

included in the research model [17] used a feedback-based 

prediction technique to study software testing issues. The 

shortcomings are based on personal experience and are 

summarised by comparing the product's features to a 

specific group of people. Using their feedback, we are able 

to identify and fix bugs more quickly. To summarise and 

evaluate the feedbacks, the proposed model requires more 

time. Additionally, the feedbacks themselves may contain 

uncertainties that could have an adverse effect at times. 

There are a variety of hybrid methods used in software 

testing. 

A number of approaches to software defect prediction were 

discussed in [18]. 

[19] outlined a model for locating software bugs. For 

software defect prediction, [20] found that a rule mining-

based technique is more accurate and efficient. According to 
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the poll, researchers are actively working on ways to 

improve reliability. 

 

4.0 METHODOLOGY 

 

In this work, random test cases are first generated. Then, 

mutates testing is applied to check it. If satisfied, then stop 

[3].  

Optimized algorithm  

1. Mutant is injected into the programme 

2. Create test cases of random sample 

3. Use mutation score= (number of mutants observed) / 

(total number of mutants). 

4. If the mutant score is Maximum stop, else go to step 5 

5. Refine the test case using the mutation score. If a test case 

have mutation score of 20% or less drop it 

6. Using Genetic Algorithm, generate new experiments 

operations on the remaining test cases. Go to step 3. 

The ab algorithm, where a and b are positive integers. 

1. Start (a, b) 

2. Is (a==1) 

3. Return 1 

4. Is (b==1) 

5. Return a 

6. P=1, I=1 

7. While (i<=b) 

8. {P=P*a 

9. i++} 

10. Return P 

Four mutants injected into this programme. Now, the 

algorithm appears as follows. 

1. Start(a, b)  

2. Is (a=1),  

3. Return 1 

4. Is (b=1) 

5. Return a 

6. P=1, I=1 

7. While (i<=b) 

8. {P=P*a 

9. i++} 

10. Return P 

The number of mutations was estimated by this algorithm 

using the flow diagram presented in Figure 1. To begin, a 

programme had specific mutants introduced. The optimal 

test case was discovered with the help of mutations [3]. 

Then, the test case's performance is reviewed, and the first 

step is taken. There were no other mutations found after that. 

'How many mutants have been found?' was the question. 

The next step is to determine how many mutations have 

been detected. Defects were missed if the number of 

mutations found was less than what was required. For a true 

value of fitness, one must first determine how many 

mutations there have been. There are two stages to this 

process: if the number of identified mutations is greater than 

or equal to 50%, we'll present a best fit; otherwise, the 

mutant number will be displayed. There is no need to 

continue looking for defects if the number of mutations 

found in the second phase is zero. As a result, the test case 

provided the best answer [3].

 

 



Owolabi Bukola et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April  2022,56-63 
 

© 2020-2022, IJARCS All Rights Reserved       61 

 
Figure 5: Optimized Algorithm Flow[5] 

 

4.1 Applications of Genetic Algorithm 

There are a number of applications for genetic algorithms, 

including solving difficult issues like NPC and NP-hard. For 

a complex problem, they are an excellent way to quickly 

identify a viable solution. It is more efficient and effective to 

use genetic algorithms in undiscovered search areas. When 

used in a real-world situation, genetic algorithms differ 

dramatically from the results they provide in a lab setting 

[21]. When it comes to difficult-to-calculate and-analyze 

circumstances, evolutionary algorithms can be used to come 

up with answers.
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Figure 6: Flow Chart of the Workflow of Genetic Algorithm Used for Test Case Generation In Software Testing [21]. 

 

5.0 CONCLUSION 

 

GAs, for example, were examined in this article to see if 

they helped with software testing. According to the findings, 

genetic algorithm-based software testing becomes more 

efficient as the number of test cases grows. Using Random 

Testing Methods is inefficient because the data points are 

not time-dependent. As a result, Genetic Algorithms are 

used to speed up and increase the efficiency of software 

testing since they provide a method of automatically 

generating test cases. It is possible to use evolutionary 

generation of test cases, which has been proven to be more 

efficient and cost-effective than random testing.  
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