
DOI: http://dx.doi.org/10.26483/ijarcs.v13i2.6808

Volume 13, No. 2, March-April 2022

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 32

ISSN No. 0976-5697

DETECTION AND RECOGNITION OF HINDI TEXT FROM NATURAL SCENES

AND ITS TRANSLITERATION TO ENGLISH

Kumar Shwait
Dept. of Computer Science and Engineering,

Sant Longowal Institute of Engineering and Technology

Longowal, Punjab, India

Preetpal Kaur Buttar
Dept. of Computer Science and Engineering,

Sant Longowal Institute of Engineering and Technology

Longowal, Punjab, India

Rahul Gautam
Dept. of Computer Science and Engineering,

Sant Longowal Institute of Engineering and Technology

Longowal, Punjab, India

Abstract: India is a country with many cultures and if you travel from one place to another, you might find yourself in totally different culture.

This also means the languages change from place to place in India and it gets very difficult to read signboards, shop names and even many other

common things written in local languages. This can create problems for not only the travelers travelling from other countries but also the people

who move withing the country from different regions. But most of the signboards, shop names or other landmarks mostly use English or Hindi in

most of the regions. Here we propose a complete text detection & recognition as well as transliteration system that will help travelers read text

written in Hindi on any signboards or shops and then transliterate that detected text into English. The proposed system is capable of detecting

text written in Hindi language in natural environment using Progressive Scale Expansion algorithm and then transliterating the detected text into

English language. Our proposed system can detect text in tough scenarios, and it can even detect curved text from natural images. Our system

after detecting text region, extracts the text from the detected area using PyTesseract OCR engine and then the extracted text is further

transliterated into English text with the help of seq2seq MultiRNN LSTM model which gives us accurate transliterations without losing the

actual pronunciation of the original Hindi words. We use a synthetic dataset for Hindi Text images containing approx. 100000 for Text Detection

and FIRE2013 dataset for transliteration. The overall system is evaluated using BLEU score.

Keywords: Text detection; text recognition; transliteration; scene text; LSTM; neural machine translation

I. INTRODUCTION

Travelling in India has been an attraction for many tourists

since many years. The country is full of different cultures from

North to South and from East to West. The diversity of

languages and culture makes the country an attraction for

many tourists from other countries as well as within India.

This makes travelling very tough in India for many travelers,

not just coming from other countries, but also for those who

travel from different parts of the country. As an average

traveler, it’s easy to get confused by various signboards

written in unfamiliar languages. Here we put our focus on

Hindi language as it is the most dominant language used in

India. We propose a system to detect text from signboards

with local language and transliterate them to English, word by

word, so they don’t lose the actual pronunciation after getting

converted into English. The task at hand can be divided into

three major divisions:

 Text Detection

 Recognition of Individual Characters

 Natural Language Processing (NLP) for

transliteration.

Text detection is the process of detecting text from natural

images like Signboards or Shop Boards. For any given image,

the system should be able to detect the text and cut out the

detected text region for further processing. There are many

systems and features handcrafted for this task. For characters

having features like stroke width, uniform size and chromatic

consistency, there are techniques like Stroke Width Transform

(SWT) [1] and Maximally Stable External Regions (MSER)

[2], [3]. These features are used for Connected Component

Analysis (CCA) to extract and separate out each text

components. Other algorithms like Sliding Window Technique

[4] are used where windows of different sizes are slid on

image to detect if ant text is present. Then graph based

grouping algorithm is applied to combine them into chunks

texts to group them as words. With Deep Learning, Text

Detection problem is mainly considered as an Object

Detection problem. There are two main ways to handle the

problem, the first approach is detecting word by word and then

processing to get the characters in each word. The second

approach is to detect each character first and then group them

into words. Another Deep Learning approach is to classify

pixel wise if it belongs to a text or not and then use k-nearest

approach to instance segment each character [5].

After detecting text from the image, it is very important to

extract that information for further processing. There are

mainly two ways of text recognition, Character recognition

and Word Recognition. Character recognition methods divide

the text in the image into multiple cut-outs of single characters.

In past few decades, Optical Character Recognition (OCR) has

gotten very better. There have been many algorithms based on

deep learning method. The most common methods are

Preetpal Kaur Buttar et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,32-38

© 2020-2022, IJARCS All Rights Reserved 33

Convolutional Neural Network (CNN) [6] and Recurrent

neural Network (RNN). Other methods are based on

combination of these methods [7]. Word recognition uses

character recognition outputs along with language models or

lexicons to recognize words from text image. When there is

limited number of word possibilities in input images, word

recognition is better approach than character recognition.

There are also many open-source OCR engines which have

very good accuracy. They can recognize different languages

with good accuracy and their accuracy can further be

improved with good image pre-processing steps. The accuracy

of PyTesseract is fairly high out of the box which can be

further improved significantly with the help of a well-designed

Tesseract image pre-processing pipeline. Tesseract OCR

engine has been used for text recognition for many researches

in past decade because of its high accuracy [8]–[10]. Here in

this research, we also use Tesseract OCR engine.

For text transliteration, traditional Natural Language

Processing (NLP) based solutions were used for a long time.

But if we need to handle longer text, the quality degrades.

Hence for complicated data and to obtain higher accuracy,

other methods like Deep Learning Sequential models like

RNN has gained thrust in the research filed. One of the earliest

works is by treating it as object detection problem [11]. For

transliteration, Deep Belief networks were used [12].

Currently, most of the research work is focused on Deep

Sequence to Sequential Models, attentional mechanisms are

also used to improve quality [13], [14].

II. RELATED WORK

Work in text detection and recognition has been going on

since decades. However, the best results were observed in the

Deep Learning era. An approach [15] to text recognition in

natural scene images which was unlike any already existed

work was proposed which assume that texts are horizontal and

frontal parallel to the image plane and was able to recognize

perspective texts of arbitrary orientations. It was proposed that

features computed at octave-spaced scale intervals are

sufficient to approximate features on a finely sampled pyramid

which helped a lot in scene text detection [16]. Researchers

also presented a residual learning framework [17] to ease the

training of networks which are substantially deeper than those

used previously. In their work, layers were explicitly

reformulated as learning residual functions with reference to

the layer inputs instead of learning unreferenced functions. An

end-to-end trainable fast scene text detector was proposed

which was called TextBoxes [18] and it can detect text in

natural images in a single network forward pass, thus it does

not involve any post-process except for a standard non-

maximum suppression. Their detector was very fast, and it

took only 0.09s per image. Researchers also proposed a

pipeline that yields fast and accurate text detection in natural

scenes [5]. The pipeline directly predicts text in any shape and

quadrilateral shapes in full images with a single neural

network. The simplicity of proposed pipeline allows

concentrating efforts on designing loss functions and neural

network architecture. In 2018, researchers proposed a method

named sliding line point regression (SLPR) [19] to detect

arbitrary-shape text in natural scene. SLPR regresses multiple

points on the edge of text line and then sketches the outline of

text using these points. For transliteration, it was observed that

NMT requires very less amount of data size for training and

thus exhibits satisfactory results [20].

III. DATASETS USED

For Indian languages, one of the limitations is availability of

databases for both detection as well as transliteration. Our

work includes different databases for text detection as well as

text transliteration. Both databases are publicly available

databases.

For text detection, we use a synthetic dataset which includes

approximately 1,00,000 images with annotations provided

separately for each image. For transliteration, we have used

FIRE dataset. Fire dataset is useful for both translation as well

as transliteration tasks for several languages. Here we have

used FIRE 2013 Eng-Hin Dataset. It contains total of 30,823

words transliterations from English to Hindi. We use these

word-to-word transliterations to train our transliteration model.

IV. PROPOSED METHOD

The overall pipeline consists of mainly two parts, i.e., Text
Detection & Recognition, and Transliteration. The Hindi text in
the image is first detected using Progressive Scale Expansion
Network (PSENet) [21] and then the detected text is extracted
from the image. After extraction, hindi text is passed to the
transliteration system which uses encoder and decoder and
transliterates the input Hindi text to English text. The overall
pipeline can be easily understood with the help of Figure 1.

Figure 1. Overall pipeline of the proposed method.

Finally, complete content and organizational editing before

formatting. Please take note of the following items when
proofreading spelling and grammar:

A. Text Detection and Recognition

Text Detection is the one of the most important tasks in any

OCR system. For text detection, we are using PSENet which is

Preetpal Kaur Buttar et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,32-38

© 2020-2022, IJARCS All Rights Reserved 34

a segmentation-based network that can detect text very well.

This method achieves state of art results for text detection on

International Conference on Document Analysis and

Recognition (ICDAR) 2015 and ICDAR 2017 datasets. This

method is already exceptional in detecting English Text and

here we fine tune it so that it can detect Hindi text very well.

The reasons we use this method is because:

 It can precisely detect text instances with arbitrary

shapes.

 It is able to accurately separate the text instances

standing closely to each other.

 PSENet is inspired by Feature Pyramids Network (FPN)

[22]. The overall pipeline is described thoroughly in [21].

PSENet is combination of FPN and Progressive Scale

Expansion algorithm (PSE). In PSENet, low-level feature

maps are concatenated with high-level feature maps which

results in having overall 4 concatenated feature maps. These

obtained feature maps are then fused in to encode

information with various receptive views which is very likely

to facilitate the generations of the kernels with various number

of scales. After that the feature map is projected into

branches which produces multiple segmentation results ,

 where each would be one segmentation mask for all

the text instances at a certain scale. Among these produced

masks, gives the segmentation result for the text instances

with smallest scales (i.e., the minimal kernels) and denotes

for the original segmentation mask (i.e., the maximal kernels).

After obtaining these segmentation masks, PSE algorithm is

used to gradually expand all the instances’ kernels in , to

their complete shapes in . The final detection result is

obtained as as shown in Figure 2.

Figure 2. Architecture of PSENet.

It is very hard for segmentation-based method to separate

closely packed text instances. To solve this issue, PSENet uses

PSE algorithm. PSE is based on Breadth First Search

algorithm (BFS) which starts from the pixels of multiple

kernels and iteratively merges the adjacent text pixels. There

may be some conflicted pixels during expansion which are

dealt by merging the confusing pixel by one single kernel on

the basis of first come first served. Due to the progressive

expansion procedure, these boundary conflicts do not affect

the final detections and the performance. The summary of

scale expansion algorithm is given in Algorithm 1 to

understand how it works is given below.

Algorithm 1: Progressive Scale Expansion

16:

 In the pseudocode, , are the intermediate results and

is a queue. represents the neighbor pixels of .

is the function of grouping the

intermediate result by label. “ [q] = True” means that the

predicted value of pixel in belongs to the text part.

 The label generation is done using polygon shrinking where

ground truth labels are conducted by shrinking the original text

instance. If we consider the scale ratio as , the margin

between and can be calculated as:

(1)

where is the function of computing the polygon area

and is the function of computing the polygon

perimeter. Further, the scale ratio for ground truth map
can be defined as:

(2)

where is the minimal scale ratio whose value lies in (0,1].

The values of scale ratios (i.e., ,) are decided by two

hyper-parameters and , which increase linearly from to

1. The loss function can for PSENet is given by:

 (3)

where and represent the losses for the complete text

instances and the shrunk ones respectively. balances the

importance between and . Dice coefficient is also

adopted using the information from [23] to deal with network

predictions being biased to the non-text region. Online Hard

Example Mining (OHEM) [24] is also adopted during training

to better distinguish between patterns like text strokes, such as

fences, lattices, etc.

 In our experiments, we implemented the PSENet using the

FPN [22]. The feature maps are obtained in same way as

described in [21] and the obtained feature maps are fused with

. The function used for fusion is which is described as:

Preetpal Kaur Buttar et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,32-38

© 2020-2022, IJARCS All Rights Reserved 35

where “ ∥” refers to the concatenation and ,

, refer to 2, 4, 8 times up sampling. Then,

feature map is passed to Conv (3, 3)-BN-ReLU layers. After

that, it is passed through multiple Conv (1, 1)-Up-Sigmoid

layers which produces segmentation results , .

Here, Conv refers to convolution [25], BN refers to batch

normalization [26], ReLU refers to rectified linear units [27]

and Up refer to upsampling.

 The value of is set to 6 and value of is set to 0.5 for

label generation which gives the scales {0.5, 0.6, 0.7, 0.8, 0.9,

1.0}. The value of lies between 0.1 to 0.9. The performance

of system drops when is either too large or too small. When

 is too large, it gets difficult for network to separate the text

instances standing closely to each other and when is too

small, network often splits a whole text line into different parts

incorrectly and the training cannot converge very well. This is

why we decided to set = 0.5 which gives the best results.

The of loss balance value is set to 0.7. We calculate the

minimal area rectangle to extract the bounding boxes as final

predictions.

 In our experiments, ResNet [28] is used which was

pretrained on ImageNet Dataset [29] and the weights

initialization is adopted from [30]. 36000 synthetic training

images and 4000 synthetic validation images were used to

train the model with the help of GPU (NVIDIA GTX 1080

Ti). The batch size, epochs and decayed learning rate is

adopted from [21].

 After training is complete, we used PyTesseract for

extracting the text from detected text region. PyTesseract is an

open-source python library which is based on CNN-LSTM

base model and is very fast method to extract the detected text

and it is also very accurate. The extracted text is stored in

separate text files which we finally use in our next step where

we transliterate it to English language.

B. Transliteration

 For transliteration, we used seq2seq based architecture

which uses RNN with Long Short Term Memory (LSTM)

cells, Gated Recurrent Unit (GRU) cells and MultiRNN LSTM

cells. RNNs are a special type of neural network with loops

that allow information to persist throughout different steps in a

network. The loop enables the neural network to go back and

check what happened in all of the previous words before

deciding what the current word actually means. In simple

language, a RNN can be thought of as copy-pasting the same

network over and over again, with each new copy-paste adding

a bit more information than the previous one. The input of

RNN can be fixed to seq, seq to fix or seq to seq. We are using

the seq to seq in which we provide the Hindi text and get the

text of transliterated in English. A seq-to-seq network is

generally represented as seq2seq network.

Figure 3. seq2seq RNN model.

 Our model for machine transliteration uses encoder and

decoder architecture [31]. Encoder–decoders are two separate

recurrent neural networks (RNN). The first network is used to

encode the input sequence of the source language into a

sequence vector which used by another network to decode that

vector into an output sequence of the target language. This

sequence vector is a hidden state of the network which uses

recurrent activation function. Encoder and decoder consist of

the memory cell (LSTM/GRU) that helps the network to

remember long sequences. A GRU cell has one less gate than

an LSTM i.e., it just has a reset and update gates instead of the

forget, input, and output gate of LSTM. To understand

working of our models, let’s say for transliterating a source

sentence x = { , } into a target sentence y = { ,

}, two RNNs are used, i.e., an encoder and a decoder.

These encoder and decoder are trained together to generate

output sequence y from the input sequence x, where and

are a token of sequence at any given time and n is the total

number of tokens in a given sequence. The transliteration

system we built is a character based RNN encoder and uses

characters as tokens. RNN encoder encodes the input into a

hidden sequence h = { , }, where is a hidden state

of the encoder at time step t and i is a dimension of the hidden

vector described in the equation below:

 (5)

In the above equation, and are weight matrices that

connect the input sentences and recurrent output, respectively.

 is the hidden state at time step which represents input at

the same time step , modified by a weight vector added to

a previous hidden state multiplied by its own hidden state

matric . A logistic sigmoid activation function is used to

squash the sum of weight input and hidden state. The encoder

encodes the input sequence into fixed dimension vector

representation which helps to compute the new internal state at

time step using the history of sequence vector .

The decoder RNN takes the output from the encoder and

target output as input at time step along with its decoder

previous state and the output sequence is generated token

by token at each time step using the SoftMax activation

function as shown in the equation below:

(6)

Here, is a decoder output, and are decoder weight

vectors, is a decoder bias vector, is a decoder previous

hidden state, is an encoder hidden state.

Figure 4. Detailed architecture of seq2seq model.

Preetpal Kaur Buttar et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,32-38

© 2020-2022, IJARCS All Rights Reserved 36

Thus, RNN will try to predict the next token based on the
history of input tokens. For a series of letters, a RNN will use
the first character to help determine its perception of the second
character. For our seq2seq model, we experimented with GRU
Cells, LSTM cells and MultiRNN LSTM cells and used the
implementation with the embedding layer provided by
TensorFlow. We used FIRE2013 dataset which contains total
number of 30823 transliteration samples and 90% of the
samples from the dataset were used for the training and
remaining 10% for the validation. As for loss function, we used
Weighted SoftMax Cross Entropy function. We used learning
rate of 0.0001. The batch size used is 30 and the size of the
cells used is 128. The training was done on Google Colab using
GPU runtime for 20 epochs.

V. RESULTS AND COMPARISON

 For Text detection and Recognition, we performed our

experiments on Synthetic Train Dataset. We trained and

validated on 36000 samples of images and 4000 samples of

images respectively. To test the performance, we used test

images from the synthetic dataset and obtained output images

with text detected inside bounding boxes alongside a text file

containing extracted text which we need to transliterate into

English. The output of the model can be seen below:

Figure 5. Output images containing detected text.

The results for different methods applied on FIRE2013
Eng-Hin dataset are given in the table below:

Table I. Results for seq2seq Model on FIRE2013 dataset

Method BLEU Score

GRU based RNN 0.76

LSTM based RNN 0.79

MultiRNN LSTM 0.82

As we can see our seq2seq model with MultiRNN LSTM

clearly outperforms the other methods and gives accurate

results. We observed that MultiRNN LSTM cells are better

approach than RNN with GRU cells and LSTM cells which

outperforms RNN with GRU cells by 0.6 and RNN with

LSTM cells by 0.3.

We further compared the proposed method with Google

Translate which is a very commonly used app for Translation

as well as transliteration for tasks like reading Signboards with

Hindi language or reading shop names. We compared for few

words to show how our transliteration method is better than

Google Translate which fails to give accurate transliterations

and just returns translations instead. The comparison is shown

in Table 2.

Table II. Comparison Between Google Translate & Proposed Method

Input

Hindi

Word

Expected Output Google Translate Proposed

Method

ससससस

ससस

Sunder Nagar Beautiful City sundar nagar

ससससस

ससस

Vikas Nagar Vikas Nagar Vikaas nagar

ससस

सससस

Chai Wala Tea Maker Chaay waala

सससस Guru Master guru

ससससस

सससस

Chashme Wala Spectacled Chashme

waala

सससस

ससससस

Khada Patthar Standing

Stone

khada patthar

As we can see from the Table 2, Google Translate is able to

transliterate Hindi from English and it gave accurate

transliteration for “ससससस ससस”, however, it fails to

transliterate most of the Hindi words and instead just gives

translations for them whereas our seq2seq model provides

accurate English transliterations for Hindi words.

VI. CONCLUSIONS AND FUTURE SCOPE

We proposed a system for text detection & recognition

using PSENet and PyTesseract and further connected it to a

seq2seq encoder-decoder model to transliterate the output

given by it into English language. The system is capable of

detecting text instances in natural images. Our system is very

robust to shapes and is capable to detect closely packed text

instances in natural images by progressively expanding the

detected regions from small kernels to large and complete

instances via multiple segmentation maps. We further use

PyTesseract to extract the text from the detected region. Our

system also performed very well for the transliteration

problem even though the dataset available was very small. We

further observed that using a smaller number of layers and

thus keeping our model less complex yielded better results.

The reason for this could be the simplicity of LSTM models

which is advantageous in our case where the dataset is fairly

small and not very complex.

So far, we only focused on Hindi language as it is spoken

more as compared to other languages in India but there are

many different regional languages spoken here and we can

work in future on this project to make a transliteration service

which works for many other languages. For future researchers,

there is also scope for work to create a bi-directional

transliteration system where they can detect more than one

language in natural images and transliterate them in any

direction. That is, they can easily convert English to their

regional language or regional language to English. As we

Preetpal Kaur Buttar et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,32-38

© 2020-2022, IJARCS All Rights Reserved 37

know machine learning yields better results with more data,

more data can be used to train to make the system even more

accurate. The dataset for Hindi to English transliteration is

very limited, therefore, in future more work can be done on

gathering more data for Hindi to English transliteration which

can provide better results.

VII. REFERENCES

[1] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in

natural scenes with stroke width transform,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp.

2963–2970, 2010, doi: 10.1109/CVPR.2010.5540041.

[2] S. Bhargava and E. Yablonovitch, “Lowering HAMR

near-field transducer temperature via inverse

electromagnetic design,” IEEE Trans. Magn., vol. 51,

no. 4, 2015, doi: 10.1109/TMAG.2014.2355215.

[3] S. Karim, A. A. Laghari, A. Halepoto, A. Manzoor, N.

Hussain Phulpoto, and A. Ali, “Vehicle detection in

Satellite Imagery using Maximally Stable Extremal

Regions,” IJCSNS Int. J. Comput. Sci. Netw. Secur.,

vol. 18, no. 4, pp. 75–78, 2018.

[4] I. Ahmad and G. A. Fink, “Handwritten Arabic text

recognition using multi-stage sub-core-shape HMMs,”

Int. J. Doc. Anal. Recognit., vol. 22, no. 3, pp. 329–349,

2019, doi: 10.1007/s10032-019-00339-8.

[5] X. Zhou et al., “East: An efficient and accurate scene

text detector,” arXiv, pp. 5551–5560, 2017.

[6] J. Wang and X. Hu, “Gated Recurrent Convolution

Neural Network for OCR,” no. Nips, 2017.

[7] P. Shivakumara, D. Tang, M. Asadzadehkaljahi, T. Lu,

U. Pal, and M. H. Anisi, “CNN-RNN based method for

license plate recognition,” CAAI Trans. Intell.

Technol., vol. 3, no. 3, pp. 169–175, 2018, doi:

10.1049/trit.2018.1015.

[8] L. Giridhar, A. Dharani, and V. Guruviah, “A novel

approach to OCR using image recognition based

classification for ancient tamil inscriptions in temples,”

arXiv, pp. 1–8, 2019.

[9] S. Prajapati, S. R. Joshi, A. Maharjan, and B. Balami,

“Evaluating Performance of Nepali Script OCR using

Tesseract and Artificial Neural Network,” Proc. 2018

IEEE 3rd Int. Conf. Comput. Commun. Secur. ICCCS

2018, pp. 104–107, 2018, doi:

10.1109/CCCS.2018.8586808.

[10] A. S., J. Yankey, and E. O., “An Automatic Number

Plate Recognition System using OpenCV and Tesseract

OCR Engine,” Int. J. Comput. Appl., vol. 180, no. 43,

pp. 1–5, 2018, doi: 10.5120/ijca2018917150.

[11] P. Duygulu, K. Barnard, J. F. G. de Freitas, and D. A.

Forsyth, “Object recognition as machine translation:

Learning a lexicon for a fixed image vocabulary,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 2353, pp.

97–112, 2002, doi: 10.1007/3-540-47979-1_7.

[12] T. Deselaers, S. Hasan, O. Bender, and H. Ney, “A deep

learning approach to machine transliteration,” no.

March, p. 233, 2009, doi: 10.3115/1626431.1626476.

[13] M. Alam and S. ul Hussain, “Sequence to sequence

networks for roman-Urdu to Urdu transliteration,”

arXiv, pp. 1–7, 2017.

[14] Y. Wu et al., “Google’s Neural Machine Translation

System: Bridging the Gap between Human and

Machine Translation,” arXiv e-prints, p.

arXiv:1609.08144, 2016, [Online]. Available:

http://arxiv.org/abs/1609.08144.

[15] T. Q. Phan, P. Shivakumara, S. Tian, and C. L. Tan,

“Recognizing text with perspective distortion in natural

scenes,” Proc. IEEE Int. Conf. Comput. Vis., pp. 569–

576, 2013, doi: 10.1109/ICCV.2013.76.

[16] P. Dollar, R. Appel, S. Belongie, and P. Perona, “Fast

feature pyramids for object detection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 36, no. 8, pp. 1532–

1545, 2014, doi: 10.1109/TPAMI.2014.2300479.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” 2016, doi:

10.1109/CVPR.2016.90.

[18] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu,

“TextBoxes: A fast text detector with a single deep

neural network,” 31st AAAI Conf. Artif. Intell. AAAI

2017, pp. 4161–4167, 2017.

[19] Y. Zhu and J. Du, “Sliding line point regression for

shape robust scene text detection,” arXiv, pp. 3735–

3740, 2018.

[20] S. R. Laskar, A. Dutta, P. Pakray, and S.

Bandyopadhyay, “Neural machine translation: English

to hindi,” 2019 IEEE Conf. Inf. Commun. Technol.

CICT 2019, pp. 25–30, 2019, doi:

10.1109/CICT48419.2019.9066238.

[21] W. Wang et al., “Shape robust text detection with

progressive scale expansion network,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

vol. 2019-June, no. c, pp. 9328–9337, 2019, doi:

10.1109/CVPR.2019.00956.

[22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan,

and S. Belongie, “Feature Pyramid Networks for Object

Detection,” Proc. - 2019 IEEE Intl Conf Parallel

Distrib. Process. with Appl. Big Data Cloud Comput.

Sustain. Comput. Commun. Soc. Comput. Networking,

ISPA/BDCloud/SustainCom/SocialCom 2019, pp.

1500–1504, Dec. 2016, doi: 10.1109/ISPA-BDCloud-

SustainCom-SocialCom48970.2019.00217.

[23] F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net:

Fully convolutional neural networks for volumetric

medical image segmentation,” Proc. - 2016 4th Int.

Conf. 3D Vision, 3DV 2016, pp. 565–571, 2016, doi:

10.1109/3DV.2016.79.

[24] A. Shrivastava, A. Gupta, and R. Girshick, “Training

region-based object detectors with online hard example

mining,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2016-Decem, pp. 761–769,

2016, doi: 10.1109/CVPR.2016.89.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–

2323, 1998, doi: 10.1109/5.726791.

[26] S. Ioffe and C. Szegedy, “Batch normalization:

Accelerating deep network training by reducing internal

covariate shift,” 32nd Int. Conf. Mach. Learn. ICML

2015, vol. 1, pp. 448–456, 2015.

[27] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse

rectifier neural networks,” J. Mach. Learn. Res., vol. 15,

pp. 315–323, 2011.

[28] B. Leibe, J. Matas, N. Sebe, and M. Welling, “Preface,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 9906

Preetpal Kaur Buttar et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,32-38

© 2020-2022, IJARCS All Rights Reserved 38

LNCS, pp. VII–IX, 2016, doi: 10.1007/978-3-319-

46493-0.

[29] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei, “ImageNet: A large-scale hierarchical image

database,” pp. 248–255, 2009, doi:

10.1109/cvprw.2009.5206848.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep

into Rectifiers: Surpassing Human-Level Performance

on ImageNet Classification,” in 2015 IEEE

International Conference on Computer Vision (ICCV),

2015, pp. 1026–1034, doi: 10.1109/ICCV.2015.123.

[31] A. Khan and A. Sarfaraz, “RNN-LSTM-GRU based

language transformation,” Soft Comput., vol. 23, no.

24, pp. 13007–13024, 2019, doi: 10.1007/s00500-019-

04281-z.

	I. Introduction
	II. Related Work
	III. Datasets Used
	IV. Proposed Method
	A. Text Detection and Recognition
	Algorithm 1: Progressive Scale Expansion

	B. Transliteration

	V. Results and Comparison
	VI. Conclusions and Future Scope
	VII. References

