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Abstract: Complex valued neural network (CVNN) has been developed to process complex valued data directly. In CVNN, one of the most 
important factors is selecting the node’s activation function. Choosing the right activation function for each layer is also crucial and may have a 
significant impact on metric scores and the training speed of the model. This paper introduces three new activation functions for CVNNs which 
is closely related to the activation function complex swish. These new activation functions are complex modified swish, complex E-swish and 
complex Flatten-T swish. In order to verify the validity and practicability of the proposed three new activation functions are tested and compared 
with complex swish activation function on complex valued four bit XOR problem, three inputs symmetry detection and the fading equalization 
problems. We show that complex E-swish ( β=1.4)  has the best overall performance when compared to other networks using complex swish, 
complex modified swish and complex Flatten-T swish activation functions on the considered tasks. 
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I. INTRODUCTION 

As an extension of real valued artificial neural networks 
(RVANN), complex valued artificial neural networks 
(CVANN)has been developed to process data with complex 
numbers directly without requiring any pretreatment. 
CVANN is one of the type of neural network consisting of 
complex numbers of parameters such as weights, threshold 
values, inputs and outputs [1]. 

CVANN are suitable for areas that deal with complex 
valued data such as image processing by taking the fourier 
transformation, radar, telecommunication and speech 
recognition. CVANN are also used in areas such as 
telecommunications and image processing can be found in 
the literature [2,3,4]. For example, the fading equalization 
problem has been successfully solved with a single 
complex-valued neuron with the highest generalization 
ability [5]. Also the fading equalization, symmetry detection 
and exclusive-or (XOR) problem scan be successfully 
solved by a single complex valued neuron [5,6].  

The threshold values and initial weights of CVANN, 
normalization of data and activation function of hidden 
nodes affects CVANN's convergence to target [7]. For 
CVANNs, the main task is finding an appropriate complex 
activation function. Despite the real valued activation 
function is usually selected to be bounded and smooth like a 
logarithmic sigmoid function, these properties are not 
suitable for CVANN [8]. 

All parameters of CVANN such as inputs, outputs and 
weights are in complex plane. So that the activation function 
of CVANN must be extended into the complex domain. The 
complex activation function should be satisfy the following 
features: 

- The function φ (z) should not be linear in both the real 
and imaginary parts of Z, ZR and ZI. Otherwise, the multi-

layer perceptron will have no advantage. If correct, using a 
multi-layer perceptron would be equal to a single-layer 
perceptron [1]. 

- The function φ (z) must be bounded. The formulas 
described for the forward passage of the multilayered 
perceptron require limitation. Otherwise there will be 
interruptions during the training [1]. 

- The Partial derivatives of φ (z) should exist and be 
bounded. Since we use complex back-propagation, the 
partial derivatives of φ (z) need to be bounded [1]. 

- The function φ (z) must be defined as a complex 
function that is analytic all over the complex plane [1]. 

There are many studies in the field of complex activation 
function.Some of these are given below. 

Leung and Haykin [9] was used the sigmoid function on 
complex domain, as follows: 

𝑓𝑓(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
                                                (1) 

Leung and Haykin scaled the input data to some region of 
complex domain given below, because this function has 
singular points at every𝑧𝑧 = (2𝑛𝑛 + 1)𝑖𝑖𝑖𝑖,𝑛𝑛 ∈ 𝑍𝑍. 

𝑓𝑓(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑅𝑅𝑒𝑒𝑧𝑧
+ 𝑖𝑖

1
1 + 𝑒𝑒−𝐼𝐼𝐼𝐼𝑧𝑧

                             (2) 

Benvenuto and Piazza [10],Birx and Pipenberg [11] was 
adapted 𝑡𝑡𝑡𝑡𝑛𝑛ℎ  functionto CVANNs as real-imaginary type 
activation function given bellow: 

𝑓𝑓(𝑧𝑧) = tanh(𝑅𝑅𝑒𝑒𝑧𝑧) + 𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝐼𝐼𝐼𝐼𝑧𝑧)                          (3) 

Kechriotis and Monalakos [12], Kinouchi and Hagiwara 
[13] used𝑡𝑡𝑡𝑡𝑛𝑛ℎ function given below: 
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𝑓𝑓(𝑧𝑧) = tanh(|𝑧𝑧|) exp�𝑖𝑖 𝑡𝑡𝑎𝑎𝑎𝑎(𝑧𝑧)�                                    (4) 

By Hirose [14]. 

II. MATERIALS AND METHOD 

A. Complex-Valued Neuron Model 
Complex-valued neurons (CVN) are as natural as 

complex numbers and they are more functional than real-
valued neurons (RVN) such as learning faster and generalize 
better. CVN can be used for simulation of biological 
neurons and treat the phase information properly. A single 
RVN can learn only linearly-separable input/output 
mappings and cannot learn nonlinearly separable 
input/output mappings but CVN can learn both of them [15]. 

The complex valued neuron model is given in Eq.5 where 
the f is an activation function, x1,….,x2 are the inputs, 
𝑤𝑤0 … . .𝑤𝑤𝑛𝑛  are the weights and PB 

The activation function 𝑃𝑃𝐵𝐵  can be a real function 𝑃𝑃𝐵𝐵 : 𝐶𝐶 →
𝑅𝑅  or complex function 𝑃𝑃𝐵𝐵 : 𝑅𝑅 → 𝐶𝐶  but the function always 
acts on a complex variable [16]. 

is the activation function 
[15]. 

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) =  𝑃𝑃𝐵𝐵(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛)           (5) 

One of the main advantages of CVN is their ability to 
work with the phase, which is very important for the 
analysis of signals and for solving different pattern 
recognition and classification problems. The analysis of 
real-valued signals one of the most efficient approaches is 
the frequency domain analysis, which immediately involves 
complex numbers. By analysing signal properties in the 
frequency domain, we can see that each signal is 
characterized by magnitude and phase that carry different 
information about the signal. So that CVN treat the phase 
information properly [15]. 

B. The New Activation Functions 

Swish activation function was proposed by researchers at 
Google (2007). This activation function and its derivative 
are formulized by Eq. 6, 7 [17].  

𝑦𝑦 = 𝑥𝑥. 𝑠𝑠𝑖𝑖𝑎𝑎𝐼𝐼𝑠𝑠𝑖𝑖𝑠𝑠(𝑥𝑥)  =
𝑥𝑥

1 + 𝑒𝑒−𝑥𝑥
                                    (6) 

𝑦𝑦′ = 𝑦𝑦 + 𝜎𝜎(𝑥𝑥)(1 − 𝑦𝑦) =
𝑥𝑥. 𝑒𝑒−𝑥𝑥(𝑥𝑥 + 1) + 1

(1 + 𝑒𝑒−𝑥𝑥)2             (7) 

Complex Swish 

Where 𝜎𝜎 is the sigmoid activation function. In our study, 
the swish activation function has been studied in complex 
plane with the complex valued input z. Swish has been 
adapted to CVANNs as real and imaginary type function 
given by Eq.8 [7]. 

𝑦𝑦 = 𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝑅𝑅𝑒𝑒(𝑧𝑧)� + 𝑖𝑖. 𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝐼𝐼𝐼𝐼(𝑧𝑧)�                   (8) 

Modified swish activation function was proposed by 
Ramachandran et al [17]. Mod-swish function is defined as: 

𝑦𝑦 = 𝑥𝑥.𝜎𝜎(𝛼𝛼𝑥𝑥)                                                                  (9) 

Complex Modified Swish 

Where the 𝛼𝛼  value is either a constant or a trainable 
parameter. Since the proposed CVANN will use the back 
propagation, the derivative of𝑦𝑦 is needed. The derivative of 
the y function is formulized by the following equations: 

 
𝑦𝑦′ = 𝜎𝜎(𝛼𝛼𝑥𝑥) +   𝛼𝛼𝑥𝑥.𝜎𝜎(𝛼𝛼𝑥𝑥). (1 − 𝜎𝜎(𝛼𝛼𝑥𝑥)) 

 
𝑦𝑦′ = 𝜎𝜎(𝛼𝛼𝑥𝑥) +   𝛼𝛼𝑥𝑥.𝜎𝜎(𝛼𝛼𝑥𝑥) − 𝛼𝛼𝑥𝑥.𝜎𝜎(𝛼𝛼𝑥𝑥)2 

 
𝑦𝑦′ = 𝛼𝛼𝑥𝑥.𝜎𝜎(𝛼𝛼𝑥𝑥) + 𝜎𝜎(𝛼𝛼𝑥𝑥)(1 − 𝛼𝛼𝑥𝑥.𝜎𝜎(𝛼𝛼𝑥𝑥)) 

 
𝑦𝑦′ = 𝛼𝛼𝑦𝑦 + 𝜎𝜎(𝛼𝛼𝑥𝑥)(1 − 𝛼𝛼𝑦𝑦)         (10) 

 
In our study, the modified swish activation function has 

been studied in complex plane with the complex valued 
input z. Modified Swish has been adapted to CVANNs as 
real and imaginary type function as follows: 

𝑦𝑦 = 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝑅𝑅𝑒𝑒(𝑧𝑧)� + 𝑖𝑖.𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝐼𝐼𝐼𝐼(𝑧𝑧)�           (11) 

Alcaide introduced the E-swish activation function (2018) 
[18]. E-swish and its derivative are formulated as: 

𝑦𝑦 = 𝛽𝛽𝑥𝑥.𝜎𝜎(𝑥𝑥)                                                                   (12) 

Complex E-Swish 

 
𝑦𝑦′ = 𝛽𝛽𝜎𝜎(𝑥𝑥) +   𝛽𝛽𝑥𝑥.𝜎𝜎(𝑥𝑥). (1 − 𝜎𝜎(𝑥𝑥))                                

 
𝑦𝑦′ = 𝛽𝛽𝜎𝜎(𝑥𝑥) +   𝛽𝛽𝑥𝑥.𝜎𝜎(𝑥𝑥) − 𝛽𝛽𝑥𝑥.𝜎𝜎(𝑥𝑥)2 

 
𝑦𝑦′ = 𝛽𝛽𝑥𝑥.𝜎𝜎(𝑥𝑥) + 𝜎𝜎(𝑥𝑥)𝛽𝛽 − 𝛽𝛽𝑥𝑥.𝜎𝜎(𝑥𝑥)2 

 
𝑦𝑦′ = 𝑦𝑦 + 𝜎𝜎(𝑥𝑥)(𝛽𝛽 − 𝑦𝑦)                                                 (13) 

 
E-swish activation function is very similar t Swish. 

Actually, when we take the 𝛽𝛽  constant as 1, E-
swishbecomes the same as Swish. The constant value 𝛽𝛽 is 
either a constant or a trainable parameter [18]. 

In our study, E-swish activation function has been studied 
in complex plane with the complex valued input 𝑧𝑧. E-Swish 
has been adapted to CVANNs as real and imaginary type 
function given by: 

𝑦𝑦 = 𝐸𝐸𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝑅𝑅𝑒𝑒(𝑧𝑧)� + 𝑖𝑖.𝐸𝐸𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝐼𝐼𝐼𝐼(𝑧𝑧)�             (14) 

This new activation function called FTS wish or Flatten-T 
Swish (FTS) was proposed by Chieng [19]. Flatten-T swish 
combines the Swish and Rectified Linear Units (ReLU) 
activations functions into a new one. FTS wish is formulated 
as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = �
𝑥𝑥

1 + 𝑒𝑒−𝑥𝑥
+ 𝐹𝐹    ,     𝑥𝑥 ≥ 0

        𝐹𝐹                ,      𝑥𝑥 < 0
                 (15) � 

Complex Flatten-T Swish 

T is the parameters called threshold values that enable the 
negative part of the equation to produce negative values[19]. 
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The proposed CVANN will use the back propagation 
algorithm so that the derivative of the formula is needed. 𝐹𝐹 
is a constant value so that its derivative simply converts to 
be 0 (similarly, this applies to the FTS(x) derivative x < 0). 
So that, the only term in the derivative is𝑦𝑦 = 𝑥𝑥.𝜎𝜎(𝑥𝑥) +
𝐹𝐹  .The derivative steps of FTS is given below: 

 
                   𝑦𝑦′ = 𝜎𝜎(𝑥𝑥) + 𝑥𝑥.𝜎𝜎(𝑥𝑥)�1 − 𝜎𝜎(𝑥𝑥)� 

 
                  𝑦𝑦′ = 𝜎𝜎(𝑥𝑥) + 𝑥𝑥.𝜎𝜎(𝑥𝑥) − 𝑥𝑥.𝜎𝜎(𝑥𝑥)2 

 
                  𝑦𝑦′ = 𝜎𝜎(𝑥𝑥) + 𝑥𝑥.𝑦𝑦 − 𝜎𝜎(𝑥𝑥).𝑦𝑦 

 
𝑦𝑦′ = 𝜎𝜎(𝑥𝑥)(1 − 𝑦𝑦) + 𝑦𝑦                                          (16) 

 
 
As a whole, the derivative of the FTS is formulized as: 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = �𝜎𝜎(𝑥𝑥)(1 − 𝑦𝑦) + 𝑦𝑦    ,      𝑥𝑥 ≥ 0
        0                         ,      𝑥𝑥 < 0         (17) � 

In our study, FTS wish activation function has been 
studied in complex plane with the complex valued input 𝑧𝑧. 
FTSwish has been adapted to CVANNs as real and 
imaginary type function given by: 

𝑦𝑦 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝑅𝑅𝑒𝑒(𝑧𝑧)� + 𝑖𝑖.𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑖𝑖𝑠𝑠ℎ�𝐼𝐼𝐼𝐼(𝑧𝑧)�           (18) 

C. Complex Valued Data 
Since all parameters in CVANN consist of complex 

numbers, the input data must also be in complex domain. 
Therefore the real valued input data must be moved to 
complex domain. In this study the real valued four bit XOR 
and three inputs one output symmetry detection problem 
converted to complex domain.  

In this study, to verify the validity and applicability of the 
CVANN using the new activation functions, we applied it to 
three problems: the four bit XOR, three inputs one output 
symmetry detection and fading equalization problems. 

The Complex valued Exclusive-Or (XOR) problem with 
four patterns is given in Table 1. The complex valued XOR 
problem is defined according to the following two rules 

Complex valued XOR problem with four patterns 

-The real part of the output, the real and the imaginary 
part of the XOR 

-The imaginary part of the output is taken as the real part 
of the input [20]. 

Table 1. Similar XOR for CVANN  

Input Output 

X Y 1 
0 0 
i 1 

1 1+i 
1+i i 

 
The CVANN has many advantages over the RVANN, 

such as the XOR problem, which can be solved with two 
layered CVANN [21]. 

The problem of symmetry determination aims to 
symmetrically determine the binary activity levels of a one-
dimensional input neuron array under the central point. 
Symmetry probability decreases as the number of bits 
increases. Therefore, the symmetry detection problem is a 
very suitable problem for researching unbalanced data 
because the possibility of being symmetric decreases as the 
number of bits increases. Three inputs and one output 
detection of symmetry problem is shown in Table 2 [21]. 

Symmetry detection problem 

Table 2. The detection of symmetry problem  

Inputs Output 

X X1 X2 Y 3 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 
Since all parameters in CVANN consist of complex 

numbers, the input data must also be in complex domain. 
Therefore the real valued input data must be converted to 
complex domain. This conversion can be done with sample 
angle-based coding using the equation given below [22]. 

𝜑𝜑 =
Ɵ(𝑥𝑥 − 𝑡𝑡)
𝑏𝑏 − 𝑡𝑡

                                                          (19) 

where 𝑥𝑥 ∈  [𝑡𝑡, 𝑏𝑏] and Ɵ the is the mapping angle. After 
the encoded angle value 𝜑𝜑  is evaluated by a linear 
transformation using Eq. 19, by the Euler formula given in 
Eq. 20, the complex valued data is obtained on the unit 
circle with unity gain. 

𝑍𝑍 = 𝑒𝑒𝑖𝑖𝜑𝜑 = 𝑐𝑐𝑠𝑠𝑠𝑠𝜑𝜑 + 𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝜑𝜑                                      (20) 

In this study, a and b were taken as 0 and 1, respectively. 
The data was moved to the complex plane with a phase 
angle Ɵ = 𝑖𝑖/4 . Three input and one output symmetry 
detection problems in the complex plane are given Table 3. 

Table 3. Complex valued symmetry detection  

Inputs Output 

X X1 X2 Y 3 
1 1 1 0.7+0.7i 
1 1 0.7+0.7i 1 
1 0.7+0.7i 1 0.7+0.7i 
1 0.7+0.7i 0.7+0.7i 1 

0.7+0.7i 1 1 1 
0.7+0.7i 1 0.7+0.7i 0.7+0.7i 
0.7+0.7i 0.7+0.7i 1 1 
0.7+0.7i 0.7+0.7i 0.7+0.7i 0.7+0.7i 
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This section showed that the fading equalization problem 
can be successfully solved by the two-layered CVANN with 
the highest generalization ability [23]. 

Fading equalization problem 

Channel equalization problem in a digital communication 
system can be seen as the pattern classification problem. 
The digital communication system receives a signal 
sequence transmitted with additional noise and tries to 
estimate the actual transmitted sequence from these signals. 
A transmitted signal can assume one of the following four 
possible complex values:  −1 − 𝑖𝑖  , −1 + 𝑖𝑖  , 1 − 𝑖𝑖   and 
1 + 𝑖𝑖( 𝑖𝑖 = √−1  ). Thus, the received signal will take value 
around −1 − 𝑖𝑖  , −1 + 𝑖𝑖  , 1 − 𝑖𝑖   and 1 + 𝑖𝑖   because some 
noises are added. We need to estimate the true complex 
values from such complex values with noises. Thus, a 
method with excellent generalization ability is needed for 
the estimate. The input-output mapping in the problem is 
shown in Table 4 [24]. 

Table 4. Input-output mapping in the fading equalization problem 

Input Output 

X Y 1 

−1 − 𝑖𝑖 −1 − 𝑖𝑖 
−1 + 𝑖𝑖 −1 + 𝑖𝑖 

1 − 𝑖𝑖 1 − 𝑖𝑖 
1 + 𝑖𝑖 1 + 𝑖𝑖 

 
In order to solve the problem with the complex-valued 

neural network, the input-output mapping in Table 4 is 
encoded as shown in Table 5 [25]. 

Table 5. An encoded fading equalization problem for CVANN 

Input Output 

X Y 1 

−1 − 𝑖𝑖 0 
−1 + 𝑖𝑖 𝑖𝑖 

1 − 𝑖𝑖 1 
1 + 𝑖𝑖 1 + 𝑖𝑖 

 
 
Rumelhart et al., (1986a, b) showed that increasing the 

number of layers raised the computational power of neural 
networks [26,27]. 

III. RESULTS 

A. Complex-Valued XOR Problem with Four Patterns 
CVANN using the new activation functions (E-Swish, 

Flatten-T Swish, Modified Swish) was tested on complex 
valued XOR problem with four patterns for finding the best 
constant value(β,T and 𝛼𝛼). We use 1-2-1 network with the 
learning rate 0.5 as in the literature[5,28-32].The network 
was stopped when the error rate was achieved. For the error 
rate we use Mean squared error (MSE) value given below:   

𝐸𝐸𝑝𝑝 = 𝑀𝑀𝐹𝐹𝐸𝐸 = (1 2⁄ )�|𝐹𝐹𝑛𝑛 − 𝑂𝑂𝑛𝑛 |2
𝑁𝑁

𝑛𝑛=1

                    (21) 

In order to find the best β,T and 𝛼𝛼 values, CVANN using 
E-Swish, Flatten-T Swish and Modified Swish activation 
functions was tested with 18 different values (randomly). 
When the error value (MSE) reached 0.001, the iteration 
number of the CVANNs are shown in the Table 6,7,8.  The 
numbers in “score” column report the aggregate number of 
times of E-swish, Flatten-T swish and modified swish 
activation functions gives the best result obtained by the 
existing activation function across the four tests (Test-I, 
Test-II, Test-III and Test-IV). 

Table 6. Convergence performance for complex e-swish with vary of β 
values, shown in parenthesis, on XOR problem 

Activation 
Function 

Iteration number that reached the error rate 
0.001(MSE) for XOR problem 

Test-I Test-II Test-III Test-IV Score 

E-Swish (β = 0.1) 3000+ 3000+ 3000+ 3000+ - 
E-Swish (β = 0.2) 2031 3000+ 3000+ 3000+ - 
E-Swish (β = 0.3) 1218 3000+ 3000+ 3000+ - 
E-Swish (β = 0.4) 930 2489 2344 23667 - 
E-Swish (β = 0.5) 774 1756 1812 1888 - 
E-Swish (β = 0.6) 669 1416 1494 1609 - 
E-Swish (β = 0.7) 585 1201 1280 1419 - 
E-Swish (β = 0.8) 512 1036 1163 1281 - 
E-Swish (β = 0.9) 447 912 947 1176 - 
E-Swish (β = 1.0) 391 846 846 1092 - 
E-Swish (β = 1.1) 343 940 778 1023 - 
E-Swish (β = 1.2) 304 1066 734 915 1 
E-Swish (β = 1.3) 272 735 715 871 2 
E-Swish (β = 1.4) 245 665 760 831 4 
E-Swish (β = 1.5) 223 920 531 673 3 
E-Swish (β = 2) 203 738 3000+ 473 3 
E-Swish (β = 3) 100 792 3000+ 370 3 
E-Swish (β = 4) 368 1000 3000+ 3000+ - 

Table 7. Convergence performance for complex FTS with vary of T values, 
shown in parenthesis on XOR problem.  

Activation 
Function 

Iteration number that reached the error rate 
0.001(MSE) for XOR problem 

Test-I Test-II Test-III Test-IV Score 

FTS (T = 1) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.5) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.4) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.3) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.2) 1834 1005 1764 3000+ - 
FTS (T = 0.1) 1558 3000+ 3000+ 3000+ - 
FTS (T = 0) 3000+ 2222 3000+ 949 - 
FTS (T = -0.1) 3000+ 575 3000+ 512 2 
FTS (T = -0.2) 562 567 509 561 3 
FTS (T = -0.3) 718 598 556 536 4 
FTS (T = -0.4) 761 616 570 532 3 
FTS (T = -0.5) 870 3000+ 532 532 3 
FTS (T = -0.6) 1037 3000+ 556 626 1 
FTS (T = -0.7) 3000+ 3000+ 575 2943 - 
FTS (T = -0.8) 3000+ 3000+ 593 3000+ - 
FTS (T = -0.9) 3000+ 3000+ 631 3000+ - 
FTS (T = -1) 3000+ 3000+ 686 3000+ - 
FTS (T = -2) 3000+ 3000+ 3000+ 3000+ - 

Table 8. Convergence performance for complex mod. swish with vary of 𝛼𝛼 
values, shown in parenthesis on XOR problem. 

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for XOR problem 

Test-I Test-II Test-III Test-IV Score 

Mod. Swish (𝛼𝛼 = 0.1) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼= 0.2) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.3) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.4) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.5) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.6) 3000+ 3000+ 1794 896 - 
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Mod. Swish (𝛼𝛼 = 0.7) 3000+ 1839 1680 722 - 
Mod. Swish (𝛼𝛼 = 0.8) 2135 1434 1602 639 - 
Mod. Swish (𝛼𝛼 = 0.9) 1649 1222 1106 584 - 
Mod. Swish (𝛼𝛼 = 1.0) 909 1068 872 544 - 
Mod. Swish (𝛼𝛼 = 1.1) 696 892 741 513 - 
Mod. Swish (𝛼𝛼 = 1.2) 623 658 702 487 1 
Mod. Swish (𝛼𝛼 = 1.3) 578 541 688 665 3 
Mod. Swish (𝛼𝛼 = 1.4) 547 493 686 445 4 
Mod. Swish (𝛼𝛼 = 1.5) 525 1077 692 427 3 
Mod. Swish (𝛼𝛼 = 2) 501 1110 1042 365 2 
Mod. Swish (𝛼𝛼 = 3) 808 788 931 367 1 
Mod. Swish (𝛼𝛼 = 4) 1367 787 578 525 2 

 
The results show that CVANN using E-Swish with β=1.4, 

Flatten-T Swish with T= -0.3 and Modified Swish with 
𝛼𝛼=1.4 converges to the target earlier than other CVANN 
using activation functions with different β,T and 𝛼𝛼 values on 
complex-valued XOR problem with four patterns. 

B. Complex-Valued Symmetry Detection Problem 
For finding the best constant value for the new activation 

functions (E-Swish, Flatten-T Swish, Modified Swish), 
CVANN was tested on complex-valued symmetry detection 
problem with 18 different β,T and 𝛼𝛼 values (randomly). We 
use 3-1-1 (three input, one hidden nodes and one output) 
network with the learning rate 0.5 as in the literature [5,25]. 
We use MSE as stopping criteria given by Eq.21. 

The iteration number when the proposed CVANNs error 
rate reached 0.001 is given in Table 9, 10, 11. 

Table 9. Convergence performance for complex e-swish with vary of β 
values, shown in parenthesis, on symmetry problem.  

Activation 
Function 

Iteration number that reached the error rate 
0.001(MSE) for symmetry problem 

Test-I Test-II Test-III Test-IV Score 

E-Swish (β = 0.1) 3000+ 3000+ 3000+ 3000+ - 
E-Swish (β = 0.2) 3000+ 3000+ 3000+ 3000+ - 
E-Swish (β = 0.3) 3000+ 2504 3000+ 2081 - 
E-Swish (β = 0.4) 3000+ 3000+ 3000+ 1317 - 
E-Swish (β = 0.5) 2375 2607 3000+ 954 - 
E-Swish (β = 0.6) 2813 1750 3000+ 746 - 
E-Swish (β = 0.7) 1584 1191 3000+ 611 - 
E-Swish (β = 0.8) 3000+ 1045 868 518 - 
E-Swish (β = 0.9) 927 1012 791 450 1 
E-Swish (β = 1.0) 705 1669 793 398 1 
E-Swish (β = 1.1) 581 1321 967 359 - 
E-Swish (β = 1.2) 494 477 741 327 1 
E-Swish (β = 1.3) 430 450 854 302 1 
E-Swish (β = 1.4) 380 429 791 283 4 
E-Swish (β = 1.5) 342 409 1168 267 3 
E-Swish (β = 2) 311 366 3000+ 242 3 
E-Swish (β = 3) 220 318 3000+ 552 2 
E-Swish (β = 4) 3000+ 955 3000+ 3000+ - 

Table 10. Convergence performance for complex FTS with vary of T 
values, shown in parenthesis, on symmetry problem.  

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for symmetry problem 

Test-I Test-II Test-III Test-IV Sco
re 

FTS (T = 1) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.5) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.4) 3000+ 3000+ 3000+ 3000+ - 
FTS (T = 0.3) 3000+ 3000+ 3000+ 1326 - 
FTS (T = 0.2) 3000+ 3000+ 1029 411 - 
FTS (T = 0.1) 1409 3000+ 300 253 1 
FTS (T = 0) 3000+ 3000+ 275 218 2 
FTS (T = -0.1) 232 3000+ 235 156 3 
FTS (T = -0.2) 384 612 420 153 4 
FTS (T = -0.3) 847 764 626 170 3 

FTS (T = -0.4) 1294 3000+ 1848 205 1 
FTS (T = -0.5) 1943 540 1039 282 1 
FTS (T = -0.6) 2618 584 953 3000+ 1 
FTS (T = -0.7) 3000+ 1499 1006 3000+ - 
FTS (T = -0.8) 3000+ 3000+ 1157 3000+ - 
FTS (T = -0.9) 3000+ 3000+ 1395 3000+ - 
FTS (T = -1) 3000+ 3000+ 1555 3000+ - 
FTS (T = -2) 3000+ 3000+ 3000+ 3000+ - 

Table 11. Convergence performance for complex mod. swish with vary of 
𝛼𝛼 values, shown in parenthesis, on symmetry problem.  

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for symmetry problem 

Test-I Test-II Test-III Test-IV Score 

Mod. Swish (𝛼𝛼 = 0.1) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.2) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.3) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.4) 3000+ 3000+ 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 0.5) 3000+ 3000+ 1276 3000+ - 
Mod. Swish (𝛼𝛼 = 0.6) 1321 3000+ 818 2075 - 
Mod. Swish (𝛼𝛼 = 0.7) 970 946 669 1293 1 
Mod. Swish (𝛼𝛼 = 0.8) 821 743 449 3000+ 2 
Mod. Swish (𝛼𝛼 = 0.9) 769 3000+ 848 1485 - 
Mod. Swish (𝛼𝛼 = 1.0) 907 3000+ 758 920 - 
Mod. Swish (𝛼𝛼 = 1.1) 3000+ 3000+ 670 998 - 
Mod. Swish (𝛼𝛼 = 1.2) 1244 1422 3000+ 3000+ - 
Mod. Swish (𝛼𝛼 = 1.3) 3000+ 970 662 520 1 
Mod. Swish (𝛼𝛼 = 1.4) 547 865 580 404 2 
Mod. Swish (𝜶𝜶 = 1.5) 534 788 568 373 4 
Mod. Swish (𝛼𝛼  = 2) 418 2673 598 294 3 
Mod. Swish (𝛼𝛼 = 3) 371 1608 513 3000+ 2 
Mod. Swish (𝛼𝛼 = 4) 352 1409 3000+ 3000+ 1 

 
It was seen that CVANN using E-Swish with β=1.4, 

Flatten-T Swish with T= -0.2 and Modified Swish with 𝛼𝛼 
=1.5 converges to the target earlier than other CVANN 
using activation functions with different β,T and 𝛼𝛼 values on 
complex-valued symmetry detection problem. 

C. The Fading Equalization Problem 
In the following text, it is shown that the fading 

equalization problem which cannot be solved with a single 
real-valued neuron, can be successfully solved by a single 
CVN. First we found the best constant value for the new 
activation functions (E-Swish, Flatten-T Swish, Modified 
Swish) on the fading equalization problem. We use a 1-2-1 
CVANN with the learning constant 0.5. When the error 
value (MSE) reached 0.001, the iteration number of the 
CVANNs are shown in the Table 12, 13, 14.   

Table 12. Convergence performance for complex e-swish with vary of β 
values, shown in parenthesis, on fading equalization problem.  

Activation 
Function 

Iteration number that reached the error rate 
0.001(MSE) for XOR problem 

Test-I Test-II Test-III Test-IV Score 

E-Swish (β = 0.1) 567 1117 768 723 - 
E-Swish (β = 0.2) 270 674 414 448 - 
E-Swish (β = 0.3) 174 526 340 344 - 
E-Swish (β = 0.4) 128 500 320 242 - 
E-Swish (β = 0.5) 102 519 301 164 - 
E-Swish (β = 0.6) 85 468 271 117 - 
E-Swish (β = 0.7) 74 442 237 88 - 
E-Swish (β = 0.8) 65 425 207 71 - 
E-Swish (β = 0.9) 59 412 181 59 - 
E-Swish (β = 1.0) 54 401 161 50 - 
E-Swish (β = 1.1) 50 391 144 35 - 
E-Swish (β = 1.2) 47 382 129 33 1 
E-Swish (β = 1.3) 44 374 117 32 1 
E-Swish (β = 1.4) 42 365 107 26 4 
E-Swish (β = 1.5) 39 356 98 36 3 
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E-Swish (β = 2) 32 308 67 37 3 
E-Swish (β = 3) 27 270 44 38 3 
E-Swish (β = 4) 3000+ 3000+ 109 417 - 

Table 13. Convergence performance for complex FTS with vary of T 
values, shown in parenthesis, on fading equalization problem.  

Activation 
Function 

Iteration number that reached the error rate 0.001(MSE) 
for XOR problem 

Test-I Test-II Test-III Test-IV Score 

FTS (T = 1) 42 38 50 57 4 
FTS (T = 0.5) 48 41 63 70 3 
FTS (T = 0.4) 50 42 69 71 3 
FTS (T = 0.3) 54 44 78 73 3 
FTS (T = 0.2) 41 46 97 75 - 
FTS (T = 0.1) 77 50 149 78 - 
FTS (T = 0) 169 56 237 82 - 
FTS (T = -0.1) 54 273 121 99 - 
FTS (T = -0.2) 57 323 254 183 - 
FTS (T = -0.3) 61 194 245 196 - 
FTS (T = -0.4) 65 162 206 163 - 
FTS (T = -0.5) 65 136 169 134 - 
FTS (T = -0.6) 63 112 136 110 - 
FTS (T = -0.7) 61 96 112 91 - 
FTS (T = -0.8) 60 86 94 76 - 
FTS (T = -0.9) 64 83 81 64 1 
FTS (T = -1) 80 89 72 55 1 
FTS (T = -2) 97 1514 301 38 1 

Table 14. Convergence performance for complex mod. swish with vary of 
𝛼𝛼 values, shown in parenthesis, on fading equalization problem.  

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for XOR problem 

Test-I Test-II Test-III Test-IV Score 

Mod. Swish (𝛼𝛼 = 0.1) 42 58 54 59 3 
Mod. Swish (𝛼𝛼 = 0.2) 83 69 69 65 3 
Mod. Swish (𝛼𝛼 = 0.3) 418 91 125 81 1 
Mod. Swish (𝛼𝛼 = 0.4) 685 97 813 130 - 
Mod. Swish (𝛼𝛼 = 0.5) 456 120 438 654 - 
Mod. Swish (𝛼𝛼 = 0.6) 377 132 361 441 - 
Mod. Swish (𝛼𝛼 = 0.7) 348 115 328 365 - 
Mod. Swish (𝛼𝛼 = 0.8) 341 98 312 336 - 
Mod. Swish (𝛼𝛼 = 0.9) 340 86 312 327 - 
Mod. Swish (𝛼𝛼 = 1.0) 339 77 314 324 - 
Mod. Swish (𝛼𝛼 = 1.1) 335 70 315 322 - 
Mod. Swish (𝛼𝛼 = 1.2) 332 65 316 319 - 
Mod. Swish (𝛼𝛼 = 1.3) 328 60 317 329 - 
Mod. Swish (𝛼𝛼 = 1.4) 324 56 319 192 - 
Mod. Swish (𝛼𝛼 = 1.5) 321 53 322 204 1 
Mod. Swish (𝛼𝛼 = 2) 298 43 332 326 2 
Mod. Swish (𝛼𝛼 = 3) 313 32 302 61 2 
Mod. Swish (𝜶𝜶 = 4) 304 27 277 41 4 

As seen in the results, the CVANN using E-Swish with     
β =1.4, Flatten-T Swish with T= 1 and Modified Swish with  
𝛼𝛼 =4 gives the best results compared with the other β,T and 
𝛼𝛼 values on the fading equalization problem. 

D. Comparison of Four Activation Functions  
In order to prove the validity of proposed CVANNs, three 

new activation functions (modified swish with a constant 
value α, complex E-swish with a constant value β and 
complex Flatten-T swish with a constant value T) are tested 
and compared with complex swish activation function on 
complex valued four bit XOR problem, three inputs 
symmetry detection and the fading equalization problems. 
When the error value (MSE) reached 0.001, the average 
learning epochs are shown in the Table 15, 16, 17. 

 

Table 15. Convergence performance of swish, E-swish, Flatten-T swish and 
modified swish on XOR problem  

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for XOR problem 

Test-I Test-II Test-III Test-
IV 

Test-
V 

Swish 592 347 881 1078 594 
*E- Swish (β = 1.4) 266 90 117 323 451 
F.T Swish (T = -0.3) 499 354 465 522 625 
Mod. Swish (𝛼𝛼 = 1.4) 1045 326 448 1163 651 

Table 16. Convergence performance of swish, E-swish, Flatten-T swish and 
modified swish on symmetry problem  

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for Symmetry problem 

Test-I Test-II Test-III Test-
IV 

Test-
V 

Swish 215 508 261 263 315 
*E- Swish (β = 1.4) 174 345 165 150 212 
F.T Swish (T = -0.2) 239 581 214 211 231 
Mod. Swish (𝛼𝛼 = 1.5) 193 702 250 227 327 

Table 17. Convergence performance of swish, E-swish, Flatten-T swish and 
modified swish on fading equalization problem  

Activation Function 

Iteration number that reached the error rate 
0.001(MSE) for Symmetry problem 

Test-I Test-II Test-III Test-
IV 

Test-
V 

Swish 88 44 40 31 40 
*E- Swish (β = 1.4) 56 27 25 9 26 
F.T Swish (T = 1) 56 38 35 19 31 
Mod. Swish (𝛼𝛼 = 4) 74 40 37 24 39 

 
The experiments show that the proposed CVANN using 

complex E-Swish activation function with β=1.4 has better 
stability convergence performance than the other complex 
activation functions on complex valued XOR, symmetry and 
fading equalization problems. The average learning epochs, 
targets and outputs of Test-V are given in the Table 18-20 
when the error value (MSE) reached the stopping criteria 
0.001. 

Table 18. The New CVANN Test Results for XOR Problem (Test-V) 

Activation Function:  
E-SWISH 

Activation Function: 
MOD-SWISH 

Activation Function: 
FTSWISH 

Iteration number with 
 an error rate of 0.001:      

451 

Iteration number with 
an error rate of 0.001: 

625 

Iteration number with 
an error rate of 0.001: 

651 

Target Output Target Output Target Output 
0 0.062+0.029i 0 0.063+0.036i 0 0.060+0.030i 
1 0.966+0.021i 1 0.973+0.000i 1 0.965+0.021i 

1+i 0.973+0.977i 1+i 0.970+0.993i 1+i 0.973+0.976i 

i 0.021+1.000i i 0.025+0.983i i 0.022+1.000i 

Table 19. The new CVANN test results for symmetry problem (Test-V) 

Activation Function:  
E-SWISH 

Activation Function: 
MOD-SWISH 

Activation Function: 
FTSWISH 

Iteration number with  
an error rate of 0.001: 

212 

Iteration number with 
an error rate of 0.001: 

231 

Iteration number with 
 an error rate of 0.001:  

327 
Target Output Target Output Target Output 

0.7+0.7i 0.725+0.706i 0.7+0.7i 0.742+0.713i 0.7+0.7i 0.719+0.708i 

1 0.960+0.061i 1 0.972+0.044i 1 0.964+0.052i 

0.7+0.7i 0.708+0.683i 0.7+0.7i 0.744+0.724i 0.7+0.7i 0.711+0.684i 
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1 0.960+0.034i 1 0.969+0.024i 1 0.953+0.042i 

1 0.980+0.037i 1 0.969+0.027i 1 0.976+0.045i 

0.7+0.7i 0.702+0.680i 0.7+0.7i 0.716+0.707i 0.7+0.7i 0.704+0.681i 

1 0.974+.0.05i 1 0.962+0.038i 1 0.983+0.057i 

0.7+0.7i 0.724+0.703i 0.7+0.7i 0.661+0.662i 0.7+0.7i 0.729+0.705i 

Table 20. The New CVANN Test Results for Fading Equalization Problem 
(test-5) 

Activation Function:  
E-SWISH 

Activation Function: 
MOD-SWISH 

Activation Function: 
FTSWISH 

Iteration number with 
 an error rate of 0.001:      

26 

Iteration number with 
an error rate of 0.001: 

31 

Iteration number with 
an error rate of 0.001: 

39 

Target Output Target Output Target Output 

0 0.024+0.060i 0 0.043+0.043i 0 0.029+0.049i 
i 0.016+0.996i i 0.016+0.986i i 0.022+0.991i 

1 0.989+0.047i 1 0.980+0.030i 1 0.982+0.043i 

1+i 0.979+0.985i 1+i 0.967+0.963i 1+i 0.972+0.968i 

IV. DISCUSSION AND CONCLUSION 

In this paper, three new activation functions which are 
called complex modified swish with a constant value 𝛼𝛼 , 
complex E-swish with a constant value 𝛽𝛽  and complex 
Flatten-T swish with a constant value 𝐹𝐹 have been presented. 
It is also showed that the parameters β, T and α determine 
the convergence of CVANNs to the target and the training 
speed of the model. 

Our experiments has shown that complex E-swish with 
β=1.4, complex modified swish with 𝛼𝛼  =1.4 and complex 
Flatten-T swish with T= -0.3 converges to the target earlier 
on XOR problem. According to symmetry problem tests, it 
has shown that complex E-swish with β=1.4, complex 
modified swish with 𝛼𝛼  =1.5 and complex Flatten-T swish 
with T= -0.2 converges to the target earlier than the other 
values. Finally, the CVANN is tested on the fading 
equalization problem. The results showed that complex E-
swish with β=1.4, complex modified swish with 𝛼𝛼 =4 and 
complex Flatten-T swish with T= 1 converges to the target 
earlier. 

The performance of the three new activation functions 
with the best constant value, is compared with the new 
swish activation function on complex XOR, symmetry and 
the fading equalization problems. After training the 
activation functions on this benchmark tests, all results show 
that E-Swish with β=1.4 and β=1.5 has the best achievement 
(noted with an asterisk*) among the existing activation 
functions in term of iteration number that reached the error 
rate. The Means Squared Error was used as a performance 
index. 

From the presented experiments, apparently, we conclude 
that CVANN using complex E-swish activation function 
with β=1.4 has the best overall performance when compared 
to other networks using complex swish, complex modified 
swish and complex Flatten-T swish activation functions on 
complex valued four bit XOR problem, three inputs 
symmetry detection and the fading equalization problems. 
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