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computing system, the challenge of power consumption still 
persists.  

The rest of the paper has been presented in a way that 
Section II introduces HPC challenges for emerging Exascale 
computing systems. Section III defines the approaches to 
improve performance and reduce power consumption in HPC 
systems. Section IV has carried out a comparative analysis of 
these approaches. Section V has highlighted discussions and 
recommendations for the best approach and we have 
concluded the work in Section VI. 

 
II. CHALLENGES IN EXASCALE COMPUTING 

 
The roadmap towards Exascale computing systems, the 

United States Department of Energy (DOE) has pointed out 
some primary constraints taking into account the financial as 
well as power consumption limitations. These constraints 
include the power consumption not more than 25 to 30 Mega 
Watts, system development cost near about to 200 million 
USD, system time to delivery almost 2020 and integrated 
multi-cores no more than 100 million [7]. The major challenge 
in the way towards Exascale is that it does not exist yet and to 
meet the above-defined barriers current technologies are facing 
many challenges, from which power consumption is the most 
influential challenge [8]. These challenges are further 
elaborated and classified as follows: 
 
A. Power Consumption Management  

Exascale systems, which includes heaps of nodes drawing 
excessive Megawatt power, mandate a want for brand new, 
system-wide methodologies and strategies for power 
monitoring, controlling, and scheduling. The power 
consumption of both individual nodes and the overall system 
is, therefore, an essential issue to cope with [9]. However, new 
energy-efficient algorithms and devices are needed to manage 
power consumption. 
 
B. Programming Models  

The emerging Exascale systems can face many challenges as 
complex jobs make use of billions of threads, so there is a need 
for novel models to deal with thread management and 
synchronization overhead. Moreover, to utilize the power well 
there will be a need to handle all the significant resources for 
memory intensive operations. Failures can be expected in the 
novel architecture and therefore error handling can limit the 
computing performance. There is a need for a functional 
programming model that takes into account all the issues and 
make use of those resources that could be managed either at 
software end or compiler end and have a tremendous impact on 
the overall performance of the system. Furthermore, we cannot 
assume whether the emerging Exascale system is of a 
homogenous or heterogeneous environment. There is a need for 
such programming models that can support both the homogeneous 
and heterogeneous frameworks [10]. 
 
C. Novel Architectures  

While Exascale computing remains a great challenge, it is 
most probably for incremental advances in current technology 
to attain performance 50x better than contemporary HPC 
systems [11]. While conventional computer systems continue 
to make substantial advances, it is argued that radical new 
architectures and frameworks might be needed for high-
performance computing to attain Exascale-level of 
performance [12]. 

 
 
D. Massive Parallelism  

The one conventional way to enhance the Petascale 
performance up to ExaFlops is to increase the clock speed of 
CPU. But shortly the clock speed could be restricted to 1G Hz. 
An alternative way towards Exascale is to extend the cores in 
current Petascale systems. But according to Exascale limitations 
defined by the United State Department of Energy, we can only 
exceed the number of cores up to 100 million. Moreover, the 
increase in computing resources (the number of cores) will 
ultimately consume much power. Therefore, another option in the 
way towards the Exascale level of performance is to achieve 
massive parallelism by takingadvantage of modern 
programming models, accelerated GPGPU devices and many-
core processors [23]. 
 
E. Resiliency  

There is a need for considerably new computing strategies for 
having the roadmap towards Exascale computing environment. 
Massive parallelism, delivered by many-core processors will open 
the way for massive computing with more than 1018 floating 
point operations per second. A considerable number of practical 
components (computing cores, memory chips, network interfaces) 
will extensively increase the possibility of partial disasters, load 
balancing and reliability issues [4]. Developers can't be intended 
to continually cope with load balancing and reliability issues. The 
operating system has to discover an efficient way that offers an 
effective way for load management and checkpointing while 
allowing software developers to complete control over the 
performance of the system. 
 
F. Memory Management Mechanism  

The cost of data movement has continually been a concerned 
subject matter in high-performance computing (HPC) systems. It 
has now a substantial effect on both power consumption and 
performance. Locality management has acquired a new urgency 
in emerging HPC systems providing massive parallelism and 
complicated memory hierarchy. Data locality abstractions with 
the goal to increase productivity without sacrificing overall 
performance are available in the varieties of libraries, data 
structures, languages and runtime systems. Because of the 
complex memory hierarchy of HPC systems, developers cannot 
persist with low-level solutions of data management. Novel 
memory management mechanisms are required to perform large 
tasks without compromising performance [13]. 
 

III. PERFORMANCE ENHANCEMENT MECHANISMS IN 
HPC SYSTEMS 

 
The one conventional way to enhance the Petascale 

performance up to ExaFlops is to increase the clock speed of 
CPU. But shortly the clock speed could be restricted to 1G Hz. 
Another way towards Exascale is to extend the cores in current 
Petascale systems, but the challenge is to achieve all under 
predefined Exascale computing constraints. This paper 
illustrates well the various approaches to improve performance 
using energy efficient models, performance efficient models 
and approaches to improve intra-node communication that will 
ultimately result in enhancing performance as discussed 
below: 
 
A. Performance Efficient Models  

Parallelism has played an outstanding role in system 
performance enhancement. Many single hierarchical models were 
introduced to parallelize large independent processes for 
Terascale computing systems. A message passing library 
specification used for clusters, heterogeneous networks and 
parallel computers. It is used in all connected nodes to 
communicate among host CPU processors. It has two processes 
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master and slave process. The job of the master process is to 
distribute data to all the connected nodes via the slave processes 
[15]. It is used for distributed computing applications and 
provides an efficient and portable way to address parallel 
programs. Moreover, to distribute and parallelize data at the inter-
node level MPI offers coarse-grained parallelism and maintains 
synchronization via blocking methods [16]. But the major 
limitation of this model is that MPI designer did not take into 
account the futureExascale systems that will require novel MPI 
configurations and runtimes.  

OpenMP is a single hierarchical programming model used to 
parallelize and synchronize the threads by utilizing the shared 
memory-based architecture. It offers two primary principles: 
sequential equivalence and incremental parallelism [18], [19]. It 
provides fine-grained parallelism by parallelizing and distributing 
the data at the intra-node level via accelerated GPU devices. 
Synchronization among host CPUs and GPU cores along with 
GPU computation were improved to run the tasks concurrently 
[20]. It provides high-performance support for both heterogeneous 
and homogeneous systems for parallel applications. The primary 
limitation for this model is that it only supports shared memory 
architecture on a single node, and doesn't give the support for 
cluster system [21].  

CUDA abbreviated as "Compute Unified Device 
Architecture" is an efficient hybrid model utilizing accelerated 
GPUs and threads for massive parallelism [23]. It makes use of 
the application comprising of a program referred to as "CUDA 
kernel" that helps out to execute the tasks concurrently on 
GPU devices. CUDA refers to as the most competent model 
for thread-level optimization that allows application flexibility. 
But GPUs supporting CUDA are rendered only by Nvidia and 
has interoperability with rendering languages such as OpenGL. 
It provides lesser performance as compared to OpenACC and 
supports heterogeneous computation where the application 
uses both the CPU and GPU devices [22]. 

OpenACC appeared as a high-level programming model 
that makes use of high-end and supportive directives to 
achieve parallel computing. It affords better performance than 
CUDA and enables portability to a broad field of computing 
architecture. However, it does not provide flexibility, thread 
management, thread synchronization and optimization for the 
programs, along with other high-level features available in the 
CUDA framework [24].  

OpenCL refers to as "Open Computing Language" is an 
efficient parallel programming model for heterogeneous 
frameworks. OpenCL supports run-time compilation that 
excludes dependencies on instruction sets, allowing hardware 
providers to make remarkable changes to instruction sets, 
drivers, and supporting libraries. It grants portability and 
compatibility of kernels across multiple hardware and 
platforms [25], [26]. But the restriction is that OpenCL 
demands a complicated setup which includes preparation of 
settings, command queues, in addition to a compilation of 
kernel codes [26].  

Later on, dual-hierarchical models were introduced to 
improve the performance for Petascale computing systems. In 
the hybrid of MPI + OpenMP, MPI provides coarse-grain 
parallelism by parallelizing and distributing the data at the 
inter-node level, whereas OpenMP provides fine-grain 
parallelism by parallelizing and distributing the data at the 
intra-node level. This hybrid of MPI and OpenMP for coarse-
grained and fine-grained parallelism gives the best 
performance as opposed to single hierarchical models. But 
restriction for this model is that it uses a couple of threads in a 
hybrid model that will increase the thread management 
overhead and synchronization extensively. Also, this hybrid 

only supports homogeneous frameworks and provides no 
support for heterogeneous frameworks [28], [29].  

The hybrid of MPI + OpenACC programming model was 
proposed to resolve the portability and scalability issues for 
heterogeneous frameworks. The hybrid of these two models 
introduces unusual ine�ciencies including excessive data transfer 
and configuration overhead among the models [24]. 

The hybrid model of MPI + CUDA was proposed for 
heterogeneous frameworks utilizing multi-cores embedded 
within accelerated GPU devices. MPI distributes work among 
multiple computers, each of which uses CUDA to execute its 
share of work. CUDA and MPI can be considered separate 
entities: CUDA handles process per GPU and accelerate the 
computational kernels with CUDA. This model achieves 
coarse grain parallelism through MPI and fine-grain 
parallelism through GPU computations. But the problem with 
this model is that it causes portability and scalability issues 
[22]. 

The hybrid of OpenCL-MPI makes use of Finite-difference 
Time-Domain (FDTD) technique primarily based on Open 
Computing Language (OpenCL) and the Message Passing 
Interface (MPI). OpenCL provides better portability and gives 
support for both the distributed shared memory clusters (typically 
based on multicore CPUs) and GPU-accelerated clusters. Because 
of the remarkable computational power of GPUs for massive 
enigmas, execution time could be equal to the communication 
time which leads to the decline of the scalability. Furthermore, 
this model does not support dynamic memory architecture [27].  

An alternative to the MPI/OpenMP hybrid model is to use a 
Partitioned Global Address Space (PGAS) model, attempts to use 
the Single Program Multiple Data (SPMD) model generally 
support distributed memory systems. In this model, a portion of 
the memory could be exposed by one process to other processes, 
though each one has its memory address. PGAS languages 
propose a one-sided approach where a process locates instantly 
the remote memory of another process without disrupting its 
execution. Potential reduction in memory footprint is equal to the 
reduction in energy consumption. It provides explicit support for 
parallelism. But this model also has some drawbacks that it does 
not support distributed memory architecture as used in GPU 
clusters. Copies severely limit the performance. Further, Compiler 
can help the programmer with performance, scalability, and 
programmability is another challenge.  

Toward massive parallel computing, a Tri-Hierarchy 
hybrid MOC (MPI + OpenMP + CUDA) model is proposed. 
MPI distributes data to overall connected nodes at inter-node 
and thus provides coarse-grain parallelism. OpenMP is used to 
achieve fine-grain parallelism and to parallelize CPU threads 
over intra-node. CUDA is used to achieve finer grain 
parallelism by executing data over accelerated GPU cores 
[23]. Though, the United State Department of energy has 
pointed out some primary constraints taking into account the 
financial as well as power consumption limitations. These 
constraints include the power consumption not more than 25 
to 30 Mega Watts, system development cost near about to 200 
million USD, system time to delivery almost 2020 and 
integrated multi-cores no more than 100 million [7]. MOC 
model does not provide an Exa-scale level of performance 
even by using all the resources mentioned above. 
 
B. Energy Efficient Models  

Integer linear programming-based technique (ILP) is used 
for selecting the optimal configuration of the chip that reduces 
its power intake. Before the actual execution of the scheduled 
job on the chip, the ILP optimizer starts its execution on a 
specific chip to ascertain the best configuration for the job 
being scheduled. This approach does not require any extra 
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resources for the selection of optimal configuration for the job. 
By eliminating the overhead of finding the optimal 
configuration for the job it minimizes the power consumption 
and saves resources [30]. 

 
C. Models for communication reduction in intra- node  

Userspace memory copy-based design utilizes the 
advanced features of modern systems NUMA and CMP to 
promote MPI intra-node communication. It requires a shared 
memory area so that the processes can utilize it as a 
communication channel. The sending process copies its data 
and message to the shared memory region and consequently, 
the receiving process copies the data to its buffer from the 
shared memory. This technique is more portable than the 
kernel-assisted memory mapping scheme as it does not 
demand any services from the kernel thus providing high 
bandwidth and low latency among processes, offering better 
performance than the NIC-based loopback scheme. Some 
limitations of this approach include that it could not improve 
CPM latency for large message size and it wastes CPU cycles 
and bandwidth for large messages. It depends on a cache-block 
replacement scheme to complete its job [31]. 

Another approach is vShark which reduces the burden in 
clusters of SMPs for intra-node communication by utilizing 
thread-based design. Rather than utilizing the communication 
stack of the message-passing library, the vShark makes use of 
threads. Instead of starting many processes on SMP nodes, it 
starts the same number of threads that exist in the same memory 
location as the process does and thus provides a better 
communication environment among the processes. One benefit of 
this library is that it avoids deadlocks and additionalmemory 
necessities via the usage of communication protocol. The 

limitations of vShark are, it uses an additional communication 
protocol and reduces the bandwidth for a more significant 
number of processors [32].  

One more approach to reduce intra-node communication is 
Kernel-based memory mapping approach that takes advantage 
from the kernel of the operating system to copy messages 
directly from one user process space to another without 
utilizing any shared memory resource. The kernel copies the 
message from the sender buffer to the receiver buffer, only 
when the other process arrives at the exchange point taking 
into account the kernel-based memory mapping address space. 
Hence the advantage of this technique is, it entails only one 
copy and use fewer memory transactions and makes use of 
cache efficiently. But limitations of this approach are, it 
disturbs OS kernel and has memory mapping overhead [31].  

The Network Interface Card offers NIC-level loopback. 
When the message is initiated from the source, NIC locates the 
position of the destination address. If the source and 
destination are the identical nodes, it merely loopback as 
opposed to injecting it into the network, therefore offer high 
latency and put off overheads on the network link. The 
limitations of NIC loopback are, it does not distinguish inter-
node or intra-node traffic and no longer utilize the cache 
impact, and relatively it depends on NIC to locate source and 
destination [31]. 

 
We have studied various models and approaches for 

achieving performance indirectly by massive parallelism or by 
reducing communication overhead. In Table 1, we have done 
the critical analysis on all the above-discussed approaches to 
deciding the promising approach for future Exascale systems. 
 

 
Table I. Models To Improve Performance In HPC System 

 

Sr. no Performance Efficient Programming Models (Single Hierarchy) 
Approaches / Models Description Features Limitations 

1 MPI (Message 
Passing Interface)  

MPI is a popular distributed-
memory single hierarchical 
programming model used to 
communicate between host CPU 
processors in all associated nodes.  

It provides an efficient and 
portable way to address 
parallel programs. Moreover, 
to distribute and parallelize 
data at the inter-node level 
MPI offers coarse-grained 
parallelism and maintains 
synchronization via blocking 
methods.  

But the major 
limitation of this model 
is that MPI designer 
did not take into 
account the future 
Exascale systems that 
will require novel MPI 
configurations and 
runtimes.  

2 OpenMP (Open 
Specification of 
Multi-Processing)  

OpenMP is a single hierarchical 
programming model used to 
parallelize and synchronize the 
threads by utilizing the shared 
memory-based architecture. It 
offers two primary principles: 
sequential equivalence and 
incremental parallelism.  

It provides fine-grained 
parallelism by parallelizing 
and distributing the data at the 
intra-node level via 
accelerated GPU devices. It 
provides high-performance 
support for both 
heterogeneous and 
homogeneous systems for 
parallel applications.  

The primary limitation 
for this model is that it 
only supports shared 
memory architecture 
on a single node, and 
doesn't give the support 
for the cluster system.  

3 CUDA (Compute 
Unified Device 
Architecture)  

CUDA abbreviated as "Compute 
Unified Device Architecture" is an 
efficient hybrid model utilizing 
accelerated GPUs and threads for 
massive parallelism  

A useful model to perform 
thread level optimization that 
facilitates program flexibility.  

GPUs supporting 
CUDA are only 
rendered by Nvidia and 
provides lesser 
performance as 
compared to OpenACC 
and supports 
heterogeneous 
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computation where 
application use both 
the CPU and GPU 
devices.  

4 OpenACC ( Open 
Accelerators)  

OpenACC appeared as a high-level 
programming version that makes 
use of high-level compiler 
directives to detect parallelism 
within the code and parallelizing 
compiler.  

It provides high performance 
than CUDA and facilitates 
portability to a variety of 
computing architecture.  

However, it does not 
provide flexibility, 
thread management, 
thread synchronization 
and optimization for 
the programs, along 
with other high-level 
features available in 
the CUDA framework.  

5 OpenCL (Open 
Computing 
Language)  

OpenCL refers to as "Open 
Computing Language" is an 
efficient parallel programming 
model for heterogeneous 
frameworks that supports run-time 
compilation that excludes 
dependencies on instruction sets, 
allowing hardware providers to 
make remarkable changes to 
instruction sets, drivers, and 
supporting libraries.  

This model provides the 
guarantee of correctness and 
portability of kernels over a 
variety of hardware.  

OpenCL demands a 
confusing setup, for 
example, the formation 
of contexts, command 
queues, and 
compilation of kernel 
codes. It doesn't 
guarantee that a 
selective kernel will 
gain peak performance 
on various 
architectures.  

 
Performance Efficient Programming Models (Dual Hierarchy) 

6 MPI + OpenMP  The hybrid model of MPI and 
OpenMP introduced to improve the 
performance for Petascale 
computing systems. MPI 
parallelizes data at the inter-node 
level and provides coarse-grain 
parallelism, whereas OpenMP 
parallelizes data at the intra-node 
level and provide fine-grain 
parallelism.  

This hybrid model shows 
good scalability as compared 
to single-hierarchy-level 
parallelism.  

It gives support only 
for homogeneous 
systems, not for the 
heterogeneous cluster 
systems. This model 
makes use of multiple 
threads in the scheme 
that ultimately results 
in thread 
synchronization and 
management overhead. 

7 MPI + OpenACC  The hybrid of MPI + OpenACC 
programming model was 
introduced to write the portable and 
scalable application for 
heterogeneous accelerator clusters.  

It provides high performance, 
scalability, and portability 
from MPI and 
programmability & 
portability from OpenACC.  

This hybrid model 
introduces some 
inefficiencies such as 
unnecessary data 
transfer and extreme 
synchronization 
between the models.  

8 MPI + CUDA  The hybrid of MPI + CUDA 
supports heterogeneous cluster 
system in which multiple CPU 
processors are configured with 
high-speed NVIDIA GPU devices.  

This hybrid model achieves 
coarse grain and fine-grain 
parallelism using MPI and 
GPU computations 
respectively.  

The problem with this 
model is that it causes 
portability and 
scalability issues.  

9 MPI + OpenCL  The hybrid of OpenCL-MPI is a 
hybrid parallelization of the Finite-
difference Time-Domain (FDTD) 
[27] technique primarily based on 
Open Computing Language 
(OpenCL) and the Message Passing 
Interface (MPI).  

Due to the portability feature 
of OpenCL, the advanced 
code can not only be used for 
distributed shared memory 
clusters typically based on 
multicore CPUs but can also 
be used for GPU-accelerated 
clusters.  

Due to the remarkable 
computational power 
of GPUs for massive 
enigmas, execution 
time could be equal to 
the communication 
time which leads to the 
decline of the 
scalability. Moreover, 
this model doesn’t 
support dynamic 
memory handling.  
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10 PGAS  (PGAS) the model attempts to use 
the Single Program Multiple Data 
(SPMD) model generally support 
distributed memory systems.  

PGAS languages introduced a 
one-sided approach where a 
process can access directly 
the remote memory of 
another process without 
interrupting its execution. 
This model provides explicit 
support for parallelism.  

It does not support 
distributed memory 
architecture as used in 
GPU clusters. Copies 
severely limit the 
performance.  

Performance Efficient Programming Models (Tri Hierarchy)
11 MOC (MPI + OpenMP 

+CUDA)  
MPI is used to achieve coarse-grain 
parallelism and to distribute data 
overall connected nodes at inter-
node. OpenMP is used to achieve 
fine-grain parallelism and to 
parallelize CPU threads over intra-
node. CUDA is used to achieve 
finer grain parallelism by executing 
data over accelerated GPU cores.  

It provides Coarse, Fine and 
Finer Granularity. This model 
minimizes energy 
consumption and enables 
computing on inter-node, 
intra-node and accelerated 
GPU devices.  

United States 
Department Of Energy 
(DOE) has pointed out 
some primary 
constraints that include 
power consumption 
not more than 25 to 30 
Mega Watts, system 
development cost near 
about to 200 million 
USD, system time to 
delivery almost 2020 
and integrated multi-
cores no more than 100 
million [7]. MOC 
model does not 
provide the Exa-scale 
level of performance 
even by using all the 
resources mentioned 
above.  

Models To Reduce Intra-Node Communication
12 Userspace memory 

copy  
Userspace memory copy-based 
design utilizes the advanced 
features of modern systems NUMA 
and CMP to promote MPI intra-
node communication.  

This technique is more 
portable than the kernel-
assisted memory mapping 
scheme as it does not demand 
any services from the kernel 
thus providing high 
bandwidth and low latency 
among processes, offering 
better performance than the 
NIC-based loopback scheme.  

Some limitations of 
this approach include 
that it could not 
improve CPM latency 
for large message size 
and it wastes CPU 
cycles and bandwidth 
for large messages. 
Further, it depends on 
a cache-block 
replacement scheme to 
complete its job.  

13 vShark, A C++ Library vShark introduces a thread-based 
architecture to reduce the overhead 
of intra-node communication in 
clusters of SMPs. It entails a shared 
memory area so that the processes 
can utilize it as a communication 
channel.  

One advantage of this library 
is that it avoids deadlocks and 
extra memory requirements 
through the use of 
communication protocol.  

The limitations of the 
vShark library are, it 
uses additional 
communication 
protocol and reduces 
the bandwidth for large 
number of processors.  

14 Kernel-based memory 
mapping  

A method to enhance intra-node 
communication is Kernel-based 
memory mapping which takes help 
from the operating system kernel to 
duplicate information without 
delay from one user process to any 
other without any shared memory 
region.  

The benefits of this approach 
are, it involves only one 
message copy with fewer 
memory transactions and 
utilizes cache efficiently.  

Limitations of this 
approach are, it 
disturbs OS kernel and 
has memory mapping 
overhead.  

15 NIC Loopback  The Network Interface Card offers 
NIC-level loopback. When the 
message is initiated from the 
source, NIC locates the position of 
the destination address. If the 

NIC loopback provides high 
latency and eliminates 
overheads on the network 
link.  

The limitations of NIC 
loopback are, it does 
not distinguish inter-
node or intra-node 
traffic and not utilize 
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source and destination are the 
identical nodes, it merely loopback 
as opposed to injecting it into the 
network.  

the cache effect, and 
somewhat it depends 
on NIC to locate 
source and destination. 

 

IV. DISCUSSIONS AND RECOMMENDATIONS 
 
The most challenging step towards Exascale computing 

systems is that it does not exist yet. However, the performance of 
HPC systems has been improved on the basis of current results 
and predictions to achieve Exascale performance. Also, it would 
require applications to take advantage of billion-way parallelism 
provided by an estimated Exascale system. The technology 
challenges mentioned in this paper would require targeted 
investments to acquire Exascale computing. This is about a 
quarter million-way parallelism in contrast with modern-day 
Petascale systems. Performance and power consumption are the 
two primary HPC metrics that have been taken into consideration 
the most challenging factors for Exascale computing systems. 
Node architectures are predicted to change dramatically within the 
subsequent decade with the increase of power and cooling 
constraints restriction in microprocessor clock speeds. Therefore, 
computer corporations are dramatically growing on-chip 
parallelism to enhance performance. The conventional doubling 
of clock speeds each eighteen to twenty-four months make the 
system less efficient. Moreover, doubling the number of cores 
increased the number of resources and as a result, it automatically 
increased the power consumption for computation. These 
techniques are being replaced by doubling of threads or different 
parallelism mechanisms. Exascale systems will be designed to 
gain excellent performance within both power and cost 
constraints. Additionally, hardware breakthroughs might be 
required to gain beneficial Exascale computing, at least within an 
affordable power and price range. In step with improvement to 
Exascale systems, it has been foretold that it will likely be created 
from a massive variety of heterogeneous systems in which each 
system will be configured with traditional multicore CPUs and 
many-core high-speed GPU devices. 
 

The primary goal of Exascale computing systems is to 
handle massive data HPC applications. For this purpose, many 
Parallel Programming Models has been introduced to enhance 
the performance of HPC systems such as:  

− Single Hierarchy Models: To attain Terascale (1012 
calculations per second)  

− Dual Hierarchy Models: To achieve Petascale (1015 
calculations per second)  

− Tri Hierarchy Models: To accomplish Exascale (1018 
calculations per second)  

Furthermore, different mechanisms come up expressly to 
limit the power consumption along with the performance 
improvement of HPC systems such as: 

− User Space Memory Copy Mechanism  
− Vshark, A C++ Library  
− Kernel-Based Memory Mapping Mechanism  
− NIC Loopback Mechanism 

In this report, we have observed that a tri-level MOC 
(MPI+OpenMP+CUDA) model has achieved a tremendous 
performance by providing coarse-grained, fine-grained and finer 
granularity parallelism. This model has not only focused on inter-
node and intra-node level but also on accelerated GPU devices 
anticipated for Exascale performance. Many pioneers have 
critically analyzed the performance of the MOC model. The 
experimental results have shown that achieved performance is up 
to 1 Teraflops within 130W power consumption by using the 
MOC model. Though attaining 1TeraFlops is not a big deal but in 

contrast, consuming just 130W is an efficient way of utilizing 
resources. If we try to find more approaches that work in parallel 
with the MOC model, performance could be enhanced. It could be 
a promising approach for the Exascale level of performance if the 
communication at inter-node or intra-node level is reduced to 
some extent that will reduce the power consumption and 
ultimately enhance the performance. 
 

V. CONCLUSION 
 

Towards the race of achieving Exascale performance, the 
power has been the most significant constrained resource 
among all the other constraints. Therefore, achieving practical 
Exascale computing with optimum performance will be under 
the control of power constraint. This advanced computing 
system will deliver a thousand-fold performance improvement 
contrasted to the current Petascale computing practice and 
mandate a need for new, system-wide methodologies and 
methods for power monitoring and administration. Although 
the novel programming models and programming 
methodologies are being proposed day-by-day in HPC culture; 
but the quest for enhanced programming models always exists. 
There are significant questions and research regarding the 
models that will be used at Exascale level to achieve better 
performance than the current Petascale systems. Contributing 
to the quest for the optimum programming model for Exascale 
systems, a comprehensive analysis has been conducted on the 
existing programming models and approaches. Based on a 
critical analysis, current study suggested that the MOC model 
(a tri-level hybrid of MPI +OpenMP + CUDA) a promising 
model which can be taken into consideration for emerging 
Exascale computing system to gain massive performance 
under the power consumption constraints. 
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