
DOI: http://dx.doi.org/10.26483/ijarcs.v10i2.6390

Volume 10, No. 2, March-April 2019

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 57

ISSN No. 0976-5697

REVIEW OF METRICS EXTRACTION TOOL USING UML

Mala Das

Department of Computer Science,
St. Aloysius’ (Auto.) College

Jabalpur (M.P.), India

J. K. Maitra
Department of Mathematics and Computer Science,

Rani Durgawati Vishwa Vidyalaya,
Jabalpur (M.P.), India

Zafar Shareef

Gyan Ganga College of Technology
Jabalpur (M.P.), India

Abstract: In the present consequence, whole world depends on software. It is a cost effective way is essential because all countries depend on
complex computer based systems. So it is a big challenge of the developers and researchers to adopt latest technologies which convert a highly
complex system design into a simple design. Intended for this purpose, developers inspire the design and construction of computer-based
systems by using reusable software which is called as component. A component can be deployed, as they possess the qualities such as
reusability, stability, proper communication, modularity, testability, and complexity. The reusable components on integration interoperate with
each other resulting in an operational application which is developed with minimum effort and low maintenance cost. We used Component
Based Software Development (CBSD) process, which is based on the basic concepts of Object Orientated Techniques where Unified Modelling
Language (UML) shows an important role. Different quality factors of a component are measured with the help of metrics, and there are number
of metrics proposed for components. In this paper we proposed a methodology of static metrics for integration of software components,
complexity metrics for UML Component-based System Specification (CBSS) and interface complexity metrics in a component assembly. These
metrics are derived using UML artifacts. We derived these metrics by developing a tool named “CAME” (Component Assembly Metrics
Extractor) in NetBeans which parses through the XMI file (XML Meta Data Interchange) generated by UML tool and produces different
component metrics through graphic user interface. These metrics will help the software developer in making the system more stable, better and
efficient

Keywords: Complexity, CAME, UML, CBSS, CBSD, XML, XMI, CBSE

I. INTRODUCTION

Now these days the software systems are very difficult,
bulky and unmanageable. This causes lesser productivity
and higher risk management. Software metrics amount
different features of software complexity and therefore play
an important role in analyzing and improving the quality of
software [Diwaker C., et.al., 2014]. The software metrics is
used by all people involved in the development processes
including customers and managers on one hand, and project
leaders, designers and programmers on the other side. As an
example, a software manager may be interested in lines of
code, while a project manager may be interested in
estimating the number of hours required to develop the same
number of lines to calculate the productivity of
programmers [Abreu F.B., W. Melo., 1996]. Software
metric is a mapping from a software development domain to
a numerical domain. Here software development domain
means an analysis model or the source code of an
application and numerical model means the real numbers. A
metric must be strongly correlated with a quantitative or
qualitative feature of the system. The aims of software
metrics are essentially two:

 to give hints on the quality of the system and
 to estimate its development and maintenance costs.

The main purpose of reviewing this paper is to know about,
how to design and implement metrics tool? In this paper,
one metric tool has designed and implemented named
CAME (Component Assembly Metrics Extraction). This
tool is used to calculate metrics from UML design
documents. It is capable of generating software metrics
proposed by researchers for Component Based Software
Systems. This paper, demonstrate the CAME tool for a
University Case Registration System (UCRS) and its
representation in UML and metrics extraction procedure
[Pandey; Shareef , 2013].

II. METRICS FOR THE INTEGRATION OF

SOFTWARE COMPONENTS

To measure complexity and criticality of large software
systems designed and integrated using the principles of
CBSE (Component Based Software Engineering), V. L.
Narasimhan and B. Hendradjaya, 2004 has proposed two
sets of metrics i.e. static and dynamic metrics. Static metrics
covered the complexity and the criticality within an
integrated component. The static metrics suit includes the
CPD metric, CID metric in the entire system. They also
define a set of criticality criteria for component integration.
By recognizing a complex and/or critical component, it
should give a contribution on the effort and cost estimation.

J. K. Maitra et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019, 57-63

© 2015-19, IJARCS All Rights Reserved 58

This information should help a software project leader to
detect problems at the early stage of the software
development. [M. Abdellatief et. al.,2012].

 COMPLEXITY: Complexity is an attribute of
software. Software is developed based on an
algorithm. Complexity of software is dependent on
the algorithm used for developing the software.
Traditionally, complexity can be defined as the
difficulty of analyzing source code, capability of
modifying it, and maintaining its different modules.

 COMPLEXITY METRICES: For component-
based systems, complexity metrics are based on
complexity attributes like interaction, coupling,
cohesion, interface etc. There is strong demand of
complexity metrics for black-box components. The
major complexity parameters of black-box
components are interface, integration and
semantics. An interface act as access points for
interaction with the outside computing
environment. Integration metrics are the measures
of efforts required in the integration process and
semantic measures estimate the complexity of
relationship of components to an application [Rana
and Singh, 2014]. There are several metrics for
measuring complexity attributes such as size,
control flow, data structures, and inter-module
structure. Some of these metrics are –

 METRIC 1 - COMPONENT PACKING

DENSITY (CPD)

The CPD metric is used to identify the density of integrated
components. Where, higher density means higher
complexity. Here, nature of the component is black box.
Where the source code is not available but component
developer should provide detailed specification of the
component. This specification is used at the early stage of
the deriving this metrics.
 #< Constituent>
 CPD< constituent_type> =
 # Components

Where, #<Constituent> is the number of lines of code,
number of operations for each component, classes.
#Components is the number of components in a component
assembly. Fig#1 represents a system of integrated
components. Each node and link represents a component
Fig#1shows if a student wants to register him/her self in a
class. He/she automatically connect with the components of
this system such as registration, course, term, person and
billing system to perform different operations like to pay
fees, to know the class schedule etc.. Here constituent has
been taken as number of operations for each component as
shown in fig#1. In figure 6 there are 5 components and 24
total operations. The Component Packing Density (CPD)
metrics (Metric-1) is derived for a component assembly
[Pandey, Shareef, 2013].

and their relationship with other components respectively.

Fig#1: Components and Interfaces in a Component

Assembly Model [Mahmoodand Lai, 2006].

 Number of Operations

 CPDOperation =
 Number of Components

 CPDOperation = 24/ 5 = 4.8

The result for CPDOperation which is 4.8 is calculated by the
CAME tool. [Pandey, Shareef, 2013].

SIGNIFICANCE: For CPD metrics the number of
operations and number of components in a component
assembly are taken into account. As per model UCRS, when
the number of components increases, density increases. A
higher density means a higher complexity, which will force
the developer to spend more effort and risk assessment on
the system. Therefore more resources are needed to
complete the project.

 METRIC 2 - COMPONENT INTERACTION

DENSITY (CID)

The CID metric measures the ratio of actual number of
interactions to the available number of interactions in a
component. When a component provides an interface and
other components use it and also when a component submits
an event and other components receive it, then it is called an
interaction. It can be derived as the interfaces of component
are provided in UML diagram as fig#1 and 2.

 #I
 CID =
 # Imax

Where, #I represents the number of actual interactions.
#Imax represents the number of maximum available
interactions. The component “Registration System” is
having 4 actual interactions, which are required interfaces
and 7 are provided interfaces which are not being used, thus
total interactions in a component are 11.

J. K. Maitra et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019, 57-63

© 2015-19, IJARCS All Rights Reserved 59

Fig#2: Component Assembly and Interfaces of UCRS

Model [Mahmoodand Lai, 2006].

 Number of Actual Interaction
 CID Registration-system =
 Number of total Interaction

CID Registration-system = 7/11, which is 0.3636

The result for CID Registration-system which is 0.3636 is
calculated by the CAME tool [Pandey, Shareef, 2013].

SIGNIFICANCE: For CID metrics the number of Actual
Interaction and Number of total Interaction in a component
assembly are taken into account. As per model UCRS, there
is a risk in submitting and receiving an event, as events have
to be handled with care for correct processing. The main
problem arises when measuring the density of interactions in
a component. When the density of interaction increases,
complexity increases.

 METRIC 3 - COMPONENT INCOMING

INTERACTION DENSITY (CIID)

The CIID metric measures the ratio of actual number of
incoming interactions to the maximum available incoming
interactions in a component, which can be obtained from
design document. Incoming interaction is defined as a
received interface that is required in a component or a
received event that arrives at a component.

 # Iin
 CIID =
 # Imax_in

Where, # Iin represents the actual number of incoming
interactions; # Imax_in represents the maximum number of
incoming interactions available in a component. The
component “Registration System” has 4 actual incoming
interactions and total of incoming interactions for this
component is also 4.
CIID Registration-System

 Number of actual incoming interactions

 =

 Number of total incoming interactions

CIID Registration-system = 4/4, which is 1.0 , The result for

CIID Registration-system which is 1.0 is calculated by the

CAME tool [Pandey, Shareef, 2013].

SIGNIFICANCE: As per model UCRS, High density

shows that a particular component requires so many

interfaces. A higher density of CIID shows that a particular

component needs extra effort to examine all received

interfaces or events.

 METRIC 4 - COMPONENT OUTGOING

INTERACTION DENSITY (COID)

The COID metric measures the ratio of actual number of

outgoing interactions to the maximum number of outgoing

interactions available in a component. Which is for outgoing

interaction to available outgoing interactions can be

obtained at early stage.

 # Iout
 COID =
 # Imax_out

Where, # Iout represents the actual number of outgoing
interactions used; # Imax_out represents the maximum
number of outgoing interactions available in a component.
This component “Registration System” has 7 total available
provided interfaces, but is not being used by any component,
so actual provided interfaces, which are being consumed by
other components are 0.

J. K. Maitra et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019, 57-63

© 2015-19, IJARCS All Rights Reserved 60

COID Registration-System
 Number of actual outgoing interactions
 =
 Number of actual outgoing interactions

COID Registration-system = 0/7, which is 0.

The result for COID Registration-system which is 1.0 is
calculated by the CAME tool [Pandey, Shareef, 2013].

SIGNIFICANCE:. As per model UCRS, Outgoing
interactions are any provided interface used and any
possible source of events consumed. This metric calculates
density in a component. A higher density of COID shows
that a particular component needs extra effort to examine all
provided interfaces or send events.

 METRIC 5 - COMPONENT AVERAGE

INTERACTION DENSITY (CAID)

The CAID metric is a sum of interaction densities for each
component divided by the number of components in
software system. CAID is calculated based on previous
values can also be obtained from design documents.
 n CIDn
 CAID = ∑
 i=1 # Components

Where, ∑ CIDn represents the sum of interaction densities
for components 1...n; # components represents the number
of existing components in the software system. There are 5
components, which have “provided” and “required”
interfaces. The components “Course Management”, “Term
Management”, “Person Management”, “Billing System”
provided interfaces are being consumed, where as
“Registration System” is having 7 provided interfaces, but
they are not being consumed.

(i) CID Registration System = 4/11 = 0.3636
(ii) CID Course Management = 1/1 = 1
(iii) CID Term Management = 1/1 = 1
(iv) CID Person Management = 1/1 = 1
(v) CID Billing System = 1/1 = 1

 ∑ CIDn
 CAID =
 Number of Components
CAID =

CIDRegistrationSystem+CIDCourseManagement+CIDTermManagement+CIDPe

rsonManagement+CIDBilling System

 Number of Components

CAID = (0.3636+1+1+1+1)/5 = 0.872723
CAID = 4.3636/5 = 0.872723
The result for CAID which is 0.872723 is calculated by the

CAME tool [Pandey, Shareef, 2013].

SIGNIFICANCE: As per model UCRS, It evaluates the
complexity of the entire component assembly. The value
will be valuable to assess the whole system interaction. The
low value of CAID indicates low interactions, which also
means lower complexity.

III. CRITICALITY METRICS

Criticality metrics used for a critical component that binds a
system, consisting of assembly of components. For a
software tester, this component requires substantial testing
effort. Every possible scenario for this critical component
has to be tested, particularly if it is a base component, so
that any incorrect operations are not inherited by the sub-
components. To identify the critical components, or the
circumstances that make a component critical, four metrics
are used and they characterize the circumstances that make a
component critical. These metrics are Link Criticality,
Bridge Criticality, Inheritance Criticality and Size Criticality
metrics.

 METRIC 6 - LINK CRITICALITY METRIC

(CRITLINK)

Link Criticality metric is defined as the number of
components which have links more than a threshold value. It
specified a component to be called critical if the number of
links has reached a certain threshold value. In UML these
links can be easily represented, hence the metric can be
obtained at early stage. Links are created from the provided
interfaces of other components.
 CRITlink = # linkcomponents

Where, # linkcomponents represents the number of
components, with their links more than a critical value. The
threshold is considered as 8 links. This metric can be
empirically understood with the help of a model as shown in
the fig#1 and 2. The component “Term Management” has
only one provided interface, so link (Term-management) or
CRITlink for this component is displayed as “Not Critical”. If
a component link exceeds a threshold value, then the links
of that component will be displayed as “Critical”.

SIGNIFICANCE: As per model UCRS, A component will
be called critical, if the number of links has reached a
certain threshold value. At this stage, it does not have the
exact threshold value. If the number of provided interfaces
increases, criticality of that component increases.

 METRIC 7: BRIDGE CRITICALITY

METRIC (CRITBRIDGE)

It is used for detecting components acting as bridge between
two components in a component assembly. It is derived by
counting the number of components acting as bridge (link)
between two components as proposed by Narasimhan and
Hendradjaya [Narasimhan and Hendradjaya, 2007], hence it
can be derived at early stage.

 CRITbridge = # bridge_component

Where # bridge_component represents the number of bridge
components.
A bridge component may be defined as a component which
links two or more components/ application. If there is a
defect in bridge, the whole application might malfunction.
More number of bridge components means more chances of
failure. There are no components acting as bridge, because
all the four components “Course Management”, “Term

J. K. Maitra et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019, 57-63

© 2015-19, IJARCS All Rights Reserved 61

Management”, “Person Management”, “Billing System” are
providing interfaces directly to component “Registration
System”. So, the component “Registration System” for
CRITbridge result is zero.

SIGNIFICANCE: As per model UCRS, to identify a bridge
component, an importance weight should be placed for each
link by the developer based on their experience. This
component has to be identified, since a defective bridge
component has a high probability to prevent the functioning
of the entire application. The more the number of bridge
components implies, the more the chances for failure.

 METRIC 8 - INHERITANCE CRITICALITY

METRIC (CRITINHERITANCE)

Inheritance Criticality metric is defined as the number of
components, which become root or base for other inherited
components. This metric can be obtained at early stage
because those components are identified which becomes
root or base for other inherited components.

CRITinheritance = # root _ component

Where # root_component represents the number of root
components which has inheritance. It is the number of
components which act as a parent/root/base for other
components.
All the four components “Course Management”, “Term
Management”, “Person Management”, “Billing System” are
providing interfaces directly to component “Registration
System”, which also has provided interfaces, which are not
being consumed. These components are not exhibiting
hierarchical form. For Inheritance Criticality metric a
component to be acting as root, base or parent component
where other components are linked to each other in
hierarchical order. Since there is no component acting as
root component, so the result for the component
“Registration System” is zero.

SIGNIFICANCE: For CRITinheritance metrics the number of
root components which has inheritance in a component
assembly is taken into account. As per model UCRS, The
base component introduces the risk of constructing the right
information to be inherited. The more the number of base
components, the higher is the potential associated risks.

 METRIC 9 - SIZE CRITICALITY METRIC

(CRITSIZE)

Size criticality metrics (CRITsize), determines the size of the
component, and the component becomes critical if it
exceeds the threshold value. The size of component at early
stage can be easily obtained from information that comes
with the associated detailed specification. Size Criticality
metric is defined as below:
 CRITsize = # size_component

Where # size_component represents the number of
components which exceed a given critical size value. The
size is defined in terms of LOC, number of classes,
operations and modules in the application. Narasimhan and
Hendradjaya [Narasimhan and Hendradjaya, 2007] defined
the threshold value as 1000 lines of code or 50 classes. The

component model proposed in this section consists of
components being black box in nature; only their interfaces
can be accessed, which contains operations. These, are
counted to check the threshold value, so the value for this
metric is given as 1 if it exceeds the threshold value for a
particular component.
This metric can be empirically understood with the help of a
model as shown in the figure 6 and 7. The Size Criticality
Metric helps in detecting components whose size value
exceeds a threshold value, which is defined by Narasimhan
and Hendradjaya, components being black box in nature,
only their interfaces can be accessed, which contain
operations. These are counted to check the threshold value.
So, the value of this metric is 1 if it exceeds the threshold
value for a particular Component. If it exceeds the value
then that particular component is considered “critical”
otherwise it is “simple”. If the component does not contains
any operations than it is displayed as “Not Available”. Here
the interface “ITermMgt” of component “Term
Management” is having maximum operations i.e. 3, so it
does not exceed threshold value and is considered “simple”.

 METRIC 10 - # CRITICALITY METRIC

The #Criticality Metric (CRITall) is defined as the sum of
all critical metrics.
CRITall = CRITlink + CRITbridge + CRITinheritance +

CRITsize

By totalling the number of components that have link,
bridge, inheritance and size criticality, we obtain the
criticality level of the component assembly. The value of
CRIT is compared to a threshold value in order to identify
the criticality level of a component assembly. For instance,
if the threshold value for CRITlink, CRITbridge, CRITinheritance,
and CRITsize equal 5, then the threshold value for CRITall is
20. By experimenting with more empirical data, a more
accurate threshold value could be produced.

IV. METHODOLOGY

The objective of this paper is an assembly of components
for a system to be designed at early stage. In this research
work, by using open source UML “ArgoUML”, a tool using
NetBeans has been developed, named as “CAME”
(Component Assembly Metrics Extractor), this tool helps in
extracting the static complexity metrics proposed by
Narasimhan and Hendradjaya [Narasimhan and
Hendradjaya, 2007]. Using the ArgoUML tool, the model
given in is designed creating component artifacts through
Deployment diagram option, the XMI 1.2 file is generated
with the help of Export XMI option (ArgoUML using
Netbeans XMI Writer version 1.0), which is then parsed for
extracting information related to various metrics in a
component assembly for component-based systems using a
Java based software tool. The parser parses the XMI file,
which contains information about all the components
integrated into the system, this open source tool assigns a
unique XMI identifier (UUID) to flag user designed model
components. For example, in this system, a student registers
for classes. Once given access, the students may select a

J. K. Maitra et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019, 57-63

© 2015-19, IJARCS All Rights Reserved 62

term and build a class schedule from the offered classes. The
system passes information about a student’s schedule to the
billing system. A student can also register, add, or drop a
course. An instructor may use the registration system to
print a student class list and to submit grades for her/his
class. The administrator may maintain student and teacher
information. This model provides an overall view of the
system and helps to demonstrate the extraction of existing
component assembly complexity metrics.
With the help of CAME tool a number of facts related to
component assembly can be derived through XMI file,
which helps the developer in analyzing the different aspects
of components and assembly information. This information
is displayed through User Interface. Through this user
interface a developer can learn about number of
components, their interfaces and the operations available in
an interface of a component assembly. Component names
are displayed and after selecting a particular component its
interfaces: Provided (Abstraction) and Required
(Dependency) can be displayed. Similarly the details of
operations of a particular interface can be displayed by
selecting the interface. The component-“Registration
System” has a provided interface “IMakeSchedule”, this
interface consists of four operations, the same information is
provided using CAME tool.
In this work static metrics are used for integration of
software components, complexity metrics for UML
Component-based System Specification (CBSS) and
interface complexity metrics in a component assembly
proposed by different authors for component-based systems
using UML artifacts are derived. These metrics are derived
by developing a tool named “CAME” (Component
Assembly Metrics Extractor) in Netbeans which parses
through the XMI file (XML Meta Data Interchange)
generated by UML tool and produces different component
metrics through graphic user interface. These metrics will
help the software developer in attaining more information at
early stage, making the system more stable, better and
efficient.

V. COMPONENT ASSEMBLY METRICS

EXTRACTOR (CAME) TOOL

To make use of component assembly metrics and interface
metrics suite, the CAME tool (Component Assembly
Metrics Extractor) is used. It is a java-based tool developed
in NetBeans to analyze UML Component Assembly
diagrams represented in XML-based formats, namely XMI.
It is extract existing metrics for component assemblies using
XMI files for Component-based systems. This tool is limited
to component diagram, collaboration diagram and interfaces
only so it works only with those XMI files that contain these
features. A user draws UML component diagrams or
collaboration diagrams with only the elements provided by
the ArgoUML tool.
 XMI input derived from UML models created by software

design tools is transformed as follows [Varol, 2005] –

• UML model to XMI file generated

• XMI input to parser

• Different status of Components related to dependency

output using Netbeans software tool.

Fig#3: XMI input derived from UML models
created by software design tools is transformed.

 EXTENSIBILITY: CAME TOOL PROVIDES A USER

INTERFACE WHERE A USER CAN SELECT A UML

COMPONENT ASSEMBLY MODEL IN ARGOUML AND

CAN COMPUTE DIFFERENT COMPONENT ASSEMBLY

METRICS.

 DATA EXPORT: CAME TOOL COMPUTE METRICS

FOR COMPONENT ASSEMBLY THROUGH XMI FILE

AND DISPLAYS THEM THROUGH USER INTERFACE.

 MULTI-PLATFORM SUPPORT: CAME TOOL WILL

RUN ON ALL PLATFORMS THAT SUPPORT THE JAVA

1.2 OR HIGHER RUNTIME ENVIRONMENT (WINDOWS

9X/ME/NT/2000/XP/WINDOWS 7, UNIX AND

LINUX).

VI. SOFTWARE METRICS EXTRACTION USING

UML

The main focus of this review is mainly on how to obtain
more information from UML artifacts such as component
and collaboration diagram, through XMI information sheet,
errors which occur at early stage can be corrected and can be
stopped from migrating to later stages. To collect this useful
information CAME tool is used. It extracts information
regarding the component assemblies characterized through
metrics defined by Narasimhan and Hendradjaya [2007]
Mahmood and Lai [Mahmood and Lai, 2006] through XMI
information sheet.

VII. CONCLUSION

This review work concludes that the component based
software engineering is the efficient approach for dealing
with the higher complex and real time software systems.
The metrics proposed by the Narasimhan and Hendradjaya

J. K. Maitra et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019, 57-63

© 2015-19, IJARCS All Rights Reserved 63

[2007] are specifically proposed for design documents like
UML class diagrams; these diagrams representing the static
nature, however this paper does not provide any empirical
validation of these metrics, but proposes the validation for
future work. The proposed metrics [Narasimhan and
Hendradjaya, 2007] have been extracted from design
documents using CAME tool [Pande; Shareef, 2013] where
only static metrics for component assembly are extracted.

VIII. FUTURE RESEARCH

In this paper, CAME tool extracted the metrics from design
documents (UML) using component diagram and their
interfaces but here this work is limited to static metric only.
The developed tool works for only component models
developed in ArgoUML, this can be further upgraded for
other UML tools like Rational Rose, Magic Draw UML,
UMLet, ESS-Model. The tool can be further upgraded for
extraction of dynamic metrics for component-based systems.
Other metrics related to Component-based systems can be
included in enhanced version of the tool proposed.

REFERENCES

[1] Abreu F.B., Melo W., (1996). Evaluation the Impact of
Object-Oriented Design on Software Quality,
Proceedings of the 3rd International Software Metrics
Symposium, Berlin, Gennany, pp. 90-99, March.

[2] Abdellatief M. et. al., (2012). Multidimensional Size
Measure for Design of Component-Based Software

System, Institute of Software and Technology, Vol. 6,
pp. 350–357.

[3] B. Boehm, et al., (2000). Software Cost Estimation with
COCOMO II. Prentice Hall.

[4] Bakshi A., Singh R., (2013). Component Based
Development in Software Engineering, International
Journal of Recent Technology and Engineering
(IJRTE), ISSN: 2277-3878, Volume-2, Issue-1, March,
pp. 1, 48-52.

[5] Bayar V., (2001). A Process Model for Component
Oriented Software Development, Master Thesis.

[6] Booch, G., (1994). Object-Oriented Analysis and
Design with Applications, 2nd ed., Benjamin
Cummings.

[7] Bellin, D., Tyagi M., et al., Object-Oriented Metrics:An
Overview , Computer Science Department,North
Carolina A ,T state University,Greensboro,Nc 27411-
0002.

[8] Beshar Dhaya Nor, (2015). Comparative Analysis Of
Software Reusability Attributes In Web And Mobile
Applications, University Tun Hussein Onn Malaysia,
April.

[9] Capers J., (2012). A Short History Of The Lines Of
Code (Loc) Metric ,Version 6.0. December 2

[10] Churcher, N. I. and Shepperd, M. J.,(1995). Comments
on 'A Metrics Suite for Object-Oriented Design', IEEE
Transactions on Software Engineering, vol. 21, pp. 263-
5.

[11] Clemens S., (1998). Component Software: Beyond
Object-Oriented Programming, Addison Wesley.

[12] Chawla S., Kaur G.,(2013). Comparative Study Of The
Software Metrics For The Complexity And
Maintainability Of Software Development, Journal Of
Advanced Computer Science and Application
(IJACSA) Vol. 4, No. 9.

