International Journal of Advanced Research in Computer Science
RESEARCH PAPER

Available Online at www.ijarcs.info

SOME PROPERTIES ABOUT SMOOTHING, ROUGHEN THE VALUES OF THE INDEX ATTRIBUTE ON THE DECISION BLOCK

Trinh Dinh Thang
Institute of Information Technology,
Hanoi Pedagogical University 2, Viet Nam

Do ThiLanAnh
Institute of Information Technology,
Hanoi Pedagogical University 2, Viet Nam

Abstract

$\boldsymbol{A} \boldsymbol{b s t r a c t}$:The report proposed and demonstrated some properties about smoothing, roughen the values of the condition index attribute or decision index attributeon the decision block and on the slice of the decisionblock. Every time the condition equivalence class or decision equivalence classon the decision block have been smoothed or roughened then they will partial pullulate or pullulate smoothing, roughing the corresponding classon the slice. From the results foundof the smoothing, roughening the condition equivalence class or decision equivalence classpartial pullulate or pullulate on the slice then the incremental calculation of the support matrices on the slice will be simplerand therefore faster than recalculating these matrices when smoothing, roughing the values of the condition index attribute or decision index attribute.

Keywords: Decision block, smoothing, roughen, index attribute.

I. INTRODUCTION

The study to search for decision laws on the decision table by assessing the measures of decision laws as well as incremental approaches, determining decision laws ... has been studied by many groups of authors, such as in [7], [8], ... On the other hand, when the decision table is expanded into a decision block, then the study, proposing a model and algorithm to detect decision laws on the decision block has been studied by the authors as in [4], [5], [6]. However, the proposed models and algorithms when smoothing and roughen the values of index attributes on the decision block have not been studied until now.The purpose of this paper is to study the some properties about smoothing, roughen the values of the condition index attribute or decision index attribute on the decision block and on the slice of the decision block.From the results found of the smoothing, roughening the condition equivalence class or decision equivalence class partial pullulate or pullulate on the slice then the incremental calculation of the support matrices on the slice will be simpler and therefore faster than recalculating these matrices when smoothing, roughing the values of the condition index attribute or decision index attribute.

II - THE BASIC CONCEPT

II. 1 The block, slice of the block

Definition II. 1 [1]

Let $\mathrm{R}=\left(\mathrm{id} ; \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ is a finite set of elements, where id is non-empty finite index set, $\mathrm{A}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{n})$ is the attribute. Each attribute $A_{i}(i=1 . . n)$ there is a corresponding value domain $\operatorname{dom}\left(\mathrm{A}_{\mathrm{i}}\right)$. A block r on R , denoted $\mathrm{r}(\mathrm{R})$ consists of a finite number of elements that each element is a family of mappings from the index set id to the value domain of the attributes $A_{i}(i=1 . . n)$.

$$
\mathrm{t} \in \mathrm{r}(\mathrm{R}) \Leftrightarrow \mathrm{t}=\left\{\mathrm{t}^{\mathrm{i}}: \mathrm{id} \rightarrow \operatorname{dom}\left(\mathrm{~A}_{\mathrm{i}}\right)\right\}_{\mathrm{i}=1 . .} \mathrm{n} .
$$

The block is denoted by $r(R)$ or $r\left(i d ; A_{1}, A_{2}, \ldots, A_{n}\right)$, sometime without fear of confusion we simply denoted r .
Definition II. 2 [2],[3]

Let $R=\left(i d ; A_{1}, A_{2}, \ldots, A_{n}\right), r(R)$ is a block over R. For each $x \in i d$ we denoted $r\left(R_{x}\right)$ is a block with $R_{x}=\left(\{x\} ; A_{1}\right.$, A_{2}, \ldots, A_{n}) such that:
 $\left.\operatorname{dom}\left(\mathrm{A}_{\mathrm{i}}\right)\right\}_{\mathrm{i}=1 . . \mathrm{n}, \mathrm{x}}$
where $t^{i}(x)=t^{i}(x), i=1 . . n$.
Then $r\left(R_{x}\right)$ is called a slice of the block $r(R)$ at point x, sometimes we denotedr ${ }_{x}$.
Here, for simplicity we use symbols:
$\mathrm{x}^{(\mathrm{i})}=\left(\mathrm{x} ; \mathrm{A}_{\mathrm{i}}\right) ; \mathrm{id}^{(\mathrm{i})}=\left\{\mathrm{x}^{(\mathrm{i})} \mid \mathrm{x} \in \mathrm{id}\right\}$.
We call $x^{(i)}(x \in i d, i=1 . . n)$ are the index attributes of the block scheme $\mathrm{R}=\left(\mathrm{id} ; \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$.

II. 2Information block

DefinitionII.3[4]:Let block schemeR $=\left(i d ; A_{1}, A_{2}, \ldots, A_{n}\right)$, ris a block over R. Then, the information block is a tuples of fourelements $I B=(U, A, V, f)$ with Uis a set of objects of r called space objects, $A=\bigcup_{i=1}^{n} i d^{(i)}$ is the set of index attributes of the object, $V=\bigcup_{x^{(i)} \in A} V_{x^{(i)}}, V_{x^{(i)}}$ is the set of values of the objects corresponding to the index attribute $x^{(i)}$, fis an information function $U x A \rightarrow V$ satisfy: $\forall u \in U$, $\forall x^{(i)} \in A$ we have $f\left(u, x^{(i)}\right) \in V_{x^{(i)}}$.
We call $f\left(u, x^{(i)}\right)$ is the value of the object u at the index attribute $\mathrm{x}^{(\mathrm{i})}$.
If V contains missing values in at least one index attribute $\mathrm{x}^{(\mathrm{i})} \in A$ then we call IB is inadequate information block, In contrast IB is a complete information block, or simply IB is an information block.
DefinitionII.4[4]:Let block schemeR $=\left(i d ; A_{1}, A_{2}, \ldots, A_{n}\right), r$ is a block overR, r_{x} is the slice of the block r at the point $x \in i d$. Then the slice of the information block at x is a tuples of four elementsI $B_{x}=\left(U, A_{x}, V_{x}, f_{x}\right)$ with U is a set of objects of r called space objects, $A_{x}=\bigcup_{i=1}^{n} x^{(i)}$ is the set of the index
attributes of the object on the slice at $x, V_{x}=\bigcup_{x^{(i)} \in A_{x}} V_{x^{(i)}}, V_{x^{(i)}}$ is the set of values of the objects corresponding to the index attribute $x^{(i)}, f_{x}$ is an information function $U x A_{x} \rightarrow V_{x}$ satisfy: $\forall u \in U, \forall x^{(i)} \in A_{x}$ we have $f\left(u, x^{(i)}\right) \in V_{x^{(i)}}$.

II. 3 Relationships are indistinguishable

DefinitionII.5[5]

Letinformation block $I B=(U, A, V, f)$. Then for each index attribute set $P \subseteq A$ we define an equivalence relation, signIND (P) defined as follows:

$$
I N D(P)=\left\{(u, v) \in U x U \mid \forall x^{(i)} \in P: f\left(u, x^{(i)}\right)=f\left(v, x^{(i)}\right)\right\},
$$

and called non-discriminatory relations:
From the definition we have:
$\operatorname{IND}(\mathrm{P})=\bigcap_{x^{(i)} \in P} I N D\left(x^{(i)}\right)$.
RelationIND(P) divide U into equivalence classes,, constitutes a subdivision of U , sign $\mathrm{U} / \mathrm{IND}(\mathrm{P})$ or simply U/P.

With each $u \in U$, the equivalence class contains u in relation $\operatorname{IND}(\mathrm{P})$, sign $[\mathrm{u}]_{\mathrm{P}}$ is defined as follows:

$$
[\mathrm{u}]_{\mathrm{P}}=\{\mathrm{v} \in \mathrm{U} \mid(\mathrm{u}, \mathrm{v}) \in \operatorname{IND}(\mathrm{P})\} .
$$

By this definition we see: two elements $u, v \in U$ belonging to the same equivalence class if and only ifthey have the same value on every index attribute in P.

DefinitionII.6[5]

Letinformation block $I B=(U, A, V, f), P, Q \subseteq A$ is the set of index attributes, $U / P=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}, U / Q=\left\{Q_{1}, Q_{2}, \ldots\right.$, $\left.Q_{n}\right\}$ is the partition generated by P, Q respectively.Then we say partition by Q is more coarse than partition by P, or partitionby P is smoother than partition by Qif and only if:
$\forall P_{i} \in U / P, \exists Q_{j} \in U / Q: P_{i} \subseteq Q_{j}, i=1 . . m, j=1 . . n$.

II. 4 Decision block

DefinitionII.7[5]

Letinformation block $I B=(U, A, V, f)$ with U is the space of objects, $A=\bigcup_{i d}$ iduppose A is divided into two sets C and D such that: $\quad C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, \quad D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}$,
then information block $I B$ is called the decision block and denoted by $D B=(U, C \cup D, V, f)$, with C is the set of conditional index attributes and D is the set of decision index attributes.
From the definition of the decision block, we see: $C \cup D=A$, $C \cap D=\varnothing$,
We can denote the decision block simply by: $\mathrm{DB}=(\mathrm{U}$, $\mathrm{C} \cup \mathrm{D})$.
DefinitionII.8[5]:Let decision blockDB=(U,C DD,V,f), with C is the set of conditional index attributes and D is the set of decision index attributes. Then the slice of the block decides at $x(x \in i d)$ is a tuples of four elements $D B_{x}=\left(U, C^{x} \cup D^{x}, V_{x}\right.$, f_{x})with U is the set of objects of r,rcalled the space of objects
$C^{x}=, D^{x} \models_{i=1}^{k} x^{(i)} \quad, A_{x}=\oint_{i=k+1}^{n} £ \mathbb{B}^{(i)}$,
$V_{x}=$, is the $\underset{x^{(i)} \in A_{x}}{ }$ e $K_{\text {of }}$ valuek K_{x} of the objects
corresponding to the index attribute $x^{(i)}, f_{x}$ is an information
function $U x A_{x} \rightarrow V_{x}$ satisfy: $\forall u \in U, \forall x^{(i)} \in A_{x}$ we have: $f\left(u, x^{(i)}\right) \in V_{x^{(i)}}$.

Comment:

Let decision block $D B=(U, C \cup D, V, f)$. Then, if id $=\{x\}$, the decision block $D B$ degenerate into the decision table as known.
When studying the decision block, people want to find the decisive laws from there. In these decision laws, the conditional part corresponds to the conditional indexattribute, the conclusions will correspond to the decision index attributes.
The decision laws found in the decision block are divided into two categories:
i) The lawsare correct on the block.
ii) The laws are correct on each particular slice of the block.

II. 5 The decision laws

DefinitionII.9[5]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D})$, with U is the space of objects:

$$
\begin{aligned}
& C=, \quad D=\bigcup_{i=k+1, x \in i d}^{n} \operatorname{lin}^{n} x^{(i)} x^{x}=, \quad \bigcup_{i=1, x \in i d}^{k} x^{(i)} \\
& D^{x}=, \quad x \not \underbrace{\text { i.i. }}_{i=k+1} . x^{(i)}
\end{aligned}
$$

Then:

$$
\begin{aligned}
& U / C=\left\{C_{l}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, \quad U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

correspondingly, the partitions are generated by C, C^{x}, D, D^{x}. A decision law on a block is denoted by:
$C_{i} \rightarrow D_{j}, i=1 . . m, j=1 . . k$,
and on the slice at point x is denoted by:
$C_{x i} \rightarrow D_{x j}, i=1 . . t_{x}, j=1 . . h_{x}$.
PropositionII. 1 [5]
Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D})$, with U is the space of objects:

$$
\begin{aligned}
& \quad C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}, \text { and } \quad C^{x}=\bigcup_{i=1}^{k} x^{(i)}, D^{x}= \\
& \bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
& \quad U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

Then: $\forall C_{i} \in U / C, \forall D_{j} \in U / D$ we have:

$$
\begin{aligned}
& \quad C_{i}=\bigcap_{x \in i d} C_{x p_{x}}, D_{j}=\bigcap_{x \in i d} D_{x q_{x}} \text { with } p_{x} \in\left\{1,2, \ldots, t_{x}\right\}, \\
& q_{x} \in\left\{1,2, \ldots, h_{x}\right\} .
\end{aligned}
$$

DefinitionII.10[5]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}), \mathrm{C}_{\mathrm{i}} \in \mathrm{U} / \mathrm{C}, \mathrm{D}_{\mathrm{j}} \in \mathrm{U} / \mathrm{D}, C_{x p}$
$\in \mathrm{U} / \mathrm{C}^{\mathrm{x}}, \quad D_{x q} \in \mathrm{U} / \mathrm{D}^{\mathrm{x}}, i=1 . . m, \quad j=1 . . k, \quad p \in\left\{1,2, \ldots, t_{x} \quad\right\}$, $q \in\left\{1,2, \ldots, h_{x}\right\}, x \in$ id.Then, support, accuracy and coverage of decision law $C_{i} \rightarrow D_{j}$ on the block are:

- Support: $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right)=\left|\mathrm{C}_{\mathrm{i}} \cap \mathrm{D}_{\mathrm{j}}\right|$,
- Accuracy: $\operatorname{Acc}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right)=\frac{\left|C_{i} \cap D_{j}\right|}{\left|C_{i}\right|}$,

$$
-\operatorname{CoverageCov}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right)=\frac{\left|C_{i} \cap D_{j}\right|}{\left|D_{j}\right|}
$$

and for decision law $C_{x p} \rightarrow D_{x q}$ on the slice of the block at point x is:

$$
\begin{aligned}
& \text { - Support:Sup }\left(\mathrm{C}_{\mathrm{xp}}, \mathrm{D}_{\mathrm{xq}}\right)=\left|\mathrm{C}_{\mathrm{xp}} \cap \mathrm{D}_{\mathrm{xq}}\right|, \\
& \text { - Accuracy: } \operatorname{Acc}\left(\mathrm{C}_{\mathrm{xp}}, \mathrm{D}_{\mathrm{xq}}\right)=\frac{\left|C_{x p} \cap D_{x q}\right|}{\left|C_{x p}\right|}, \\
& \text { - Coverage: } \operatorname{Cov}\left(\mathrm{C}_{\mathrm{xp}}, \mathrm{D}_{\mathrm{xq}}\right)=\frac{\left|C_{x p} \cap D_{x q}\right|}{\left|D_{x q}\right|} .
\end{aligned}
$$

From this definition, we have:

$$
\begin{gathered}
0 \leq \operatorname{Acc}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right) \leq 1,0 \leq \operatorname{Acc}\left(\mathrm{C}_{\mathrm{xp}}, \mathrm{D}_{\mathrm{xq}}\right) \leq 1, \\
\sum_{j=1}^{n} \operatorname{Acc}\left(C_{i}, D_{j}\right)=1, \quad \sum_{q=1}^{h_{x}} \operatorname{Acc}\left(C_{x p}, D_{x q}\right)=1, \\
0 \leq \operatorname{Cov}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right) \leq 1,0 \leq \operatorname{Cov}\left(\mathrm{C}_{\mathrm{xp}}, \mathrm{D}_{\mathrm{xq}}\right) \leq 1, \\
\sum_{i=1}^{m} \operatorname{Cov}\left(C_{i}, D_{j}\right)=1, \quad \sum_{p=1}^{t_{x}} \operatorname{Cov}\left(C_{x p}, D_{x q}\right)=1
\end{gathered}
$$

We can represent the measure of the decision laws on the block in the form of the following measurement matrices:

- Matrix of support:
$\operatorname{Sup}(\mathrm{C}, \mathrm{D})=\operatorname{Sup}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right)_{\mathrm{mxk}}=$

$$
=\left(\begin{array}{ccc}
\operatorname{Sup}\left(C_{1}, D_{1}\right) & \ldots & \operatorname{Sup}\left(C_{1}, D_{k}\right) \\
& \ldots & \\
\operatorname{Sup}\left(C_{m}, D_{1}\right) & \ldots & \operatorname{Sup}\left(C_{m}, D_{k}\right)
\end{array}\right)
$$

- Matrix of Accuracy:
$\operatorname{AccC}, \mathrm{D})=\operatorname{Acc}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right)_{\mathrm{mxk}}=$

$$
=\left(\begin{array}{ccc}
\operatorname{Acc}\left(C_{1}, D_{1}\right) & \ldots & \operatorname{Acc}\left(C_{1}, D_{k}\right) \\
& \ldots & \\
\operatorname{Acc}\left(C_{m}, D_{1}\right) & \ldots & \operatorname{Acc}\left(C_{m}, D_{k}\right)
\end{array}\right)
$$

- Matrix of coverage:
$\operatorname{CovC}, \mathrm{D})=\operatorname{Cov}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right)_{\mathrm{mxk}}=$

$$
=\left(\begin{array}{cll}
\operatorname{Cov}\left(C_{1}, D_{1}\right) & \ldots & \operatorname{Cov}\left(C_{1}, D_{k}\right) \\
& \ldots & \\
\operatorname{Cov}\left(C_{m}, D_{1}\right) & \ldots & \operatorname{Cov}\left(C_{m}, D_{k}\right)
\end{array}\right)
$$

With the decision laws on the slices of the blocks, we also have the same support, accuracy, and coverage matrix.

DefinitionII.11[5]

Let decision block $D B=(U, C \cup D), C_{i} \in U / C, D_{j} \in U / D$ is the conditional equivalence class and decision equivalence class generated by C, Dcorresponding, $C_{i} \rightarrow D_{j}$ is the decision lawon the block $D B, i=1 . . m, j=1 . . k$.

- IfAcc $\left(C_{i} \rightarrow D_{j}\right)=1$ then $C_{i} \rightarrow D_{j} i$ is called certain decision law.
- If $0<\operatorname{Acc}\left(C_{i} \rightarrow D_{j}\right)<1$ then $C_{i} \rightarrow D_{j} i s$ called uncertain decision law.

PropositionII. 2 [5]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D})$, with U is the space of objects:
$C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}$.
Then $\forall C_{i} \in U / C, \forall D_{j} \in U / D,(i=1 . . m, j=1 . . n)$ we have:
(i) $\operatorname{Acc}\left(C_{i} \rightarrow D_{j}\right)=\frac{\operatorname{Sup}\left(C_{i}, D_{j}\right)}{\sum_{i}^{n} \operatorname{So15-19} \text {, IJARCS All Righ } \sum_{q=1} \operatorname{Sup}\left(C_{i}, D_{q}\right)}$
ii) $\operatorname{Cov}\left(C_{i} \rightarrow D_{j}\right)=\frac{\operatorname{Sup}\left(C_{i}, D_{j}\right)}{\sum_{p=1}^{m} \operatorname{Sup}\left(C_{p}, D_{j}\right)}$

DefinitionII.12[5]

Let decision block $D B=(U, C \cup D), C_{i} \in U / C, D_{j} \in U / D, i=1 . . m$, $j=1 . . k i s$ the conditional equivalence class and decision equivalence class generated by C,Dcorresponding; α, β are two given thresholds ($\alpha, \quad \beta \in(0,1))$. IfAcc $\left(C_{i}, D_{j}\right)$ $\geq \alpha a n d \operatorname{Cov}\left(C_{i}, D_{j}\right) \geq \beta$ then we callC $C_{i} \rightarrow D_{j} i$ is the decision lawmeaning.

DefinitionII.13[5]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f})$, with U is the space of objects, $a \in C \cup D, V_{a}$ is the set of existing values of the index attribute a. Suppose $Z=\left\{x_{s} \in U \mid f\left(x_{s}, a\right)=z\right\}$ is the set of objects whose z value is on the index attribute a. If Z is partitioned into two sets W and Y such that: $Z=W \cup Y$, $W \cap Y=\varnothing$ with $W=\left\{x_{p} \in U \mid f\left(x_{p}, a\right)=w, w \notin V_{a}\right\}, Y==\left\{x_{q} \in U \mid\right.$ $\left.f\left(x_{q}, a\right)=y, y \notin V_{a}\right\}$, thenwe say the z value of the index attribute a is smoothed to two new values w and y.

DefinitionII.14[5]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f})$, with U is the space of objects, $a \in C \cup D, V_{a}$ is the set of existing values of the index attribute a. Suppose $f\left(x_{p}, a\right)=w, f\left(x_{q}, a\right)=y$ are respectively the values of x_{p}, x_{q} on the index attribute a $(p \neq q)$. If at any one time we have: $f\left(x_{p}, a\right)=f\left(x_{q}, a\right)=z,\left(z \notin V_{a}\right)$ thenwe say the two values w, y of a are roughened to the new value z.

Theorem II.1[6]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f})$, with U is the space of objects, $a \in C \cup D, V_{a}$ is the set of existing values of the index attribute a.Then, two equivalent classes $E_{p}, E_{q}\left(E_{p}\right.$, $\left.E_{q} \in U / E, E \in\{C, D\}\right)$ is made rough into new equivalent class E_{s} if and only if $\forall a_{j} \neq a: f\left(E_{p}, a_{j}\right)=f\left(E_{q}, a_{j}\right)$.

TheoremII.2[6]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f})$, with U is the space of objects, $a \in C \cup D, V_{a}$ is the set of existing values of the index attribute a. Then, equivalent class $E_{s}\left(E_{s} \in U / E\right.$, $E \in\{C, D\})$ smoothed into two new equivalents classes E_{p}, E_{q} if and only if we can put: $f\left(E_{p}, a\right)=w, f\left(E_{q}, a\right)=y$ và $E_{p} \cup E_{q}=$ $E_{s}, w, y \notin V_{a}, w \neq y$.

Theorem II. 3 [6]

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D})$, with U is the space of objects:

$$
\begin{aligned}
& \quad C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}, \text { and } C^{x}=\bigcup_{i=1}^{k} x^{(i)}, D^{x}= \\
& \bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
& \quad U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, \quad U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

α, β are two given thresholds $(\alpha, \beta \in(0,1))$.
Suppose that if $C_{i} \rightarrow D_{j}$ is the decision lawmeaning on the decision block then it is also the decision lawmeaningon any slice of the decision block at $x \in i d$.

III. RESEARCH RESULTS

III. 1 Smoothing, roughening the conditional equivalenteclases on the decision block and on the slice. PropositionIII. 1
Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f}), a=x^{(i)} \in C, V_{a}$ is the set of existing values of the conditional index attribute a,
The z value of a is smoothed to two new values w and y.

$$
\begin{aligned}
& C=, D=, \underset{i=1, x \in i d}{k} x^{k} x^{(i)} \quad \bigcup_{i=k+1, x \in i d}^{n} x^{(i)} \\
& C^{x}=, D^{x}=, \underbrace{k}_{i=1} x_{i=i}^{(i d .} \quad \bigcup_{i=k+1}^{n} x^{(i)} \\
& U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

Suppose that if the conditional equivalence class $C_{s} \in U / C$, $\left(f\left(C_{s}, a\right)=z\right)$ smoothed into two new conditionalequivalents classes $C_{p}, C_{q}\left(f\left(C_{p}, a\right)=w, f\left(C_{q}, a\right)=y\right.$, with $\left.w, y \notin V_{a}\right)$ thenon the slicer ${ }_{x}$, exists equivalence class $C_{x i}$ satisfy: $C_{s} \subseteq C_{x i}$, also smoothed into two new conditional equivalents classes $C_{x i}$ ' and $C_{x i}{ }^{\prime \prime}$ satisfy: $C_{p} \subseteq C_{x i}, C_{q} \subseteq C_{x i},\left(f\left(C_{x i}, a\right)=w, f\left(C_{x i},, a\right)=y\right)$.
We say on the slice r_{x} then $\mathrm{C}_{\mathrm{x} i}$ is smoothed sympathetic partiallysmoothed into two new conditionalequivalents classes $C_{x i}$ and $C_{x i}$ " by the smoothing of C_{s} into two new conditionalequivalents classes C_{p}, C_{q}.
Prove
Assuming we have: $C_{s} \in U / C,\left(f\left(C_{s}, a\right)=z\right)$ smoothed into two new conditionalequivalents classes $C_{p}, C_{q} \quad\left(f\left(C_{p}, a\right)=w\right.$, $f\left(C_{q}, a\right)=y$, with $\left.w, y \notin V_{a}\right)$. Because $C_{s} \in U / C$, applying the results of clause I. 1 we have: $C_{s}=\bigcap_{x \in i d} C_{x p_{x}}$, thence inferred $\exists C_{x i} \in U / C^{x}$ satisfy: $\quad C_{s} \subseteq C_{x i}$. On the other hand, by C_{s} smoothed into two conditionalequivalents classes C_{p} and C_{q} so according to theorem I. 2 we have: $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{p}} \cup \mathrm{C}_{\mathrm{q}} \Rightarrow \mathrm{C}_{\mathrm{p}}$, $\mathrm{C}_{\mathrm{q}} \subseteq C_{x i}$ with $f\left(C_{p}, a\right)=w, f\left(C_{q}, a\right)=y$.
Finally, we assign each element $u \in C_{x i} \backslash \mathrm{C}_{\mathrm{s}}$ at the index attribute a either w or y thenwe have a subdivision of $C_{x i}$ into two new conditionalequivalents classes $C_{x i}$, and $C_{x i}{ }^{\prime}$ satisfy: $f\left(C_{x i}, a\right)=w, f\left(C_{x i}, a\right)=y a n d \mathrm{C}_{\mathrm{xi}}=\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xi}}{ }^{\prime}$.
The result is on the slice r_{x} thentheconditionalequivalent class $C_{x i}$ satisfy: $C_{s} \subseteq C_{x i}$, also smoothed into two conditionalequivalents classes $C_{x i}$, and $C_{x i}$ " satisfy: $C_{p} \subseteq C_{x i}$, $C_{q} \subseteq C_{x i},\left(f\left(C_{x i}, a\right)=w, f\left(C_{x i}, a\right)=y\right)$ and $\mathrm{C}_{\mathrm{xi}}=\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xi}}$ ".

PropositionIII. 2

Let decision blockDB=(U,CטD), $a=x^{(i)} \in C, V_{a}$ is the set of existing values of the conditional index attribute a, The z value of a is smoothed to two new values w and y.

$$
\begin{aligned}
& C=, \bigsqcup_{i=1, x \in i d}^{k}=\text { aind }^{(i)} C^{x}=, \bigcup_{i=k+1, x \in i d}^{n} x^{(i)} \quad \bigcup_{i=1}^{k} x^{(i)} \\
& D^{x}=, x \in \underbrace{n}_{i=k+1} x^{(i)} \\
& U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

$C_{s} \in U / C, \quad C_{x i} \in U / C^{x}, \quad C_{s} \subseteq C_{x i}, \quad D_{x j} \in U / D^{x}, \quad s=1 . . m, \quad i=1 . . t_{x}$, $j=1 . . h_{x}$. Suppose that if $C_{s}\left(f\left(C_{s}, a\right)=z\right)$ smoothed into two conditionalequivalents classes $\quad C_{p} a n d C_{q}\left(f\left(C_{p}, a\right)=w\right.$, $f\left(C_{q}, a\right)=y$ andon the slicer ${ }_{x}, \mathrm{C}_{\mathrm{x} i}$ is smoothed sympathetic partially into two new conditionalequivalents classes $C_{x i}$. and $C_{x i}$ " then:
i) $C_{x i}=C_{x i} \cup C_{x i}{ }^{\prime \prime}$,
ii) $\quad \forall D_{x j} \in U / D^{x}: \operatorname{Sup}\left(C_{x i}, D_{x j}\right)=\operatorname{Sup}\left(C_{x i}, D_{x j}\right)+$ $\operatorname{Sup}\left(C_{x i}{ }^{\prime}, D_{x j}\right)$, with $j=1,2, \ldots, h_{x}$.
Prove
i) From the smoothing of the conditional equivalence class C_{xi} we have. $\mathrm{C}_{\mathrm{xi}}=\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xi}}$ ",
ii) Assuming we have: $\mathrm{C}_{\mathrm{x} i} i s$ smoothed sympathetic partiallyinto two new conditionalequivalents classes $C_{x i}$, and $C_{x i}$,
$\Rightarrow \mathrm{C}_{\mathrm{xi}}=\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xi}}$, and $_{\mathrm{xi}} \cap \mathrm{C}_{\mathrm{xi}}$ " $=\varnothing$..
Other way: $\forall D_{x j} \in U / D^{x}: \quad \operatorname{Sup}\left(C_{x i} D_{x j}\right)=\left|C_{x i} \cap D_{x j}\right|=$ $\left|\left(\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xi}}{ }{ }^{\prime}\right) \cap \mathrm{D}_{\mathrm{xj}}\right|=\left|\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xj}}\right) \cup\left(\mathrm{C}_{\mathrm{xi}}{ }^{\prime} \cap \mathrm{D}_{\mathrm{xj}}\right)\right|$.
We have: $\quad \mathrm{C}_{\mathrm{xi}} \cap \mathrm{C}_{\mathrm{xi}},=\varnothing \Rightarrow\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xj}}\right) \cap\left(\mathrm{C}_{\mathrm{xi}}{ }^{\circ} \cap \mathrm{D}_{\mathrm{xj}}\right)=\varnothing$.
Inferred: $\quad \operatorname{Sup}\left(C_{x i}, D_{x j}\right) \quad=\left|\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xj}}\right) \quad \cup\left(\mathrm{C}_{\mathrm{xi}} \cap \cap \mathrm{D}_{\mathrm{xj}}\right)\right| \quad=$ $\left|\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xj}}\right)\right|+\left|\left(\mathrm{C}_{\mathrm{xi}}, \cap \mathrm{D}_{\mathrm{xj}}\right)\right|=\operatorname{Sup}\left(C_{x i}, D_{x j}\right)+\operatorname{Sup}\left(C_{x i}{ }^{\prime}, D_{x j}\right)$.
So we infer: $\forall D_{x j} \in U / D^{x}: \operatorname{Sup}\left(C_{x i}, D_{x j}\right)=\operatorname{Sup}\left(C_{x i}, D_{x j}\right)+$ $\operatorname{Sup}\left(C_{x i^{\prime}}, D_{x j}\right)$, with $j=1,2, \ldots, h_{x}$.
From this result we see: row corresponding to theconditionalequivalence class $C_{x i}$ in the support matrix for slicer r_{x} will be split into two new lines corresponding to two new conditionalequivalents classes $C_{x i}$ and $C_{x i}$ ".
Therefore, to calculate the value of the elements of these two new rows in the support matrix with slice r_{x} thenwe first calculate the values $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{x} i}, \mathrm{D}_{\mathrm{xj}}\right)$ with $\mathrm{j}=1,2, \ldots, \mathrm{~h}_{\mathrm{x}}$. From there, we infer the values $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xi}}\right.$ ", $\left.\mathrm{D}_{\mathrm{xj}}\right)$ is the subtraction between $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xi}}, \mathrm{D}_{\mathrm{xj}}\right)$ and $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xi}}, \mathrm{D}_{\mathrm{xj}}\right)$ with $\mathrm{j}=1,2, \ldots, \mathrm{~h}_{\mathrm{x}}$.

PropositionIII. 3

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f}), a=x^{(i)} \in C, V_{a}$ is the set of existing values of the conditional index attribute a, the w and y values of a are roughened to the new value z.

$$
\begin{aligned}
& C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}, \quad \text { and } C^{x}=\bigcup_{i=1}^{k} x^{(i)}, D^{x}= \\
& \bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
& \quad U / C=\left\{C_{l}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, \quad U / D^{x}=\left\{D_{x 1}, D_{x 2}, \ldots, D_{x k_{x}}\right\},
\end{aligned}
$$

Suppose, if two conditionalequivalents classes $C_{p}, C_{q} \in U / C$, $\left(f\left(C_{p}, a\right)=w, \quad f\left(C_{q}, a\right)=y\right)$ is made rough into new conditionalequivalent class $C_{s} \in U / C\left(f\left(C_{s}, a\right)=z\right)$ thenon the slicer ${ }_{x}$ exists two conditionalequivalents classes $C_{x i}$, $C_{x j}$ satisfy: $C_{p} \subseteq C_{x i}, \quad C_{q} \subseteq C_{x j}$, also is made rough into new conditionalequivalent class $C_{x k}$ satisfy: $C_{s} \subseteq C_{x k}$.
We say on the slice r_{x} thenthetwo conditionalequivalents classes $C_{x i} C_{x j}$ is made rough sympathetic into $C_{x k}$ by the roughening oftwo conditionalequivalents classes C_{p}, C_{q} to C_{s}.
Prove
Assumingwe have: $C_{p}, C_{q} \in U / C,\left(f\left(C_{p}, a\right)=w, f\left(C_{q}, a\right)=y\right)$, applying the results of proposition I. 1 we infer on the slicer r_{x} exists two conditionalequivalents classes $C_{x i}$, $C_{x j}$ satisfy: $C_{p} \subseteq C_{x i}, C_{q} \subseteq C_{x j}$. From there we have: $f(u, a)=w$ with $u \in C_{p} \subseteq C_{x i} \Rightarrow f\left(C_{x i}, a\right)=w$, In the same way we also have: $f(u, a)=y$ with $u \in C_{q} \subseteq C_{x j} \Rightarrow f\left(C_{x j}, a\right)=y$.
On the other hand, assuming we have: two conditionalequivalents classes $C_{p}, C_{q} \in U /$ Cis made rough into new conditionalequivalent class $C_{s} \in U / C$, according to the results of theorem I. 1 then we have:
$\forall a_{j} \neq a, a_{j} \in C: f\left(C_{p}, a_{j}\right)=f\left(C_{q}, a_{j}\right) \Rightarrow \forall a_{j} \neq a, a_{j} \in C^{x}:$
$f\left(C_{p}, a_{j}\right)=f\left(C_{q}, a_{j}\right)(1)$
In slices r_{x} thenwe have:
$C_{p} \subseteq C_{x i} \in U / C^{x} \Rightarrow \forall a_{j} \neq a, a_{j} \in C^{x}: f\left(C_{p}, a_{j}\right)=f\left(C_{x i} a_{j}\right)(2)$
Same, we also have:
$C_{q} \subseteq C_{x j} \in U / C^{x} \Rightarrow \forall a_{j} \neq a, a_{j} \in C^{x}: f\left(C_{q}, a_{j}\right)=f\left(C_{x j}, a_{j}\right)(3)$
From (1), (2) and (3) we infer:
$\forall a_{j} \neq a, a_{j} \in C^{x}: f\left(C_{x i}, a_{j}\right)=f\left(C_{x j}, a_{j}\right)$.
Therefore, apply the necessary and sufficient conditions in the statement of the theorem I.1, we havetwo conditionalequivalents classes $C_{x i}, C_{x j}$ is made rough sympathetic into $C_{x k}$ by the roughening oftwo conditionalequivalents classes C_{p}, C_{q} to C_{s}.
From the nature of the rough work two conditionalequivalents classes $C_{x i}, C_{x j}$ to $C_{x k}$ we have:

$$
\mathrm{C}_{\mathrm{xk}}=\left(\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{x}}\right) \supseteq\left(\mathrm{C}_{\mathrm{p}} \cup \mathrm{C}_{\mathrm{q}}\right)=\mathrm{C}_{\mathrm{s}} .
$$

From that: $\mathrm{C}_{\mathrm{s}} \subseteq \mathrm{C}_{\mathrm{xk}}$.

PropositionIII. 4

Let decision blockDB=(U,CטD), $a=x^{(i)} \in C, V_{a}$ is the set of existing values of the conditional index attribute a, the w and y values of a are roughened to the new value z

$$
\begin{aligned}
& \quad C=, \bigotimes_{i=1, x \in i d}^{k}, \text { axtid } C^{x}=\bigcup_{i=k+1, x \in i d}^{k}\left\langle x^{n}\right\}^{i)}, x^{(i)} \\
& D^{x}=\bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
& U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, U / D^{x}=\left\{D_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

$C_{p}, \quad C_{q} \in U / C, \quad\left(f\left(C_{p}, a\right)=w, \quad f\left(C_{q}, a\right)=y\right), \quad D_{x h} \in U / D^{x}, \quad h=1 . . h_{x}$. Suppose, if $C_{p}, \quad C_{q}$ is made rough into new conditionalequivalent class $C_{s},\left(f\left(C_{s}, a\right)=z\right)$ and on the slice r_{x} two conditionalequivalents classes $C_{x i}, \quad C_{x j}\left(C_{p} \subseteq C_{x i}\right.$, $\left.C_{q} \subseteq C_{x j}\right)$ is made rough sympathetic into $C_{x k}$ then:

$$
\text { i) } C_{x i} \cup C_{x j}=C_{x k}
$$

ii) $\forall D_{x h} \in U / D^{x}$: $\quad \operatorname{Sup}\left(C_{x i}, D_{x h}\right)+\operatorname{Sup}\left(C_{x j}, D_{x h}\right)=$ $\operatorname{Sup}\left(C_{x k}, D_{x h}\right)$, vói $h=1,2, \ldots, h_{x}$.
Prove
i) Suppose we have: $x \in C_{x i} \cup C_{x j} \Rightarrow x \in C_{x i}$ or $x \in C_{x j}$. If $x \in C_{x i}$ thenfrom thetwo conditionalequivalents classes $\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{xj}} i$ is made rough into conditionalequivalent class $\mathrm{C}_{\mathrm{xk}} \Rightarrow \mathrm{f}(\mathrm{x}, \mathrm{a})=$ $\mathrm{f}\left(\mathrm{C}_{\mathrm{xi}}, \mathrm{a}\right)=\mathrm{f}\left(\mathrm{C}_{\mathrm{xk}}, \mathrm{a}\right)=\mathrm{z}$.
On the other hand, applying the results of theorem 2.1 we have $\forall a_{j} \neq a$: $f\left(C_{x i}, a_{j}\right)=f\left(C_{x j}, a_{j}\right)=f\left(C_{x k}, a_{j}\right) \Rightarrow \mathrm{f}\left(\mathrm{x}, \mathrm{a}_{\mathrm{j}}\right)=f\left(C_{x i}, a_{j}\right)$ $=f\left(C_{x j} ; a_{j}\right)=f\left(C_{x k}, a_{j}\right) \Rightarrow x \in C_{x k}$. Totally similar, when x $\in \mathrm{C}_{\mathrm{xj}}$ we also prove that $\mathrm{x} \in \mathrm{C}_{\mathrm{xk}}$.
So inference: $\left(\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xj}}\right) \subseteq \mathrm{C}_{\mathrm{xk}}$. (5)
On the contrary, suppose $\mathrm{x} \in \mathrm{C}_{\mathrm{xk}}$, because C_{xi} and $\mathrm{C}_{\mathrm{x} j}$ is made rough into C_{xk} applying the results of theorem 2.1 we have: $\forall a_{j} \neq a: f\left(C_{x i}, a_{j}\right)=f\left(C_{x j}, a_{j}\right)=f\left(C_{x k}, a_{j}\right) \Rightarrow \mathrm{f}\left(\mathrm{x}, \mathrm{a}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{C}_{\mathrm{x} i}, \mathrm{a}_{\mathrm{j}}\right)=$ $\mathrm{f}\left(\mathrm{C}_{\mathrm{xj}}, \mathrm{a}_{\mathrm{j}}\right)$. On the other hand, becausex $\in \mathrm{C}_{\mathrm{xk}} \Rightarrow \mathrm{f}(\mathrm{x}, \mathrm{a})=\mathrm{z}$ but z is made rough from w and $\mathrm{y} \Rightarrow \mathrm{f}(\mathrm{x}, \mathrm{a})=\mathrm{w}$ or $\mathrm{f}(\mathrm{x}, \mathrm{a})=\mathrm{y}$.

$$
\begin{aligned}
& \text { - If } f(x, a)=w \Rightarrow f(x, a)=f\left(C_{x i}, a\right)=w \Rightarrow x \in C_{x i} . \\
& \text { - If } f(x, a)=y \Rightarrow f(x, a)=f\left(C_{x j}, a\right)=y \Rightarrow x \in C_{x j} . \\
& \quad \text { So } x \in C_{x i} \text { or } x \in C_{x j} \Rightarrow x \in C_{x i} \cup C_{x j} . \\
& \text { Therefore, from } x \in C_{x k} \Rightarrow x \in C_{x i} \cup C_{x j} . \\
& \text { So: } C_{x k} \subseteq\left(C_{x i} \cup C_{x j}\right) \quad \text { (6) }
\end{aligned}
$$

Combined (5) and (6) we have: $\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xj}}=\mathrm{C}_{\mathrm{xk}}$.
ii) BecauseC $\mathrm{C}_{\mathrm{x} i}, \mathrm{C}_{\mathrm{x} j}$ arethe conditionalequivalents classes, so we have: $\mathrm{C}_{\mathrm{xi}} \cap \mathrm{C}_{\mathrm{xj}}=\varnothing$.
On the other hand: $\forall D_{x h} \in U / D^{x}: \operatorname{Sup}\left(C_{x k} D_{x h}\right)=\left|C_{x k} \cap D_{x h}\right|=$ $\left|\left(\mathrm{C}_{\mathrm{xi}} \cup \mathrm{C}_{\mathrm{xj}}\right) \cap \mathrm{D}_{\mathrm{xh}}\right|=\left|\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xh}}\right) \cup\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xh}}\right)\right|$.
We have: $\mathrm{C}_{\mathrm{xi}} \cap \mathrm{C}_{\mathrm{xj}}=\varnothing \Rightarrow\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xh}}\right) \cap\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xh}}\right)=\varnothing$.
Inferred: $\quad \operatorname{Sup}\left(C_{x k}, D_{x h}\right)=\left|\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xh}}\right) \quad \cup\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xh}}\right)\right|=$ $\left|\left(\mathrm{C}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xh}}\right)\right|+\left|\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xh}}\right)\right|=\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xi}}, \mathrm{D}_{\mathrm{xh}}\right)+\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xj}}, \mathrm{D}_{\mathrm{xh}}\right)$.
So inference: $\forall D_{x h} \in U / D^{x}: \quad \operatorname{Sup}\left(C_{x i}, D_{x h}\right)=\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xi}}, \mathrm{D}_{\mathrm{xh}}\right)+$ $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{x} j}, \mathrm{D}_{\mathrm{xh}}\right)$ with $h=1,2, \ldots, h_{x}$.
Thus, we see two rows of matrix of support on the slice r_{x},corresponding to the two conditionalequivalents classes $\mathrm{C}_{\mathrm{xi}}, \mathrm{C}_{\mathrm{xj}}$ is combined into a new row corresponding to the conditionalequivalent class C_{xk}. The value of each element of the new line corresponds to C_{xk} is the total value of two elements of two lines corresponding to $\mathrm{C}_{\mathrm{xi}} \mathrm{andC}_{\mathrm{xj}}$.

III. 2

Smoothing,
rougheningthedecisionequivalenceclassesonthedecision block and ontheslice.
PropositionIII. 5
Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f}), a=x^{(i)} \in D, V_{a}$ is the set of existing values of the decision index attribute a, the z value of a is smoothed to two new values w and y.

$$
\begin{aligned}
& \quad C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}, \quad \text { and } C^{x}=\bigcup_{i=1}^{k} x^{(i)}, D^{x}= \\
& \bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
& \quad U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}, \quad U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
\end{aligned}
$$

Suppose that if decision equivalent class $D_{s} \in U / D$ ($f\left(D_{s}, a\right)=z$) smoothed into two decisionequivalents classes $D_{p}, D_{q}\left(f\left(D_{p}, a\right)=w, f\left(D_{q}, a\right)=y\right.$, withw, $\left.y \notin V_{a}\right)$ thenon the slice r_{x}, exists decision equivalence class $D_{x i}$ satisfy: $D_{s} \subseteq D_{x i}$, also smoothed into two new decision equivalents classes $D_{x i}$. and $D_{x i}$ "satisfy: $D_{p} \subseteq D_{x i}, D_{q} \subseteq D_{x i}{ }^{\prime \prime}\left(f\left(D_{x i}, a\right)=w, f\left(D_{x i}{ }^{\prime}, a\right)=y\right)$.
We say on the slice r_{x} thendecision equivalent class $\mathrm{D}_{\mathrm{x} i} i$ s smoothed sympathetic partially into two new decisionequivalents classes $D_{x i}$, and $D_{x i}{ }^{\prime}$, by the smoothing of D_{s} into two new decisionequivalents classes D_{p}, D_{q}.
Proving this clause is similar to the proof of the proposition II.1.

PropositionIII. 6

Let decision block $D B=(U, C \cup D), a=x^{(i)} \in D, V_{a}$ is the set of existing values of the decision index attribute a, the z value of a is smoothed to two new values w and y.

$$
C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}, \quad \text { and } \quad C^{x}=\bigcup_{i=1}^{k} x^{(i)}, D^{x}=
$$

$$
\bigcup_{i=k+1}^{n} x^{(i)}, x \in i d
$$

$$
U / C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}
$$

$$
U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\},
$$

$D_{s} \in U / D, \quad D_{x i} \in U / D^{x}, \quad D_{s} \subseteq D_{x i}, \quad C_{x j} \in U / C^{x}, \quad s=1 . . k, \quad i=1 . . h_{x}$, $j=1 . . t_{x}$. Suppose that if decision equivalent class $D_{s}\left(f\left(D_{s}, a\right)=z\right)$ smoothed into two decisionequivalents classes $D_{p}, D_{q}\left(f\left(D_{p}, a\right)=w, f\left(D_{q}, a\right)=y\right.$ and on the slice $\mathrm{r}_{\mathrm{x}}, \mathrm{D}_{\mathrm{x}} i$ is smoothed sympathetic partially into two new
decisionequivalents classes $D_{x i}$ and $D_{x i}$, then:
i) $D_{x i}=D_{x i} \cup D_{x i}$ ",
ii)

$$
\begin{aligned}
\forall C_{x j} \in U / C^{x}: & \operatorname{Sup}\left(C_{x j}, D_{x i}\right)=\operatorname{Sup}\left(C_{x j}, D_{x i}\right)+ \\
& +\operatorname{Sup}\left(C_{x j}, D_{x i}{ }^{\prime}\right), \text { with } j=1,2, \ldots, t_{x} .
\end{aligned}
$$

Prove
i) From the smoothing of the decision equivalent class D_{xi} we see that: $\mathrm{D}_{\mathrm{xi}}=\mathrm{D}_{\mathrm{xi}} \cup \mathrm{D}_{\mathrm{xi}}$.
ii) Assuming we have: $\mathrm{D}_{\mathrm{x} i}$ is smoothed sympathetic partially into two new decisionequivalents classes $D_{x i}$ and $D_{x i}$ "
$\Rightarrow \mathrm{D}_{\mathrm{xi}}=\mathrm{D}_{\mathrm{xi}}, \cup \mathrm{D}_{\mathrm{xi}}$, and $\mathrm{D}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xi}},=\varnothing$.
Other way: $\forall C_{x j} \in U / C^{x}: \quad \operatorname{Sup}\left(C_{x j}, D_{x i}\right)=\left|C_{x j} \cap D_{x i}\right|=\mid \mathrm{C}_{\mathrm{xj}} \cap$ $\left(D_{x i} \cup D_{x i}\right)\left|=\left|\left(C_{x j} \cap D_{x i}\right) \cup\left(C_{x j} \cap D_{x i}{ }^{\prime}\right)\right|\right.$.
We have: $\mathrm{D}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xi}}{ }^{\prime}=\varnothing \Rightarrow\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xi}}\right) \cap\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xi}}{ }^{\prime}\right)=\varnothing$.
Come on: $\operatorname{Sup}\left(C_{x j}, D_{x i}\right)=\left|\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xi}}\right) \cup\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xi}}{ }^{\prime}\right)\right|=\mid\left(\mathrm{C}_{\mathrm{xj}} \cap\right.$ $\left.\mathrm{D}_{\mathrm{xi}}\right)\left|+\left|\left(\mathrm{C}_{\mathrm{xj}} \cap \mathrm{D}_{\mathrm{xi}}{ }^{\prime}\right)\right|=\operatorname{Sup}\left(C_{x j}, D_{x i}\right)+\operatorname{Sup}\left(C_{x j}, D_{x i}{ }^{\prime}\right)\right.$.
So we infer: $\forall C_{x j} \in U / C^{x}: \operatorname{Sup}\left(C_{x j}, D_{x i}\right)=\operatorname{Sup}\left(C_{x j} D_{x i}\right)+$ $\operatorname{Sup}\left(C_{x j}, D_{x i}{ }^{\prime}\right)$, with $j=1,2, \ldots, t_{x}$.
From this result we see: columncorresponding to thedecisionequivalence class $\mathrm{D}_{\mathrm{x} i}$ in the support matrix for slice r_{x} will be split into two new columns corresponding to two new decisionequivalents classes D_{xi}, and D_{xi} ".
Therefore, to calculate the value of the elements of these two new columns in the support matrix with slice r_{x} then we first calculate the values $\operatorname{Sup}\left(C_{x j}, D_{x i}\right)$ with $j=1,2, \ldots, t_{x}$. From there, we infer the values $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{x}}, \mathrm{D}_{\mathrm{xi}}{ }^{\prime}\right)$ is the subtraction between $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xj}}, \mathrm{D}_{\mathrm{xi}}\right)$ and $\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xj}}, \mathrm{D}_{\mathrm{xi}}\right)$ with $\mathrm{j}=1,2, \ldots, \mathrm{t}_{\mathrm{x}}$.

PropositionIII. 7

Let decision block $\mathrm{DB}=(\mathrm{U}, \mathrm{C} \cup \mathrm{D}, \mathrm{V}, \mathrm{f}), a=x^{(i)} \in D, V_{a}$ is the set of existing values of the decision index attribute a, the w and y values of a are roughened to the new value z.

$$
\begin{aligned}
& C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)}, \text { and } C^{x}=\bigcup_{i=1}^{k} x^{(i)}, \\
D^{x}= & \bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
U / C & =\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
U / D & =\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, \quad U / D^{x}=\left\{\mathrm{D}_{x 1}, D_{x 2}, \ldots, D_{x k_{x}}\right\},
\end{aligned}
$$

Suppose, if two decisionequivalents classes D_{p}, D_{q}, $\left(f\left(D_{p}, a\right)=w, \quad f\left(D_{q}, a\right)=y\right)$ is made rough into new decisionequivalent class $D_{s} \in U / \mathrm{D}\left(f\left(D_{s}, a\right)=z\right)$ then on the slice r_{x} exists two decisionequivalents classes $D_{x i}$, $D_{x j}$ satisfy: $D_{p} \subseteq D_{x i}, \quad D_{q} \subseteq D_{x j}$, also is made rough into new decision equivalent class $D_{x k}$ satisfy: $D_{s} \subseteq D_{x k}$.
We say on the slice r_{x} thentwo decisionequivalents classes $D_{x i}, D_{x j} i s$ made rough sympathetic into $\mathrm{D}_{x k}$ by the roughening of thetwo decision equivalents classes D_{p}, D_{q} todecision equivalent class D_{s}.
Proving this clause is similar to the proof of the proposition II.3.

PropositionIII. 8

Let decision block $D B=(U, C \cup D), a=x^{(i)} \in D, V_{a}$ is the set of existing values of the decision index attribute a, the w and y values of a are roughened to the new value z.

$$
C=\bigcup_{i=1, x \in i d}^{k} x^{(i)}, D=\bigcup_{i=k+1, x \in i d}^{n} x^{(i)} \text {, and } C^{x}=\bigcup_{i=1}^{k} x^{(i)}
$$

$$
\begin{aligned}
& D^{x}=\bigcup_{i=k+1}^{n} x^{(i)}, x \in i d . \\
& \quad U / C=\left\{C_{l}, C_{2}, \ldots, C_{m}\right\}, \quad U / C^{x}=\left\{C_{x 1}, C_{x 2}, \ldots, C_{x t_{x}}\right\}, \\
& U / D=\left\{D_{l}, D_{2}, \ldots, D_{k}\right\}, U / D^{x}=\left\{D_{x 1}, D_{x 2}, \ldots, D_{x h_{x}}\right\}, \\
& D_{p}, D_{q} \in U / D,\left(f\left(D_{p}, a\right)=w, f\left(D_{q}, a\right)=y\right), C_{x h} \in U / C^{x}, h=1 . . t_{x} . \\
& \text { Suppose, if two decisionequivalents classes } D_{p}, D_{q} \text { is made } \\
& \text { rough into new decision equivalent class } D_{s},\left(f\left(D_{s}, a\right)=z\right) \\
& \text { and on the slice } r_{x} t w o \text { decisionequivalents classes } D_{x i} D_{x j} \\
& \left(D_{p} \subseteq D_{x i,} D_{q \subseteq} \subseteq D_{x j}\right) \text { is made rough sympathetic into } D_{x k} \text { then: } \\
& \text { i) } \quad D_{x i} \cup D_{x j}=D_{x k} \\
& \text { ii) } \quad \forall C_{x h} \in U / C^{x}: \operatorname{Sup}\left(C_{x h}, D_{x i}\right)+\operatorname{Sup}\left(C_{x h}, D_{x j}\right)= \\
& \quad=\operatorname{Sup}\left(C_{x h}, D_{x k}\right), \text { with } h=1,2, \ldots, t_{x} .
\end{aligned}
$$

Prove
i) Suppose we have: $u \in D_{x i} \cup D_{x j} \Rightarrow u \in D_{x i}$ oru $\in D_{x j}$. Ifu $\in D_{\mathrm{xi}}$ thenby two decision equivalence classes $\mathrm{D}_{\mathrm{xi}}, \mathrm{D}_{\mathrm{xj}}$ is made rough intodecision equivalent class $\mathrm{D}_{\mathrm{xk}} \Rightarrow \mathrm{f}(\mathrm{u}, \mathrm{a}) \quad=$ $f\left(D_{\text {xi }}, a\right)=f\left(D_{x k}, a\right)=z$.
On the other hand, apply the results of the theorem 2.1 we have $\forall a_{r} \neq a$: $f\left(D_{x i}, a_{r}\right)=f\left(D_{x j}, a_{r}\right)=f\left(D_{x k}, a_{r}\right) \Rightarrow \mathrm{f}\left(\mathrm{u}, \mathrm{a}_{\mathrm{r}}\right)$ $=f\left(D_{x i}, a_{r}\right) \quad=f\left(D_{x j}, a_{r}\right)=f\left(D_{x k}, a_{r}\right) \quad \Rightarrow u \in D_{x k}$. Completely similar, ifu $\in \mathrm{D}_{\mathrm{xj}}$ then we also proved $\mathrm{u} \in \mathrm{D}_{\mathrm{xk}}$.
So inference: $\left(\mathrm{D}_{\mathrm{xi}} \cup \mathrm{D}_{\mathrm{xj}}\right) \subseteq \mathrm{D}_{\mathrm{xk}}$.
On the contrary, suppose $\mathrm{u} \in \mathrm{D}_{\mathrm{xk}}$, because $\mathrm{D}_{\mathrm{x}} \mathrm{and}_{\mathrm{x} j}$ is made rough into D_{xk} should apply the results of the theorem 2.1 we have: $\forall a_{r} \neq a: f\left(D_{x i} a_{r}\right)=f\left(D_{x j}, a_{r}\right)=f\left(D_{x k}, a_{r}\right) \Rightarrow \mathrm{f}\left(\mathrm{u}, \mathrm{a}_{\mathrm{r}}\right)$ $=\mathrm{f}\left(\mathrm{D}_{\mathrm{xi}}, \mathrm{a}_{\mathrm{r}}\right)=\mathrm{f}\left(\mathrm{D}_{\mathrm{xj}}, \mathrm{a}_{\mathrm{r}}\right)$. On the other hand, by $\mathrm{u} \in \mathrm{D}_{\mathrm{xk}} \Rightarrow$ $f(u, a)=z$ but z made rough from w and $y \Rightarrow f(u, a)=w$ or $f(u, a)=y$.

$$
\begin{align*}
& \text { - If } f(u, a)=w \Rightarrow f(u, a)=f\left(D_{x i}, a\right)=w \Rightarrow u \in D_{x i} . \\
& \quad \text { - If } f(u, a)=y \Rightarrow f(u, a)=f\left(D_{x j}, a\right)=y \Rightarrow u \in D_{x j} . \\
& \quad \text { Sou } \in D_{x i} \text { oru } \in D_{x j} \Rightarrow u \in D_{x i} \cup D_{x j} . \\
& \text { Therefore, fromu } \in D_{x k} \Rightarrow u \in D_{x i} \cup D_{x j} . \\
& \text { So: } D_{x k} \subseteq\left(D_{x i} \cup D_{x j}\right) \text {. } \tag{8}
\end{align*}
$$

Combined (7) and (8) we have: $\mathrm{D}_{\mathrm{xi}} \cup \mathrm{D}_{\mathrm{xj}}=\mathrm{D}_{\mathrm{xk}}$.
ii) Because $\mathrm{D}_{\mathrm{x} \mathrm{i}}, \mathrm{D}_{\mathrm{xj}}$ aredecision equivalence classes, so we have: $\mathrm{D}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xj}}=\varnothing$.
On the other hand: $\forall C_{x h} \in U / C^{x}: \operatorname{Sup}\left(C_{x h}, D_{x k}\right)=\left|C_{x h} \cap D_{x k}\right|=$ $\left|\left(\mathrm{D}_{\mathrm{xi}} \cup_{\mathrm{xj}}\right) \cap \mathrm{C}_{\mathrm{xh}}\right|=\left|\left(\mathrm{D}_{\mathrm{xi}} \cap \mathrm{C}_{\mathrm{xh}}\right) \cup\left(\mathrm{D}_{\mathrm{xj}} \cap \mathrm{C}_{\mathrm{xh}}\right)\right|$.
We have: $\mathrm{D}_{\mathrm{xi}} \cap \mathrm{D}_{\mathrm{xj}}=\varnothing \Rightarrow\left(\mathrm{D}_{\mathrm{xi}} \cap \mathrm{C}_{\mathrm{xh}}\right) \cap\left(\mathrm{D}_{\mathrm{xj}} \cap \mathrm{C}_{\mathrm{xh}}\right)=\varnothing$.
Inferred: $\quad \operatorname{Sup}\left(C_{x h}, D_{x k}\right)=\left|\left(\mathrm{C}_{\mathrm{xh}} \cap \mathrm{D}_{\mathrm{xi}}\right) \quad \cup\left(\mathrm{C}_{\mathrm{xh}} \cap \mathrm{D}_{\mathrm{xj}}\right)\right|=$ $\left|\left(\mathrm{C}_{\mathrm{xh}} \cap \mathrm{D}_{\mathrm{xi}}\right)\right|+\left|\left(\mathrm{C}_{\mathrm{xh}} \cap \mathrm{D}_{\mathrm{xj}}\right)\right|=\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xh}}, \mathrm{D}_{\mathrm{xi}}\right)+\operatorname{Sup}\left(\mathrm{C}_{\mathrm{xh}}, \mathrm{D}_{\mathrm{xj}}\right)$.
So inference: $\quad \forall C_{x h} \in U / C^{x}: \operatorname{Sup}\left(C_{x h}, D_{x i}\right)+\operatorname{Sup}\left(C_{x h}, D_{x j}\right)=$ $\operatorname{Sup}\left(C_{x h}, D_{x k}\right)$, with $h=1,2, \ldots, t_{x}$.

Thus, we see two columns of the support matrix on the slicer ${ }_{x}$ corresponds to two decision equivalence classes D_{x}, $\mathrm{D}_{\mathrm{x} j}$ is made rough sympathetic intoa new column corresponding to the decision equivalent class D_{xk}. The value of each element of the new column corresponds to D_{xk} is the total value of two elements of two columns corresponding to two decision equivalence classes D_{xi} and D_{xj}.

IV. CONCLUSIONS

From the initial results on the decision block, the paper proposes and demonstrates some of the results of the relationship between roughing, smoothing the values of
conditional attributes or decisionsfor conditionalequivalents classesordecision equivalence classeson the decision blocks and on the slices. The smoothing of conditionalequivalents classes or decision equivalence classes on the decision blockshave a sympathetic partially the smoothing of conditionalequivalents classes or decision equivalence classesrespectively on the slice. The roughening of conditionalequivalents classes or decision equivalence classes on the decision blockshave a sympathetic the roughening of conditionalequivalents classes or decision equivalence classes on the slice. From these results, calculation of support matrix on the slicesame is define as the calculation of the support matrix on the block whenthe smoothing, roughening of conditionalequivalents classes or decision equivalence classes.
In special cases, the index set id $=\{x\}$, the information blocks degenerate into information systemsthenthese results coincide with the results reported by many authors for the information system. Onthebasis of theseresultswe can studythe reverse relationshipbetweenslices of information block withthat block itself, in case theobjects of theinformation block are changed...,someotherresultsmay be considered in individual cases of information blocks...,itaddsthetheoreticalresults of theexploitation of decision rules oninformation blocks.

V. ACKNOWLEDGEMENTS

Finally, the authors thank the teachers, leaders of the Faculty of Information Technology and the Management Board of the Hanoi Pedagogical University 2 for creating favorable conditions for us to work and study.This research is funded by Hanoi Pedagogical University 2 (HPU2).
[1] Trinh DinhThang, The database model of blocks form, Labor Publishers, Hanoi, 2011.
[2] TrinhDinhThang, Tran Minh Tuyen,Key and key attributes set, non-key attributes set with translation of block schemes, International Journal of Advanced Research in Computer Science, vol. 3, No.3, (335-339), India, 2012.
[3] Trinh DinhThang, Tran Minh Tuyen, Closed mapping and translation of block schemes, Proceedings of the National Conferenceon the VI forFundamental and Applied Information Technology Research (FAIR), (174-179), 2013.
[4] Trinh DinhThang, Tran Minh Tuyen, Do ThiLanAnh, The reclaim of decision rule on the data block with variable attribute values, Proceedings of the National Conference on the XIX, "Some the selected issues of Information Technology and Communication ", (163-169), 2016,
[5] TrinhDinhThang, Tran Minh Tuyen, Do ThiLanAnh, NguyenThiQuyen, Some Results for The Reclaim Of DecisionLaw on The Data Block has Variable Attribute Values, Proceedings of the National Conference on the VI for Fundamental and Applied Information Technology Research (FAIR), (623-632), 2017.
[6] Trinh DinhThang, Do ThiLanAnh, Some Algorithms determine the support matrixon the data Block has variable Attribute Values, Proceedings of the National Conference on the XIX, "Some the selected issues of Information Technology and Communication ", (216-225), 2018.
[7] Liu, D., Li, T., Ruan, D., Zou, W. (2009), "An incremental approach for inducing knowledge from dynamic information systems", Fundam. Inform., (94), (245-260), 2009.
[8] Shi, K., Yao, B. (2008), Function S-rough sets and decisionlaw identification. Science in China Series F: InformationSciences 51, (499-510), 2008.

VI. REFERENCES

