
DOI: http://dx.doi.org/10.26483/ijarcs.v9i5.6324

Volume 9, No. 5, September-October 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

ISSN No. 0976-5697

ANALYZING REFACTORING TRENDS AND PRACTICES IN THE SOFTWARE
INDUSTRY

Zeba Khanam

Assistant Professor
Saudi Electronic University

Dammam, KSA

Abstract---Most of the developers in the software industry though have some instinctive capacity to refactor but the true expertise of this skill is
rarely found in real time software development. Thus it is significant to discern the reasons as to how prevalent are the refactoring practices in
reality are and what are the major factors impacting its role and adoption in software development. This paper explores the actual
implementation of refactoring practices in software industry by taking inputs from the software professionals working in different projects and
companies. This exploration is basically required to assess the gap between research practices and Industrial norms. The paper also tries to probe
the consequences in software development in the absence of refactoring, what are the code rejuvenation practices adopted by the professionals
when not refactoring or due to non familiarity or lack of expertise in the area.

Keywords-Refactoring, code smells, automated refactoring, manual refactorings, industry software practices, agile methodology.

I. INTRODUCTION

 Comprehension exercises on the various existing software
engineering (SE) practices and techniques used in industry
are significant as it gives a real insight into the applicability
of the theoretical theories and practices evolving rapidly.
There exists a wide range of software practices and their
types that are imbibed by the industry.

 The drive for conducting the research on this topic is
derived from various sources. First, refactoring has gained
momentum in the industrial practices, along with
widespread research and the rapid increase of tool support
for automated refactoring [12][13] . A significant question
in this context would be:

 Can the benefits of refactoring be quantified and, if so, is it
worth doing refactoring? What is the status of refactoring in
the software industry? By exploring various works on
refactoring, there has only been a confined research to
highlight the role of refactoring in evolving commercial
software and little research to establish the relevance of the
refactored code with ease of maintenance or fault-proneness.

 The other aspect that the paper tries to explore is the
consequences resulting in the absence of refactoring. What
are the code rejuvenation practices adopted by the
professionals in absence of refactoring or due to non
familiarity or lack of expertise in the area. How does it
impact the software development process and creation of
technical debt? These explorations would to an extent assist
in bridging the gap between research practices and Industrial
practices. Thus it intends to grasp and identify high level
view on Software Engineering and maintenance Practices
primarily used in the industry. A lot of research has already
been conducted on refactoring techniques and tools. Most of
the researchers have claimed that it helps in easing up the
maintenance process. In another research it was found that

not just the software metrics but the type of design the
developer perceives is what influences the process of
refactoring and at times the crosscutting concerns becomes a
concern and need to be refactored [21][23]. One of the
works suggested that the code smells and its severity may
vary from one developer to the other and the significance of
the class with the code smell also varies according to
different developers as the code evolves [17][20]. Thus a
trade-off between the quality and robustness is worth
calculating before refactoring. Automated refactoring too
have been explored extensively by the researchers and
various approaches are already invented using search based
techniques to assist in searching for a better design
[24].Another important impact that has been explored by a
few researchers lately is the improvement in the energy
efficiency of the software due to refactoring [2][25][26].
The carbon footprint contributed by the ICT is around 2% of
the total emission [25][27] . Refactoring has led to reduction
in code smells and a better software design contributing to
improved energy efficiency in ICT. Though this aspect has
not been investigated in this paper but it would be explored
in the future work.

This drove us to concentrate on two main objectives that
are:

 Enquire and analyze the major refactoring
trends in the industry

 What maintenance strategy is used to
improve the software

 If not refactored then how the code does
survive recursive modifications.

II. METHODOLOGY

The Delhi NCR region in India has a vibrant software
industry and is worth exploring the Software engineering
practices and in particular the status of refactoring. Our
objective is to get a glance of the high-level view on type of

Zeba Khanam, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,98-102

© 2015-19, IJARCS All Rights Reserved 99

SE practices in an Industrial setup. To investigate the status
of refactorings in the SE practices, we drafted an online and
face to face survey with 10 questions based on the
experience of the developer and his role.

The questionnaire that had been designed had the following
queries:

1. Do you perform refactorings? On which platform and

how often.
2. Manual or automatic? Which tool is preferred?
3. How big is the team and what is your role?
4. Which refactorings are most commonly done by your

team?
5. Who usually performs the refactorings?
6. Any difficulty in assessing which is the refactoring to

apply?
7. Which part of the code is generally most refactoring

prone?
8. In the absence of refactoring what code upgradation

technique is applied?
9. Which software development practice is the project

following? Ever used Test Driven Development?
 10. Any measurable result obtained by refactoring?

III. ANALYSIS AND RESULTS

This paper elaborates the significance and the status of
refactoring in the software industry by performing the
survey of refactoring practices and attitudes in different
companies working on different domains in different
teams. The study explores differences in expertise and
attitudes about refactoring among participants who played
roles in software development, and how these differences
affected the actual practice. Many authors who had
conducted research on the impact of refactorings claim
substantial improvement in maintainability [1][9][10]. The
study found that though refactoring at different stages and
the roles is endorsed by the participants but full bloom
refactoring with an in-depth knowledge about the code
smells is very rare and refactoring needs to be practiced
more often as there is a strong agreement about the
negative impacts of deferring refactoring on the overall
project.

We had carried out a large-scale empirical study that
explored the views and experiences of approximately 80
experienced practitioners with regards to the prevalence of
refactoring activities in mainstream development. We had
conducted face to face interactions as well as email-based
semi-structured interviews and had analysed different
parameters impacting the adoption of this practice.

A. Absence of a Standard Strategy

The survey revealed that there are no strategies in place for
implementation of refactoring techniques. No plans
designed to guide the developers with the same. Developers
performing with their own knowledge and sometimes ended
up messing with the code. This indicates that the
introduction to the code smells [15] should be made
mandatory to the development teams. Though the agile
team, practicing the test driven development had different
perspectives and a deeper understanding of the phenomena
[3][4]. Analysis of the survey results have raised many
interesting questions suggesting the need for a considerable
amount of future research.

B. Analysis of the Feedback

The developers are indulged in refactoring but somewhat in
an informal state though the ones whom we surveyed had
knowledge about the topic but not good enough to
implement it practically. The survey was conducted on 5
teams (named as A, B, C, D, and E) belonging to different
organizations (refer to table 1) each following its own
software development strategy.

As has been surveyed earlier by other researchers
refactoring is not just a phenomenon to smoothen the code
but it comes with its own cost and risks [5]. The first team,
from Organization A had given a poor response due to the
lack of knowledge in the area of refactoring. No one in the
team actually was practicing refactoring as they quoted the
project being relatively smaller and given the time
constraints they could not embark on something less
known. Generally a failing code is quick fixed by the
developer with his own reasoning and instinct. All the
developers were involved in all the tasks and hardly had
any specialized person for carrying out task like testing.

The Company D that deals in formulating and delivering
website design and development projects uses agile
methodology combined with SDLC (system development
lifecycle) that helps them ease the whole process. As per
the feedback of the developers they had experienced that
deferred refactoring sometimes would incur more cost and
risk, so the best approach is to follow the test driven
development. The team had designated testers for that task.

The company E that works in the domain of Health Care
Finance and Enterprise claims to have a good experience in
agile development with expert testers for automation
testing, manual testers and even unit test writers who assist
with the Test Driven Development[8].Agile teams seem to
have a better planning in this regard [1].

Zeba Khanam, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,98-102

© 2015-19, IJARCS All Rights Reserved 100

Table 1: Code Smells and refactorings commonly performed by the software teams

Company
Name/Team
Size

Technology Refactoring Code smell identification Process

A/10 Java Never refactored or refactored
in their own way such as
simplifying entagled loop
statement with either using
recursion or other logic.

Personal experience and knowledge, no specific
technique or methodology. For example long
methods, long classes, logic duplication, removing
unrelated code from a particular method or class

B/17 C# Rename Method, Rename
variable, Rename class,
Extract method, Move
Method

Manual aswell as automated but none having
thorough knowledge about the type of code smells
that may be found.

C/15 Java Extract Method, Move
Method ,Rename a variable, a
method, a class or even a
package name.Inline a method
or a variable.

Usually automated refactorings are preferred. The
commonly used IDE sare Eclipse and Netbeans.

D/12

C#

Performing manual aswell as
automated refactoring
depends upon the
requirements. Extract class,
extract method, extract super
class, extract subclass, push
down method, pull up method

Code inspection the usual way to perform small
cycle refactorings or use a tool like
ReSharper,Visual Assist X or JustCode for Visual
Studio.

Trying to find the smells in places with highest
business values.

E/20 .NET
Framework

Engage in manual automated
refactorings. Use agile
development and SCRUM.

 Generally follow test last
approach but a few also
follow Test first approach

High level code smells identified by tools. Code
rigidity is a bad symptom where there is a lot of
dependencies amongst the methods and on other
related objects.

Configuration data not in a centralized location
and scattered through the code reflects bad
coding.

IV. MAJOR REASONS ABOUT USING OR NOT
USING REFACTORING

The reasons professionals quoted for not refactoring a
design can be broadly categorized as follows:

A. Deadlines:
The business pressure to complete the task in a given frame
of time on a specific deadline is usually immense on the
team as the stakeholders usually decide on the deadlines
with the manager without consulting the developers. This

also is a big reason for the introduction of technical debts
and ironically calls for refactoring in return [16].
It has also been observed that the development teams are not
very keen on pursuing the proactive refactoring [4][6] unless
there is some business driven requirement or if there is an
acute need to refactor because of the deteriorating
performance of the product.

B. Lack of Tests
Refactoring without proper testing becomes worthless.
Hence if a developer refactors without testing the code
there’s no way to ensure if the developer has introduced a

Zeba Khanam, International Journal of Advanced Research in Computer Science, 9 (5), Sept

bug or has changed the behavior. To maintain the
code, some good testers should always be available but
that’s not the case always in most of the projects
refactoring without a proper test plan usually takes the
developer a week behind on the roadmap without assurance
of any improvement.

C. Troublesome and risky.
 It has been cited frequently by many authors that to refactor
is not an easy task and involves risk in particular introducing
new faults or other problems [7][8] and many a times
behavior preservation becomes quite difficult especially
when inheritance is involved.

D. Technical
 Participants reported there are various technical
that limit refactoring such as inadequate tool support
reasons include the nature of the project t
refactoring. Examples include like working on legacy
system that lack test suites, having to implement a third
party interface, non familiarity with the code etc
professionals working on a legacy system have to put in
extra effort to refactor it, especially legacy systems
developed in C needs major code rejuvenation practices due
to the lack of object oriented constructs,
techniques have been invented to refactor the code to
produce a maintainable and readable code [18][19].
detailed discussion about the various barriers to refactoring
has been highlighted by various researchers already
[11][14]. The management support is also a factor as the
participants reported that they have to comply with the plan
of their boss.

.

Fig 1: Refactoring pattern in the surveyed organization

E. Analysis of the participants’ background:
As indicated in Fig 1, it depicts how the respondents
Company A, B, C, D and E perceive and implement
refactoring. As can be seen from the figure the Company A
has hardly any candidates those have adopted
refactoring strategy and there are many who have no idea
about it.
An important observation in this case would be to assess the
background of the developers as well. There were almost 5
to 15 % candidates those were fresher or having less than
years of experience. These respondents could hardly speak
about refactoring. Almost 60 % of the candidates were from
the core computing background with bachelors or masters
degree and they depicted greater curiosity and awareness.

International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,

the quality in
ould always be available but

that’s not the case always in most of the projects. Therefore
refactoring without a proper test plan usually takes the

without assurance

frequently by many authors that to refactor
in particular introducing

[7][8] and many a times
behavior preservation becomes quite difficult especially

there are various technical constraints
tool support. Other

project that inhibits
. Examples include like working on legacy

having to implement a third-
e, non familiarity with the code etc. The

professionals working on a legacy system have to put in
extra effort to refactor it, especially legacy systems

rejuvenation practices due
 so various

techniques have been invented to refactor the code to
produce a maintainable and readable code [18][19]. A

ussion about the various barriers to refactoring
been highlighted by various researchers already

The management support is also a factor as the
participants reported that they have to comply with the plan

Fig 1: Refactoring pattern in the surveyed organization

it depicts how the respondents from
D and E perceive and implement

refactoring. As can be seen from the figure the Company A
has hardly any candidates those have adopted any planned
refactoring strategy and there are many who have no idea

An important observation in this case would be to assess the
background of the developers as well. There were almost 5
to 15 % candidates those were fresher or having less than 2
years of experience. These respondents could hardly speak
about refactoring. Almost 60 % of the candidates were from
the core computing background with bachelors or masters

and they depicted greater curiosity and awareness.

Whereas approximately 30 % of the candidates were from a
non computing background such as electronics, electrical or
mechanical aswell who found the concept to be difficult to
acquire and would not choose to refactor unless it is
explicitly required. But for sure the
programmers were keen to somehow do away with the
technical debt.

V. CONCLUSIONS AND FUTURE WORK

The interactions from five industrial companies explore
some conceptions about the refactoring practices in the
industry. The goal of this study was to provide insights into
the practice of refactoring in
processes. This questionnaire-based survey performed
directly as well as indirectly via email provides results from
approximately 80 respondents.
industry still lacks experts in the area and developers in
general are reluctant to learn or adopt the skills due to a
number of constraints such as time, skills and risk etc.
per the survey results refactoring doesn’t seem to
overall maintainability or the complexity metrics unless
performed with a proper layout and plan. Refactoring
changes made on a random basis hardly has any impact
infact they carry the risk of introducing bugs in the program.
The principal results concerning planning and
implementation of refactoring indicates 80 % of agile team
members do careful planning during
good idea about refactoring and related tasks like TDD
whereas rest of the teams had a relatively lower percentage
(approx 20 to 30%) of the participants responding
towards careful planning for refactorin
exhaustive case as the numbers of participants are small but
the projections do indicate the
highlight the gap between research practices
usage. The future work would be
participant with broader parameters for assessment.

REFERENCES

[1] Chen, J., Xiao, J., Wang, Q.

Mingshu L. Empirical Software Eng (2016) 21: 1397.
Refactoring planning and practice in agile software
development: An empirical study (PDF Download
Available).

[2] Roberto Verdecchia, Rene Aparicio Saez , Giuseppe
Procaccianti , Patricia Lago (2018)
the Energy Impact of Refactoring Code Smells

[3] 3. Szőke G., Nagy C., Ferenc R., Gyimóthy T. (2014) A
Case Study of Refactoring Large
to Efficiently Improve Source Code Quality. In:
Murgante B. et al. (eds) Computational Science and Its
Applications – ICCSA 2014.
Notes in Computer Science, vol 8583. Springer, Cham.

[4] 4. Khanam, Zeba and Ahsan, Najeeb Mohd. (2017)
Evaluating the Effectiveness of Test Driven Development:
 Advantages and Pitfalls. In International Journal of
Applied Engineering Research ISSN 0973
12, Number 18 (2017) pp.

[5] 5. Kim et al. (2014) An Empirical Study of Refactoring
Challenges and Benefits at Microsoft. : IEEE
TRANSACTIONS On Software Engineering.

[6] 6. Elssamadisy A, Schalliol G (2002, May). Recognizing
and responding to bad smells in extreme programming. In

Oct 2018,98-102

0 % of the candidates were from a
non computing background such as electronics, electrical or
mechanical aswell who found the concept to be difficult to
acquire and would not choose to refactor unless it is

required. But for sure the experienced
programmers were keen to somehow do away with the

CONCLUSIONS AND FUTURE WORK

industrial companies explore
some conceptions about the refactoring practices in the

was to provide insights into
refactoring in software development

based survey performed
via email provides results from

. The study found that
still lacks experts in the area and developers in

general are reluctant to learn or adopt the skills due to a
number of constraints such as time, skills and risk etc. As
per the survey results refactoring doesn’t seem to impact the

or the complexity metrics unless it’s
performed with a proper layout and plan. Refactoring
changes made on a random basis hardly has any impact
infact they carry the risk of introducing bugs in the program.

oncerning planning and
plementation of refactoring indicates 80 % of agile team

do careful planning during the project and have a
good idea about refactoring and related tasks like TDD
whereas rest of the teams had a relatively lower percentage

participants responding similarly
careful planning for refactoring. The study is not an

exhaustive case as the numbers of participants are small but
do indicate the refactoring trend and

highlight the gap between research practices and industrial
usage. The future work would be directed to a wider

with broader parameters for assessment.

REFERENCES

Chen, J., Xiao, J., Wang, Q., Leon J. Osterweil.,
Software Eng (2016) 21: 1397. 8

and practice in agile software
development: An empirical study (PDF Download

Roberto Verdecchia, Rene Aparicio Saez , Giuseppe
ccianti , Patricia Lago (2018) Empirical Evaluation of

the Energy Impact of Refactoring Code Smells
Szőke G., Nagy C., Ferenc R., Gyimóthy T. (2014) A

Case Study of Refactoring Large-Scale Industrial Systems
Improve Source Code Quality. In:

Murgante B. et al. (eds) Computational Science and Its
 ICCSA 2014. Lecture

Notes in Computer Science, vol 8583. Springer, Cham.
eba and Ahsan, Najeeb Mohd. (2017)

the Effectiveness of Test Driven Development:
Pitfalls. In International Journal of

Applied Engineering Research ISSN 0973-4562 Volume
18 (2017) pp. 7705-7716

Kim et al. (2014) An Empirical Study of Refactoring
es and Benefits at Microsoft. : IEEE

TRANSACTIONS On Software Engineering.
. Elssamadisy A, Schalliol G (2002, May). Recognizing

ells in extreme programming. In

Zeba Khanam, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,98-102

© 2015-19, IJARCS All Rights Reserved 102

Proceedings of the 24th International conference on
Software Engineering (pp 617–622). ACM

[7] 7. Gabor Szoke, Gabor Antal, Csaba Nagy, Rudolf Ferenc,
Tibor Gyimóthy, Empirical study on refactoring large-scale
industrial systems and its effects on maintainability, Journal
of Systems and Software, Volume 129,

2017, Pages 107-126, ISSN 0164-1212,
[8] Moser R., Abrahamsson P., Pedrycz W., Sillitti A., Succi

G. (2008) A Case Study on the Impact of Refactoring on
Quality and Productivity in an Agile Team. In: Meyer B.,
Nawrocki J.R., Walter B. (eds) Balancing Agility and
Formalism in Software Engineering. CEE-SET 2007.
Lecture Notes in Computer Science, vol 5082. Springer,
Berlin, Heidelberg

[9] Michael W ; Uwe D ; Will S. (2016). Improving Code
Maintainability: A Case Study on the Impact of
Refactoring. 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME)

[10] 10. Rizvi, S., Khanam, Z. (2011) A methodology for
refactoring legacy code. In International Conference on
Electronics and Computer Technology (ICECT
2011), pp. 198–200 (2011), IEEE Xplore.

[11] Emerson Murphy-Hill., Andrew. (2008) Black Breaking
the barriers to successful refactoring. 2008 ACM/IEEE 30th
International Conference on Software Engineering

[12] Leppänen, Marko; Mäkinen, Simo; Lahtinen, Samuel;
Sievi-Korte, Outi; Tuovinen, Antti-Pekka; Männisto, Tomi,
"Refactoring-a Shot in the Dark?," in Software, IEEE,
vol.32, no.6, pp.62-70, Nov.-Dec. 2015.

[13] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R.
Oliveto, and O. Strollo, “When does a refactoring induce
bugs? an empirical study,” in Source Code Analysis and
Manipulation (SCAM), 2012 IEEE 12th International
Working Conference on, September 2012, pp. 104–113.

[14] Khanam, Zeba. (2018). Barriers to Refactoring: Issues and
Solutions. 2454-4248. 4. 232.

[15] Vidal, Santiago & Marcos, Claudia & Diaz-Pace, Andres.
(2014). An approach to prioritize code smells for
refactoring. Automated Software Engineering.
10.1007/s10515-014-0175-x.

[16] Marinescu R (2012) Assessing technical debt by identifying
design flaws in software systems. IBM Journal of Research
and Development 56(5):9

[17] Mkaouer W, Kessentini M, Bechikh S, Cinnéide MÓ, Deb
K (2014) Software refactoring under uncertainty: a robust
multi-objective approach. In: Genet. Evol. Comput. Conf.
GECCO 2014.

[18] Khanam, Z. and Rizvi, S. “Refactoring Catalog for Legacy
software using C and Aspect Oriented Language”- the
proceedings of SERP 2011, USA.

[19] Z Khanam, SAM Rizvi. “Aspectual Analysis of Legacy
Systems: Code Smells and Transformations in C”,
International Journal of Modern Education and Computer
Science, Volume 5, Issue 11, Page 57, 2013.

[20] Chatzigeorgiou, A. and Manakos, A. 2013. Investigating
the evolution of code smells in object-oriented systems,
Innovations in Systems and Software Engineering. NASA
Journal. DOI= 10.1007/s11334-013-0205-z

[21] F. A. Fontana, M. Mangiacavalli, D. Pochiero, and M.
Zanoni, “On experimenting refactoring tools to remove
code smells,” in Scientific Workshop Proceedings of the
XP2015. ACM, 25 May 2015, p. 7

[22] Moghadam, I. H. and Ó Cinnéide, M. 2012. Automated
Refactoring using Design Differencing, In Proceedings of
European Conference on Software Maintenance and
Reengineering (ECSM’12).

[23] Rizvi S A M. and Z Khanam. (2010) A Comparative Study
of using Object oriented approach and Aspect oriented
approach for the Evolution of Legacy System . 2010
International Journal of Computer Applications (0975 –
8887) Volume 1 – No. 7

[24] Harman, M., Mansouri, A. and Zhang, Y. 2012. Search-
based software engineering: Trends, techniques and
applications. ACM Comput. Surv. 45, 1, Article 11
(December 2012), 61 pages.
DOI=10.1145/2379776.2379787.

[25] G. Procaccianti, H. Fernandez, and P. Lago, “Empirical
Evaluation of Two Best-Practices for Energy-Efficient
Software Development,” J. Syst. Softw., vol. 117, no. July
2016, pp. 185–198, 2016

[26] R. Verdecchia, F. Ricchiuti, A. Hankel, P. Lago, and G.
Procaccianti, “Green ICT research and challenges,” in
Advances and New Trends in Environmental Informatics.
Springer, 2017, pp. 37–48

[27] J. Koomey, “Growth in data center electricity use 2005 to
2010,” A report by Analytical Press, completed at the
request of The New York Times, p. 9, 2011.

