
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 242

Canonical Approach for Data transformation from traditional databases to XML

Vandana Dabass
M.Tech. (C.E)

PDMCE, bahadurgarh,
Haryana, India

vandanadabass@gmail.com

Abstract: XML and traditional databases both are considered as the active research areas for computer industry as internet and technology
penetrate more in the software market. XML and relational databases are two most essential mechanisms for storing and transforming the data.
In this paper we are going to present a canonical approach for data transformation from traditional databases to XML databases in which with
the help of canonical data model traditional databases such as relational databases will be transformed to XML database in order to preserve the
semantics of both.

Keywords: XML, relational databases, canonical data model, data transformation, database technology

I. INTRODUCTION

XML and traditional (RDB) databases are two of the
most important mechanisms for storing and transferring
data. A reliable and flexible way of moving data between
them is very desirable goal. The way data is stored in each
method is very different which makes the transformation
process difficult. XML is getting increasingly popular for
data exchange and storing for the web applications because
of its portability and ease of data exchange features. It is
useful when applications must communicate with other
applications or integrate information from several other
applications. XML documents are self-contained i.e. they
contain the data as well its presentation format.To
successfully move data from one model to the other a way
of describing the schema is needed for this purpose a
canonical approach is used in which CDM (canonical data
model) is used as a conceptual model. Canonical data model
is a federated collection of local metamodels including the
definition of the common semantics and the format
transformation rules.

II. MOTIVATION

 Many organizations have stored their data in RDBs and
aspire to take advantage of databases that have emerged
more recently. Instead of discarding existing RDBs or
building non-relational applications on top of them, it is
generally preferable and beneficial to convert existing
relational data into a new environment. However, the
question is: which of the new databases is most appropriate
to move to? So there is a need for a method that deals with
database transformation from RDB to XML in order to
provide an opportunity for exploration, experimentation and
comparison among alternative database technologies. The
method should assist in evaluating and choosing the most
appropriate target database to adopt for non-relational
applications to be developed according to the required
functionality, performance and suitability. This could help
further increase the acceptance of such newer and richer
databases among enterprises and practitioners. An XML

document represents the data along with the metadata. In a
relational model data and the metadata exist at different
places. XML data is portable while a data in relational
model is not.

III. BACKGROUND

One of the challenges in relational to XML
transformations that schema overhead is as big a factor as
data redundancy [8]. Thus, the ability to avoid encoding
data items has a double benefit the data item itself is not
encoded and its accompanying tags are not encoded.
Further, the transformation should be easily expressible
and preferably require minimal user input. The common
weakness with most approaches is that the relational model
is mapped to a different data model before migration to
XML and this procedure requires human involvement.
Once the user has built the intermediate model, they have
limited impact on the final result as the mapping is
performed by transformation rules. Note this work is not
about XML normalization [1]. The assumption is that the
relational schema has already been normalized, and the
algorithm must only ensure redundancies do not get re-
introduced during transformation. Four categorizes of
transformation methods:
A. Flat Transformation
B. Query-based Transformation
C. Model-based Transformation
D. Dependency-based Transformation

IV. XML DATABASES VS TRADITIONAL
DATABSES

An XML database is a data persistence software system
that allows data to be stored in XML format. This data can
then be queried, exported and serialized into the desired
format.XML solves many problems by providing a standard
format for data interchange, some challenges remain. In the
real world, applications need reliable services to store,
retrieve, and manipulate data. These services were
traditionally offered by relational databases. The relational
database technology has matured over the last 30 years, and

Vandana Dabass et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,242-245

© 2010, IJARCS All Rights Reserved 243

it is well-known for its impressive SQL query performance,
unequaled reliability and scalability, strong management and
security, and legendary concurrency through locking and
caching. So it would seem to be natural to use relational
databases to persist and manipulate XML documents[3].
Well, the problem is that relational and hierarchical
representations of data are very different. In the relational
model, the data is stored in rows of two-dimensional tables
where the physical order of rows is insignificant. XML, on
the other hand, is a highly hierarchical model where the
order of elements is significant, and the relationship among
elements is described in a given document. Using a
relational model to express a hierarchy of elements in a
complex XML document is a non-trivial task. Therefore,
some software vendors decided to implement pure XML
databases designed to efficiently handle the hierarchical
model. Unfortunately, the native XML databases don't
provide maturity, scalability, and concurrency of the
relational databases yet. Another approach adopted by other
software vendors is to programmatically process the XML
documents and map their hierarchy into a relational
database.
Two major classes of XML database exist:

A. XML-enabled:
These map all XML to a traditional database (such as a

relational database), accepting XML as input and rendering
XML as output. This term implies that the database does the
conversion itself (as opposed to relying on middleware) [2].

B. Native XML (NXD):
The internal model of such databases depends on XML

and uses XML documents as the fundamental unit of
storage, which are, however, not necessarily stored in the
form of text files.

While traditional (relational) databases are the most
popular mechanism for storing the data as compared to xml
databases in which information is stored in the form of
tables and accessed with the help of queries. The relational
data model, introduced represents a database as a collection
of relations (i.e., tables of values); hence the name relational
database. Later, the ER model, which is currently used as
the main conceptual model, was proposed for graphically
structuring a relational model. Extensions to this model,
have been proposed in the '80s and '90s because of its
widespread use in practice. Data are structured and stored in
RDBs in two dimensional tables. The relational model
focuses on tuple-oriented information and primitive data
types. Each table consists of a number of rows, called tuples,
each of which consists of a collection of related values.

V. CANONICAL DATA MODEL

A. Brief Overview of CDM
Canonical data model is said to be the Meta model

which have all the information required by everyone. It is a
superset rather than a subset in which a point-to-point
connection requires.

B.

Figure 1 CDM before and after

The CDM is a source of valuable semantics giving an
enriched and well organized data model, which can be
converted flexibly into any of the target database. Besides
taking into account the characteristics of the target model, the
CDM retains all data semantics that could be extracted from
an RDB and the integrity constraints imposed on it.
Moreover, it acts as a key mediator for converting existing
RDB data into target databases based on the structure and the
concepts of the target models. The CDM facilitates the
reallocation of attribute values in an RDB to the appropriate
values in a target database. Based on the CDM definition,
target attributes that represent relationships among classes
are materialized into references or changed into other
domains.

VI. NEED FOR DATA TRANSFORMATION

The transformation of RDBs into relatively newer
database XML has been motivated by the dominance of
traditional RDBs in the marketplace and their limitations in
supporting complex structures and user-defined data types
provided by these new technologies. The problem is how to
effectively transform an existing RDB as a source into the
newer databases as target, and what is the best way to enrich
the semantics and constraints of the RDB in order to
appropriately capture the characteristics of this target.
Canonical approach takes an existing RDB as an input,
enriches its metadata representation with required semantics,
and constructs an enhanced relational schema representation
(RSR). Based on the RSR, a canonical data model (CDM) is
generated, which captures the essential characteristics of the
target data models, for the purpose of transformation. Due to
the heterogeneity of the target model, it is believed that it’s
necessary to develop a CDM to bridge the semantic gap
among them and to facilitate the migration process. The
CDM is designed to preserve the integrity constraints and
data semantics of the RDB so as to fit in with the target
database characteristics. This canonical approach preserves
the structure and semantics of an existing RDB to generate
XML schemas, and effectively converts existing RDB data
into target database without redundancy or loss of data.

A. Phase 1 (Transformation from Realtional to CDM):
In this first phase relational database are transformed

into the more generalized form that is Canonical data model.

B. Phase 2 (Transformation from CDM to XML):
In this second phase the acquired cdm is converted into

desired xml database. All the data transformation from

Vandana Dabass et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,242-245

© 2010, IJARCS All Rights Reserved 244

relational to xml database is done with the help of canonical
data model.

VII. PROS AND CONS OF XML

XML is self-describing in nature: An XML document
represents the data along with the metadata. In a relational
model data and the metadata exist at different places.XML
data is portable while a data in relational model is not.For
example to exchange data between MS-Access and Oracle
we need to do some data transformations even both of them
are based on relational model [1].

Adaptable to Changes: The format of an XML
document is not rigid we can easily add new tags as per our
requirements.However doing the same thing in relational
model is not possible because of the restrictions imposed by
the relational model constraints [5] .

Good for storing tree or graph based structure: XML’s
hierarchical structure makes it possible for us to store tree or
graph structured data in XML documents. Databases using
relational model do not allow us to store hierarchical data.
XML is considered to be a database in a weak sense and has
the following limitations as compared to conventional
database systems:
A. Efficient access to data due to parsing and conversion
B. Efficient Storage Indexes
C. Security
D. Multi-user access
E. Triggers
F. Transaction Management
G. Data Integrity
H. Queries across multiple documents

Given these limitations XML documents work good in
an environment consisting of small amounts of data, few
users, and modest performance requirements[7].

VIII. EXPERIMENTALS RESULTS

This canonical approach was implemented using the
Java 1.5.0 software development kit installed on a computer
with CPU Pentium IV 3.2 GHz and RAM 2 GB, operating
under Windows XP Professional. The Java database
connectivity (JDBC) API has been utilized to establish a
connection with MYSQL, which holds the input RDB(s) to
be transformed.
Input data in form of RDB is given in figure 2:

-- Table structure for table `emp`

DROP TABLE IF EXISTS `emp`;

CREATE TABLE `emp` (

 `FirstName` char(20) DEFAULT NULL,

 `SecondName` char(20) DEFAULT NULL,

 `EmpID` int(11) NOT NULL DEFAULT '0',

 `hiredate` date DEFAULT NULL,

 `EmailID` char(20) DEFAULT NULL,

 `Dept` char(20) DEFAULT NULL,

 `designation` char(20) DEFAULT NULL,

 PRIMARY KEY (`EmpID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

 Figure 2. Input data

Now with the help of CDM this data is converted into
XML representation. XML have its own schema for
representing the data so this table “emp” is converted in to
XML format as given in the figure 3.with this example a
small fragment of database is converted in to xml with the
help of canonical data model.

<xs:element name="emp">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FirstName" nillable="true"

minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SecondName" nillable="true"

minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="EmpID" default="0">
 <xs:simpleType>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-2147483648"/>
 <xs:maxInclusive value="2147483647"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:elementname="hiredate"nillable="true"

minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:date">
 <xs:minInclusive value="1000-01-01"/>
 <xs:maxInclusive value="9999-12-31"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:elementname="EmailID"nillable="true"

minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:elementname="Dept"nillable="true"

minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:elementname="designation"nillable="true"

minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">

Vandana Dabass et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,242-245

© 2010, IJARCS All Rights Reserved 245

 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:elementref="salary"minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="emp_PrimaryKey_1">
 <xs:selector xpath="."/>
 <xs:field xpath="EmpID"/>
 </xs:key>
 <xs:keyrefname="salary_ForeignKey_1"

refer="emp_PrimaryKey_1">
 <xs:selector xpath="salary"/>
 <xs:field xpath="EmpID"/>
 </xs:keyref>
 </xs:element>

Figure 3. Output data after applying canonical approach

IX. CONCLUSION

As from the above discussion it is concluded that with
the help of Canonical data model input traditional
mechanism of storing that is RDB can be easily transformed
into newer technique that is XML database.

X. REFERENCES

[1] Arenas, M. and Libkin, L., “A Normal Form for XML
Documents”, Proceedings of ACM PODS 2002, pages 85-96.

[2] Banerjee, S., Krishnamurthy, V., Krishaprasad M., and
Murthy, R., “Oracle 8i – The XML Enabled Data
Management System”, Proceedings of ICDE 2000.

[3] Bird, L., Goodchild, A., and Halpin, T., “Object Role
Modelling and XML-Schema”, Proceedings of ER 2000,
pages 309-322.

[4] Bohannon, P., Freire, J., Roy, P., and Simeon, J., “From XML
Schema to Relations: A Cost-Based Approach to XML
Storage”, Proceedings of ICDE 2002, pages 64-76.

[5] Du, W., Lee, M., and Ling, T., “XML Structures for
Relational Data”, Proceedings of WISE 2001, pages 151-160.

[6] Edmonds, J., “Optimum Branchings”,Journal of Research of
the National Bureau of Standards, 71B:233-240, 1967.

[7] Embley, D.,and Mok, W., “Developing XML Documents with
Guaranteed ‘Good’ Properties”, Proceedings of ER 2001,
pages 426-441.

[8] Fernandez, M., Kadiyska, Y., Suciu, D., Morishima, A.,
and Tan, W., “SilkRoute: A Framework for Publishing
Relational Data in XML”, 27(4):438-493, 2002

	INTRODUCTION
	MOTIVATION
	BACKGROUND
	XML DATABASES VS TRADITIONAL DATABSES
	XML-enabled:
	Native XML (NXD):

	CANONICAL DATA MODEL
	Brief Overview of CDM

	NEED FOR DATA TRANSFORMATION
	Phase 1 (Transformation from Realtional to CDM):
	Phase 2 (Transformation from CDM to XML):

	PROS AND CONS OF XML
	EXPERIMENTALS RESULTS
	CONCLUSION
	REFERENCES

