
DOI: http://dx.doi.org/10.26483/ijarcs.v9i3.6104

Volume 9, No. 3, May-June 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 206

ISSN No. 0976-5697

TIME COMPLEXITY ANALYSIS OF RSA AND ECC BASED SECURITY
ALGORITHMS IN CLOUD DATA

D.Pharkkavi and Dr. D. Maruthanayagam

1Research Scholar, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri, Tamilnadu, India
2 Head/Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College of Arts & Science,

Dharmapuri, Tamilnadu, India
dr.d.maruthanayagam@gmail.com

Abstract: Cloud computing is being heralded as an important trend in information technology throughout the world. Data security has a major
issue in cloud computing environment; it becomes a serious problem due to the data which is stored diversely over the cloud. Data privacy and
security are the two main aspects of user’s concern in cloud information technology. Now-a-days, the cloud data security method uses the
symmetric encryption and asymmetric encryption algorithms with their strong authentication techniques. In this paper, we discuss and compare
the performances for number of existing security techniques used to provide security in the field of cloud computing on the basis of different
parameters. It will be useful to enhance the security of data storage in a cloud environment and also to find proposed a novel security algorithm.

Keywords: Cloud Computing, Security, Cryptography, ECC, RSA, ECDH and ECDSA

I.INTRODUCTION
Cloud computing utilizes with an attractive tag line ‘pay-as-
you-use’ for attracting users to its great elasticity and
scalability of resources at relatively low cost. Evaluated to
the construction of their own infrastructures, customers are
capable to reduce on important expenditure procedure by
securing storage, migrating computation and hosting onto the
cloud. Even though this affords savings in terms of
manpower and finance, it takes lots of new risks and
challenges.

The authority of the cloud computing is considered with
respect to its technological transformations and business
benefits, the future enterprise applications are completely
dependent on it. It has its individual benefits; however it has
several risks and challenges like, Privacy Issues, Data Theft,
Infected Application, Data Integrity, Data Location, Data
Loss, Security on User Level, and Security on Vendor Level
[1]. Nowadays cryptography is more useful than encryption
and decryption. Authentication is a basic part of our daily life
as the privacy protection. We use authentication throughout
to process day-to-day lives when we sign our name to some
document, where our agreements and decisions are
communicated electronically for providing authentication.

A digital signature attaches a document to the processor
using a particular key, while a digital timestamp connects a
document to a particular time. The risk may be difficult to
find its solution needs some secret knowledge like signing
few digital documents or decrypting an encrypted message.
Cloud uses various cryptographic techniques necessary for
cloud security. A key is utilized for data encryption and data
decryption. This supports in securely protecting integrity and
confidentiality of data. It ensures to protect the security of
data to be shared in cloud and allows data to be stored
securely [2].

Many cryptographic algorithms are considered with two
major categories.
a) Symmetric algorithms like DES, Triple DES, AES,
b) Asymmetric or public-key encryption algorithms like
Diffie-Hellman, RSA, ECDH, ECC, ECDSA etc.

In symmetric key encryption, the sender who is transmitting
the data and the receiver who is receiving the data to be share
a key which is kept secret [3]. This is the way used to encrypt
and decrypt the messages. In asymmetric key encryption, two
keys are involved wherein one key is used for encryption
(publicly available) and the other key is used for decryption
(kept secret).
• Attribute based encryption: The secret key of a user

and the cipher text are depending upon attributes by
using the public-key encryption, (e.g. the kind of
subscription he has, or the country he lives,). A user can
encrypt a message under a policy and a public key.
Decryption process will only handle work if the
attributes related with the decryption key match the
policy used to encrypt the message.

• Cloud-managed-key: An additional possible threat with
conventional cryptographic techniques can be allowing
users manage their decryption keys themselves.
Additionally, if a user has not provided permissions as
long to access data, after that it can decrypt data if he has
the key. The cloud is managed the key using a
cryptographic technique as a possible solution for this
issue can be resolved

• Identity based encryption: The Identity-based
encryption (IBE) is a kind of public-key encryption
where in the public key of a user is some unique
information about the identity of the user (e.g. a client
electronic mail address). An ASCII string consider as a
known identity value for any party that allows a public
key generation. The corresponding private key’s utilized
by performing private key generator and also known as
third party access. This type of encryption process is able

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 207

to cut down the complexity for utilizing both
administrators and users

II.SECURITY ALGORITHMS
2.1 RSA
In RSA schema, integer performs with in the interval [0, n-1]
such as block cipher, original message and cipher message.
In which the encrypted message and original message are
represented h*h square matrices in another schema. In this
technique, they don’t have any restriction for encryption and
decryption order and also consider as more dynamic, efficient
and scalable [4]. For the above security purpose, the
hardware implementation of RSA schema utilizing the
modular exponentiation [5] and also provide security and
help to save to computation time and processing time. Due to
the increasing demand of security issues in communication
channel its essential to improve a new technological
development and efficient hardware security module.
It is an encryption-decryption technique. It consists of
plaintext and cipher text in the form of integers between 0 to
n-1. This plain text is encrypted in blocks; each and every
block has a binary value which should be less than n.
This algorithm is done in three steps:

• Key generation
• Encryption
• Decryption

Key Generation:

In key generation consider two prime numbers (i.e.) p and q.
it consists of public key and a private key. The public key
will be known to everyone. Calculate the value of n. select a
random encryption key e calculates the gcd and it should be
equal to 1. Then find the decryption key d. finally calculate
the public key and private key. The plain text is encrypted in
blocks, with each block having a binary value less than some
number n i.e., for block size i bits, 2i<n<2i+1 .

• Input: None
• Computations: Select two relatively prime numbers

p and q.Where n=p*q and v-(p-1)*(q-1).
• Compute the integer d such that (d*e)%v=1.
• e is the integer.
• Output: n, e and d

Encryption process:
In the encryption process represent a plaintext in series of
numbers modulo n. the encryption process to obtain cipher
text C from plaintext M is very simple. It is formulated as:
C=Me mod n
Where C = cipher text
M = message text
E = public key
D = private key
The file will be encrypted by sending a symmetric File
Encrypted Key (FEK) simultaneously asymmetric public key
will generated both will be combined and forms an encrypted
FEK with a header file.

• Input: Integers n, e, M
• M is integer representation of the plain text.
• Computation: Let C be the integer representation of

the cipher text. C=(Me mod n)
• Output: Encrypted text or cipher text C.

Decryption process:
The reverse process of encryption will be decryption. It can
be generated using the formula: m= ed mod n.

Where C =cipher text
M=message text
E =public key
D =private key

• Input : d, n, C
• C is the cipher text.
• Computation: Let D be the decrypted text such that

D=(Cd Mod n)
• Output: D is the decrypted message.
• Public Key: {e, n}
• Private Key: {d, n}

Example:
i) Prime Number P = 211, Q = 233.
ii) RSA Modules N= 211 x 233 = 49163

ϕ(n) = (211−1). (233−1) = 48720.
iii) Public key e = 2^16+1= 65537.
iv) Private key d ≡ e−1 (mod 48720) ≡ 44723.
v) Message M=”INDIA”
vi) Encryption E(M) ≡ M 65537(mod 49163).
Vii) Decryption D(M) ≡ M44723 (mod 49163).
Viii) Bob sends Alice the message "INDIA" as follows:

• The Input text will be separated into segments of
Size 1 (the symbol '#' is used as separator).

I # N # D # I # A = 01001001 # 01001110
01000100 # 01001001 # 01000001

ix) Encryption into ciphertext c[i] = m[i]^e (mod N)
1001001010000100 # 111001101111100 #
000001001101110 # 1001001010000100 #
000110011110100
x) Alice decrypts the message by computing, Decryption into
plaintext m[i] = c[i]^d (mod N)
000010110100110 # 000110110000100 # 011001110011011
000010110100110 # 1010011111111010

2.2 ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

To generate cryptographic algorithms [6] the ECC
cryptographic scheme uses the properties of elliptic curves.
In the 1980s Koblitz and Miller proposed using the group
points on an elliptic curve defined over a finite field in
discrete logarithmic cryptosystems. An elliptic curve is the
solution set over a non-singular cubic polynomial equation
with two unknowns over a field F. In short terms it is a
discredited set of solutions to a curve that is in the form:

y2 = x3 + ax + b
These curves holds the property that if you draw a straight
line that intersects the curve in two points, it will also
intersect the curve in a third point that is either on the curve
or the point of infinity (also referred to as the neutral
element). Another important property of elliptic curves is that
they are symmetric over the x-axis. That means that if you
have a point P(x, y) then -P will be (x, -y). Using these
properties one can define some interesting and useful
arithmetic rules. We will now briefly explain how point
addition over elliptic curves is done, as this is used for key
generation. Suppose that you have a point A and a point B on
an elliptic curve and you want to perform an addition of these
two points. Then you draw a line from A through B. This line
will intersect the curve in a third point. Take this third point
and mirror it over the x-axis and that will be the result of the
addition [7][8].

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 208

ALGORITHM FOR ECC

There has to be some information that is publicly known to
all the users, thus making it the public key cryptography. The
publicly known entities are:-
1. From the equation of the elliptic curve, we need to know:-

• The values of the constants a and b.
• The value of m, where elliptic curve is defined over

GF(2m).
2. The group of the elliptic curve.
3. A base point B, i.e. any point on the curve E that belongs
to the group taken as a base.
The algorithms for different parts of ECC are:-
Key Generation Algorithm
• Randomly select an integer Apriv. It acts as the private

key for A.
• Then generate Apub such that Apub = Apriv * B, where

Apub is the public key for A.
• Randomly select an integer Bpriv. It acts as the private

key for B.
• Then generate Bpub such that Bpub = Bpriv * B, where

Bpub is the public key for B.
• Finally, A generates key, Ka = Apriv * Bpub
• B generates key, Kb = Bpriv * Apub
Signature Generation Algorithm
• Calculation of message digest with a HASH function,

preferable SHA-1, where e is the message digest, m is
the message such that e = HASHfun(m)

• Generate a random integer r and between 1 and n-1.
• The first of the signature, sign1 is calculated from sign1

= x mod n where x is the product of B with rand i.e. x =
xcod(rand * B) where xcod is a function to get the x co-
ordinate.

• But if sign1 is 0, then redo the previous step.
• The second part of the signature, sign2 is calculated from

the equation sign2 = rand -1(e + (Apriv*sign1)(mod n)
• But if sing2 is 0, then re-generate r and follow the

procedure again.
• The signature generated is a pair (sign1, sign2).
Signature Validation Algorithm

• Check if sign1 and sign2 lie between the range of 1
and n-1. If not, the signature is not valid.

• Calculate the message digest from the received
message with the same hash function, e =
HASHfun(m).

• Calculate var1, where var1 = sign2 1(mod n)
• Calculate var2, such that var2 = (e*var1) mod n
• Calculate var3, such that var3 = (sign1*var1) mod n
• We then calculate X, such that X = (var2*B) +

(var3*Apub)
• If sign1 (mod n) is equal to xcod(X), then signature

is verified.
Encryption Algorithm

• The plain text M is mapped onto the elliptic curve at
a point P.

• Generate a random integer rand between 1 and n-1.
• The cipher text is then encoded as a pair C, where C

= [(rand * B),(P + (rand * Bpub)]
Decryption Algorithm

• Get x, where x = xcod(C).
• Calculate prod, where prod = Bpriv * x

• Calculate (P + (rand * Bpub)) prod), this gives the
mapped point P

• Then un-map P to the plain text M
EXAMPLE:

1. Curve Size: Small , Curve Type: Real number,
Curve attributes: a=3, b=15, Curve: y² = x³ + 3x +
15,Point P = (3.2|7.57),Point Q = (-1.4|-2.83),Point
R = P + Q = (3.31|-7.84)

2. Curve Size: Large, Curve Type: F(p), Select curve
attributes: ANSI X9.62,Curve: prime192v1, Radix: 16
hexadecimal, Curve attributes: y2 = x3 + 3x + 15, where
a = fffffffffffffffffffffffffffffffefffffffffffffffc,
b = 64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
 p = fffffffffffffffffffffffffffffffeffffffffffffffff
Base point G: Point P
x = f505a38eb66ad677495e0713a37c4bd6fc826ee18c2de9d2
y= 421090022aaafa8976e9df198a61d84d384feb00dfe0c191

Base point G: point Q
x = e16e7fb72431ecb46f90235c19f8e8b499833be5fc7d3a49
 y=4dae3baeed3af299d203621933943ee3f65f2e4139e5fe72
Point R : R = P + Q
x= f5c1bc8d5fd1ad01ba71edf255083f9185154bd5d644961c
 y= f1247ab9e7171aeaf709657d87c9d368535c318201b0ffc8

Figure 1: Time Complexity (MS) Comparison of RSA, ECC,

ECDH and ECDSA

3. Curve Size: Large, Curve Type: F(2^m), Select curve
attributes : ANSI X9.62, Curve: c2pnb163v1, Radix : 16
hexadecimal
a = 00000007 2546b543 5234a422 e0789675 f432c894
35de5242

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 209

b = 00000000 c9517d06 d5240d3c ff38c74b 20b6cd4d
6f9dd4d9
m = 163

Base Point P:
x = 00000007 af699895 46103d79 329fcc3d 74880f33
bbe803cb
y= 00000001 ec23211b 5966adea 1d3f87f7 ea5848ae
f0b7ca9f

Base point Q:
X=00000007 3fbb1a82 e9f24136 3428217c 11d41746
30127d94
Y= 00000001 360090a6 d6df3487 da3808cf c571908e
60d8eb90
Point R : R = P + Q
X= 00000007 ee35173a 4ae9f401 c42fe4f6 01338998
bb745a37
Y= 00000003 6639922b a4e6c208 dc1f73b5 b137fc51
4a275c7d
4. Curve Size: Small, Curve Type: F(2^m), curve attributes :
m=4, f = x^4+x+1,a=1,b=1,Curve: y² + xy = x³ + x² + 1 ,
Point P = (g9|g12), Point Q = (g6|g3), Point R = P + Q =
(g5|g10)

2.3 ECDH – Elliptic Curve Diffie Hellman

Elliptic Curve Diffie Hellman (ECDH) represents an Elliptic
Curve variant of using the standard Diffie Hellman
algorithm. ECDH performs with a key agreement [9] [10]. It
enables two parties to establish between the public key and
the private key to exchange the shared key. Afterward, by
using the shared key considers a key or the derived key and
performs to encrypt subsequent communications using a
symmetric-key cipher. For authentication purpose, each key
pair of one of the party is trusted by using other party so as to
provide secure authentication. Therefore, the systematic
efforts are seem to be performed for providing a very faster
public key cryptosystem and concurrently this scheme should
be a very practical and protective, for the most constrained
environments.

For example, a shared secret key is exchanged between E and
F by using EC - Diffie hellman, both of EC domain
parameters to agree up or to be obtained. Both sender and
receiver contain a key pair which consists of a private key
and a public key. A private key is randomly selected integer
less then n, where n is the order of the curve and another
public key is randomly selected as Q= d*G (G is the
generator point). Let (dE, QE) be the private-public key pair
of E and (dF, QF) be the private-public key of F.

 E Computes KE= (XE, YE) = dE * QF
 F Computes KF= (XF, YF) = dF * QE
 Given that dE * QF = dEdF G= dFdE G = dF * QE.

Hence KE= KF and hence XE =XF
 (Where G represents generator point)
 Thus the shared secret is KE.

Diffie–Hellman key exchange system Using ECC
• Initially, Alex and Benny first select a finite field Fp and

an elliptic curve E defined over it (E(Fp)).

• After that, they publicly pick a random base point B
belongs E.

• In third stage, Alex chooses a secret random integer e.
Alex then computes eBεE. Consequently, transmit to
Benny.

• A secret random integer d is selected by benny. Benny
then computes dBεE. And send it to Alex.

• Subsequently eB and dB are public and e and d are
secret.

• Alex computes the secret key edB = e(dB).
• Benny computes the secret key edB = d(eB).

Example:
Step 1: Set public parameters
Curve type: F (p), Curve Size: Small, Domain parameters:
a=3,b=15,p=31, generator G= (1,9)
Step 2: Choose Secrets
Alice= 11, Bob=14
Step 3: Generate shared keys
Secret key (d): Q=d*G , Alice=(1,22), Bob= (5,0)
Step 4: Exchange shared keys
Step 5: Generate common key
Key = sA*QB and key=sB*QA S= (5,0)

2.4 Elliptic Curve Digital Signature Algorithms (ECDSA)
Initially, the Elliptic Curve Digital Signature Algorithm was
proposed in 1992 by Scott Vanstone. Three kinds of
algorithm are derived from ECDSA as follows: key
generation, signing, and verification. Algorithm ECDSA is
the elliptic curve analogue of the Digital signature algorithm.
To resolve the issues of ECDLP arise from the hardness of
ECDSA. The main benefit of ECDSA is to achieve the same
security level as with DSA, however with smaller keys. By
using smaller keys can also be evaluated more rapid
calculations and smaller public keys to pass around. A public
and private key utilize to perform the signing process and
verification process by computing the key generation
algorithm. The signing procedure is completely executed to
generate the actual digital signature. At last procedure, the
verification process controls or performs to prove the
authenticity of the signature. In ECDSA, that has a
alternative approach of the Digital Signature Algorithm
(DSA) that works on elliptic curve groups. A signed message
is transmitted from A to B and they have to agree up on
Elliptic Curve domain parameters. A private key dA and a
public key QA = dA * G where G is the generator point, an
elliptic curve domain parameter [11]. The algorithm is
described by the following steps.
ECC Domain Parameters
The elliptic curve domain parameters are determined a finite
field over arithmetic operations for utilizing these public key
cryptographic schemes. ECC domain parameters over Fq
(where Fq is either Fp and F2

m) are a septuple:
T = (q,FR,a,b,G,n,h)

Consisting of a number q specifying a prime power (q = p or
q = 2m), an indicator FR (field representation) of the method
used for representing field elements ε Fq, two field elements a
and b ε Fq , that specify the equation of the elliptic curve E
over Fq.
ECDSA Key Generation
The user A follows these steps where p is a large prime:

• Select a random integer d ∈ [1, n - 1].
• Compute Q = d x P.

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 210

• The public and private keys of the user A are Q and
d, respectively.

The other parties can check if the public key is valid by;
• Checking that Q ≠ 0.
• Checking that xQ and yQ are properly represented

elements of Fq.
• Checking that Q is on the elliptic curve defined by a

and b.
• Checking that nQ = Q.

If any of these checks fail the public key Q is invalid,
otherwise Q is valid. The following procedure describes how
to generate the signature.
ECDSA Signature Generation
The user A signs the message m using the following steps

• Select a pseudorandom integer k ∈ [1, n - 1].
• Compute k x P = (x1, y1) and r = x1 mod n.

If x1 ∈, GF(2k), it is assumed that x1 is represented
as a binary number.
If r = 0 then go to Step 1.

• Compute k-1 mod n.
• Compute s = k-1(H(m) + d • r) mod n.

Here H is the secure hash algorithm SHA-1.
If s = 0 go to Step 1.

• The signature for the message m is the pair of
integers (r, s).

ECDSA Signature Verification
The user B verifies A’s signature (r, s) on the message m by
applying the following steps:

• Verify that r and s are integers in the interval [1,n-
1].

• Compute c = s-1 mod n and H(m).
• Compute u1 = H(m) • c mod n and u2 = r • c mod n.
• Compute u1 x P + u2 x Q = (x0, y0) and v = x0 mod

n.
• Accept the signature if v = r.

Example
• ECDSA Key Generation

Signature originator: parkavi parkavi
Domain parameters to be used 'EC-prime239v1':
Chosen signature algorithm: ECSP-DSA with hash function
SHA-1
Size of message M to be signed: 5 bytes
Bit length of c + bit length of d = 477 bits
Message m = "INDIA"
00000 49 4E 44 49 41 INDIA
Elliptic curve E described through the curve equation: y^2 =
x^3 + ax + b (mod p) :
a =
8342353238919216479164875036030888531447659725296
0362792450860609699836
b =
7385252174069924173485960880387817241648609717970
98971891240423363193866
Private key = 1521284887
Public key W=(Wx,Wy) (W is a point on the elliptic curve)
of the signature originator:
Wx =
1224700832616806964197507145004472595357380527708
5576222307449754331974
Wy =
1368450552316907669838123190207900378191236323047
3532860089313480758778

Calculate a 'hash value' f (message representative) from
message M, using the chosen hash function SHA-1.

 f =
856854001393991768291128146113162782518412554266

• ECDSA SIGNATURE as follows:
G has the prime order r and the cofactor k (r*k is the number
of points on E):
k = 1
Point G on curve E (described through its (x,y) coordinates):
Gx =
1102820037495488564763485335411862045779050615048
81242240149511594420911
Gy =
8690784074355093787473518737930588685002103849460
40694651368759217025454
r =
8834235323891921647916487503603088848075503416916
27752275345424702807307
The secret key s is the solution of the EC discrete log
problem W=x*G(x unknown)

S=0X23017D41791ABDC1867EADB3C88B623DA0A4CE
B6C4160E063A27B2504DD

Signature:
c =
3628209355218032483221434350260779959994806489516
73113245353131958670779
d =
7480480454485725687888160399199812797787830106401
92427515171177419114296

• ECDSA VERIFICATION as follows:
If c or d does not fall within the interval [1, r-1] then the
signature is invalid:
c and d fall within the required interval [1, r-1].
Calculate the number h = d^(-1) mod r:
h =
4293383948764973994857292206205978050702175550742
905649742351881512371
Calculate the number h1 = f*h mod r:
h1 =
2364638068208155833677398177922325281631193284117
31596206743501995551606
Calculate the elliptic curve point P = h1 G + h2 W
Calculate the number h2 = c*h mod r:
h2 =
2645163497884801966700411372268530350144764792861
99650036313546186557595
(If P = (Px, Py) = (inf, inf) then the signature is invalid):
 Px =
3628209355218032483221434350260779959994806489516
73113245353131958670779
 Py =
6943330783255021339129620529806079907208126039380
58098391829104469112407
Convert the group element Px (x co-ordinates of point P on
elliptic curve) to the number i:
 i =
3628209355218032483221434350260779959994806489516
73113245353131958670779
Calculate the number c' = i mod r:

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 211

c' =
3628209355218032483221434350260779959994806489516
73113245353131958670779
If c' = c then the signature is correct; otherwise the signature
is invalid:

III.EXPERIMENTAL RESULTS

Performance and analysis measurements has utilized on the
Amazon EC2 environment. The Nimbus toolkit installed and
affords an infrastructure as a cloud service to its client
through Amazon EC2 WSDL or WSRF-based web service
APIs. Nimbus is free software as well as subject to the
requirements and open-source software of the Apache
License version 2. Nimbus Infrastructure is an open source
S3-compatible or EC2 Infrastructure-as-a-Service.
Particularly, the main targeting features of interest to the
scientific community such as best-effort allocations, batch
schedulers, proxy credentials, etc. Our performance result
has some values for utilizing all the Single-Job benchmarks
and in particular time. Optimizations, tuning the benchmarks
process were compiled using JAVA command-line
arguments. Moreover, we did not use any instance-dependent
optimizations or additional architecture.

Moreover, an ECC or a RSA standard server certificates are
configured by using a SSL handshake between a server and a
client. After that the test methodology is planned to
determine the relative differences. The primary difference is
articulated because of the public-key cryptographic
algorithms as considered in ECC or RSA based algorithms.
For that reason, the key exchange is performed on the option
of ephemeral ECDH that have to keep and forward the
secrecy on that it affords and we do see a popular move
towards this as well performed.

The SSL handshake also includes and completes the
operations which are identified in the table on Public Key
Cryptographic Operations. In this environment model, it has
reputation gaining and is simply run the tests available public
information to enable the reader to repeat same tests:
Amazon EC2. This kind of the test is simultaneously loaded
to the server by running the same transaction repetitively
through multiple clients and gathering latency (response
time) and throughput at the client desktop. It enables setup on
the Red Hat Enterprise Linux Server release 6.3 64 bit with
our application, High-CPU Extra Large Instance (c1.xlarge)
and the Linux.

By applying test data the security algorithms is evaluated in
terms of the execution time required to store or retrieve the
text data at cloud. The Simulation program accepts inputs:
Algorithm and data block. Subsequent to a successful
execution i.e. encryption and decryption process generate an
efficient result. After the successful encryption/decryption
process the analytical table is created. To make sure that all
the data are processed in the right way. Basically, it is depend
upon execution time (Encryption and Decryption time) as
parameters.

A cryptographic technique depends a lot on the size of the
key used for security purpose. The Encrypt/Decrypt

algorithm will be known to all. This algorithm is always a
better choice to have a big key size and also we should keep
in mind the computational load after we increase the key size.
ECC based algorithms provide helps using a lesser key size
compared to other cryptographic technique and still holds at
high level security. The key length of our implementation we
have used a 160 to 192 bit, which is quit better to protect
against naive attack. The key length is increased for better
security by using the encryption and decryption process. The
ECC, RSA, ECDH and ECDSA algorithms can provide to
determine the length of the encryption keys and an arbitrary
level of security used for each algorithm. Tables represent the
required key length using different encryption algorithms in
order to complete a level of security similar to the RSA key
length provided by 1024-bit RSA encryption. The times for
key generation, signature, and verification algorithms have
computed with comparable key sizes for RSA, ECC, ECDH
and ECDSA. The results of the report showed that ECDSA
outperformed RSA in both key and signature generations.
However, ECDSA was capable to verify messages much
faster than RSA. The key sizes ranged from 1024 to 15360
bits for RSA and 163 to 571 bits for ECDSA algorithms. In
ECDSA key generation are consistently faster than those of
RSA. By the last comparison, RSA has taken a total of
1142.5455 seconds while ECDSA lasted 315.5778 seconds,
significantly faster. Meanwhile, the signature generation had
slightly different results. RSA started out by executing faster
than ECDSA. However, as the bit sizes for each increased,
RSA has shown to slow down as ECDSA sped up and
surpassed its counterpart on the final execution. Finally, with
signature verification, ECDSAs times are considerably
quicker than RSAs, times and barely increased as the size of
key lengths grew.

Table 1: Time Complexity (MS) Comparison of RSA
and ECC based Algorithms

Time Complexity(MS)

Key size
(RSA:ECC:ECDH

:ECDSA)

RSA ECC ECDH ECDSA

1024:163:128:163 212.4521 149.6712 125.4155 114.3564

2048:224:160:233 542.4123 237.6034 189.2541 125.2457
3078:256:192:283 678.9623 456.0023 242.2564 179.2563
7680:384:224:409 817.3245 779.2342 369.1248 298.5447

15360:521:256:571 1142.5455 854.5878 410.2565 315.5778

Figure 1: Time Complexity (MS) Comparison of RSA,

ECC, ECDH and ECDSA

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 212

Table 2: Execution Times for Key Generation and
Encryption (MS) Comparison of RSA and ECC based

Algorithms

Execution Times for Key Generation and Encryption(MS)

Key size
(RSA:ECC:ECDH

:ECDSA)

RSA ECC ECDH ECDSA

1024:163:128:163 54.6534 48.2548 46.8545 40.8454
2048:224:160:233 78.2545 55.0485 49.5455 47.4748
3078:256:192:283 98.3523 87.8455 59.0174 56.4854
7680:384:224:409 112.2545 96.5452 69.1484 67.5454

15360:521:256:571 153.8767 106.0457 78.1254 73.8458

Figure 2: Execution Times for Key Generation and

Encryption (MS) Comparison of RSA, ECC, ECDH and
ECDSA

Figure 1 and Table 1 shown Time Complexity of Security
Algorithms (RSA, ECC, ECDH and ECDSA), Figure 2 and
3, Table 2 & 3 shown, Encryption and decryption
performance for the various algorithms are difficult to
measure and are heavily influenced by system architecture
and software/hardware optimizations. ECC offers
dramatically superior key pair generation performance
compared to RSA, with the large primes generated for RSA
requiring several orders of magnitude more time when
compared to a much smaller ECC key, especially at RSA bit
lengths of 1024 and above RSA encryption is generally
slightly lesser than ECC, while ECC decryption may be
several times faster than RSA, although both are generally
efficient enough not to provide a practical system bottleneck.
The ECDH and ECDSA method is assumed to offer a similar
processing time as RSA due to similarities in algorithm
implementation but will likely take longer due to the multiple
exchanges involved.

Table 3: Execution Times for Decryption (MS)
Comparison of RSA and ECC based Algorithms

Execution Times for Decryption(MS)
Key size

(RSA:ECC:ECDH:
ECDSA)

RSA ECC ECDH ECDSA

1024:163:128:163 56.3429 49.8785 44.2645 39.4587
2048:224:160:233 76.2545 70.0124 58.1247 46.2147
3078:256:192:283 95.6955 89.0525 61.2565 57.9876
7680:384:224:409 106.2541 98.0214 97.7249 79.6589
15360:521:256:571 123.5455 101.4521 99.7854 89.6987

Figure 3: Execution Times for Decryption (MS)
Comparison of RSA, ECC, ECDH and ECDSA

Table 4: Execution Times for Signature verification (MS)
Comparison of RSA and ECC based Algorithms

Execution Times for Signature verification(MS)
Key size

(RSA:ECC:ECDH:
ECDSA)

RSA ECC ECDH ECDSA

1024:163:128:163 37.0523 31.9875 29.5457 24.2568
2048:224:160:233 44.2545 39.5784 34.9854 31.5896
3078:256:192:283 56.2556 43.8795 41.2578 39.4112
7680:384:224:409 69.6723 57.9821 52.6541 43.8854
15360:521:256:571 110.2443 73.6942 69.8754 55.9558

Figure 4: Execution Times for Signature verification
(MS) Comparison of RSA, ECC, ECDH and ECDSA

Figure 4 and Table 4 shown Signature Verification of
algorithms and key pair generation algorithm of ECDSA
needs a random number to be generated. Using this random
number as seed private keys is generated. Similarly secret
integer ‘K’ generated during signature verification algorithm
should also be random in nature. An attacker can exploit this
vulnerability if the algorithm used to generate the random
number is not cryptographically secure i.e. it should be
unpredictable. So probability of any given value being

D. Pharkkavi et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018 206-213

© 2015-19, IJARCS All Rights Reserved 213

selected should be very small. As a future scope of our
proposed work cryptographically secure random number
should be included while generating private keys.

IV.CONCLUSION

Encryption and decryption algorithms play an important role
in data security on cloud. Various encryption algorithms have
been proposed to make cloud data secure, vulnerable and
gave concern to security issues and challenges. In this paper
the comparisons have been made between RSA and ECC
Based algorithms (ECC , ECDH and ECDSA) to find the
which one is best security algorithm, which has to be used in
cloud computing for making cloud data secure and not to be
hacked by attackers. According to the experimental results
ECDSA is best for the remaining algorithms such as RSA,
ECC and ECDH. The future scope of this work is to find
out an efficient proposed novel algorithm to make the more
secure than ECDSA.

V.REFERENCES

[1]. Garfinkel, S.L; “Public Key Cryptography”, Computer,

IEEE, Volume: 29, Issue: 6, June 1996.
[2]. Periyanatchi S, Chitra.K. [2015] Analysis on Data Security

in Cloud Computing-A Survey. International Conference
on Computing and Intelligence Systems 04:1281 – 1284.

[3]. CharanjeetKaur et al. [2015] Data Security Algorithms In
Cloud Computing: A Review. International Journal For
Technological Research In Engineering 2:372– 375.

[4]. Sana Belguith et al. [2015] Enhancing Data Security in
Cloud Computing Using a Lightweight Cryptographic
Algorithm. The Eleventh International Conference On
Autonomic and Systems. 98– 103.

[5]. Tembhurne S et al. [2015] An Improvement In Cloud Data
Security That Uses Data Mining. International Journal of
Advanced Research in Computer Engineering &
Technology 4: 2044– 2049.

[6]. Nikhitha K, Navin K S. [2015] A Survey On Various
Encryption Techniques For Enhancing Data Security In
Cloud. International Journal of Advanced Research Trends
in Engineering and Technology 194– 197.

[7]. S. Maria Celestin Vigila , K. Muneeswaran
“Implementation of Text based Cryptosystem using Elliptic
Curve Cryptography”, IEEE Sep-2009, pp. 82-85.

[8]. Abhuday Tripathi, and Parul Yadav, “Enhancing Security
of Cloud Computing using Elliptic Curve Cryptography,
International Journal of Computer Applications, 57(1),
2012, 0975-8887.

[9]. Sherif El-etriby, Eman M. Mohamed,Modern Encryption
Techniques for Cloud Computing,proceedings of the
informatics and systems 8th international
conference(page:cc-1-cc-6 year :2012 ISBN: 978-1-4673-
0828-1)

[10]. Mandeep Kaur, Manish Mahajan, “Using encryption
Algorithms to enhance the Data Security in Cloud
Computing”, International Journal of Communication and
Computer Technologies,Vol.12, Issu.3,pp 56-59,2013

[11]. Julio Lopez and Ricardo Dahab- Fast Multiplication
on Elliptic Curves over GF(2m) without
Precomputation, Springer.

ABOUT THE AUTHORS

D.Pharkkavi received her M.Phil
Degree from Tiruvalluvar University,
Vellore in the year 2013. She has
received her M.C.A Degree from Anna
University, Chennai in the year 2012.
She is pursuing her Ph.D (Full-Time)

Degree at Sri Vijay Vidyalaya College of Arts & Science,
Dharmapuri, Tamilnadu, India. Her areas of interest include
Cloud Computing and Mobile Computing.

 Dr.D.Maruthanayagam received his Ph.D
Degree from Manonmaniam Sundaranar

University, Tirunelveli in the year 2014. He received his
M.Phil Degree from Bharathidasan University, Trichy in the
year 2005. He received his M.C.A Degree from Madras
University, Chennai in the year 2000. He is working as HOD
Cum Professor, PG and Research Department of Computer
Science, Sri Vijay Vidyalaya College of Arts & Science,
Dharmapuri, Tamilnadu, India. He has above 15 years of
experience in academic field. He has published 4 books, 26
papers in International Journals and 28 papers in National &
International Conferences so far. His areas of interest include
Computer Networks, Grid Computing, Cloud Computing and
Mobile Computing.

